
Yang et al. Advances in Difference Equations  (2015) 2015:5 
DOI 10.1186/s13662-014-0341-2

R E S E A R C H Open Access

Existence and uniqueness of positive periodic
solutions for a first-order functional
differential equation
Chen Yang1, Chengbo Zhai2* and Mengru Hao2

*Correspondence:
cbzhai@sxu.edu.cn;
cbzhai215@sohu.com
2School of Mathematical Sciences,
Shanxi University, Taiyuan, Shanxi
030006, P.R. China
Full list of author information is
available at the end of the article

Abstract
In this article, we establish sufficient conditions for the existence and uniqueness of
positive periodic solutions for a class of first-order functional differential equations.
Our analysis relies on some fixed point theorems for mixed monotone operators. Our
results can not only guarantee the existence of unique positive periodic solutions, but
also be applied to construct an iterative scheme for approximating them. Some
examples are given to illustrate our main results.
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1 Introduction
This article will investigate the existence and uniqueness of positive periodic solutions for
the following first-order functional differential equation:

y′(t) = –δ(t)y(t) + f
(
t, y

(
t – τ (t)

)
, y

(
t – τ (t)

))
+ g

(
t, y

(
t – τ (t)

))
, (.)

where T > , δ, τ : R → R are continuous T-periodic functions and δ(t) >  for t ∈ R,
f : R → R and g : R → R.

Functional differential equations with periodic delays appear in a number of ecological,
economical, control and physiological models. During the past decades, there has been a
significant development in the question of periodic solutions for ordinary and partial dif-
ferential equations, see the papers [–] and the references therein. In these papers, most
of the authors have investigated the existence of positive periodic solutions for functional
differential equations. Recently, Kang, Shi and Wang [] studied the following first-order
functional differential equation:

y′(t) = –a(t)y(t) + f
(
t, y

(
t – τ (t)

))
, (.)

where a, τ ∈ C(R, R), f ∈ C(R, R) are T-periodic functions with T > , and they estab-
lished the existence of maximal and minimal periodic solutions for (.) by using the
method of lower and upper solutions. As we know, in most of the existing works, in or-
der to establish the existence of positive periodic solutions, a key condition is that the

© 2015 Yang et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited.

http://dx.doi.org/10.1186/s13662-014-0341-2
mailto:cbzhai@sxu.edu.cn
mailto:cbzhai215@sohu.com


Yang et al. Advances in Difference Equations  (2015) 2015:5 Page 2 of 15

existence of upper-lower solutions must be assumed. However, it is difficult to verify the
existence of upper-lower solutions for concrete functional differential equations. In addi-
tion, few papers can be found in the literature on the existence and uniqueness of positive
periodic solutions for four-point fractional differential equations. Motivated by the works
[, ], in our paper, we will use three fixed point theorems for mixed monotone opera-
tors to study the existence and uniqueness of positive periodic solutions for problem (.).
Our results can not only guarantee the existence of unique positive periodic solutions, but
also be applied to construct an iterative scheme for approximating them.

With this context in mind, the outline of this paper is as follows. In Section , we shall
recall certain results from the theory of mixed monotone operators and some definitions,
notations of an ordered Banach space. In Section , we shall provide some conditions un-
der which problem (.) will have a unique positive periodic solution. Finally, in Section ,
we shall provide three examples which explain the applicability of our main results.

2 Preliminaries
In the sequel, we present some basic concepts in ordered Banach spaces for completeness
and three fixed point theorems for mixed monotone operators which will be used later.
For the convenience of readers, we refer them to [–] for details.

Suppose that (E,‖ · ‖) is a real Banach space which is partially ordered by a cone P ⊂ E,
i.e., x ≤ y if and only if y – x ∈ P. If x ≤ y and x �= y, then we denote x < y or y > x. By θ we
denote the zero element of E. Recall that a non-empty closed convex set P ⊂ E is a cone if
it satisfies (i) x ∈ P,λ ≥  ⇒ λx ∈ P; (ii) x ∈ P, –x ∈ P ⇒ x = θ .

P is called normal if there exists a constant N >  such that, for all x, y ∈ E, θ ≤ x ≤ y
implies ‖x‖ ≤ N‖y‖; in this case N is the infimum of such constants, it is called the nor-
mality constant of P. If x, x ∈ E, the set [x, x] = {x ∈ E | x ≤ x ≤ x} is called the order
interval between x and x. We say that an operator A : E → E is increasing (decreasing)
if x ≤ y implies Ax ≤ Ay (Ax ≥ Ay).

For all x, y ∈ E, the notation x ∼ y means that there exist λ >  and μ >  such that
λx ≤ y ≤ μx. Clearly, ∼ is an equivalence relation. Given h > θ (i.e., h ≥ θ and h �= θ ), we
denote by Ph the set Ph = {x ∈ E | x ∼ h}. It is easy to see that Ph ⊂ P.

Definition . (see [, ]) A : P × P → P is said to be a mixed monotone operator if
A(x, y) is increasing in x and decreasing in y, i.e., ui, vi ∈ P, i = , , u ≤ u, v ≥ v imply
A(u, v) ≤ A(u, v). Element x ∈ P is called a fixed point of A if A(x, x) = x.

Definition . An operator A : P → P is said to be sub-homogeneous if it satisfies

A(tx) ≥ tA(x), ∀t ∈ (, ), x ∈ P. (.)

Definition . Let D = P and β be a real number with  ≤ β < . An operator A : D → D
is said to be β-concave if it satisfies

A(tx) ≥ tβA(x), ∀t ∈ (, ), x ∈ D. (.)

To prove our results, we need the following fixed point theorems for mixed monotone
operators, which were given and proved in [, ].
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Lemma . (see []) Let P be normal and A : P × P → P be a mixed monotone operator.
Suppose that:

(a) there exist v > θ and c >  such that θ < A(v, θ ) ≤ v, A(θ , v) ≥ cA(v, θ );
(b) for any  < a < b < , there exists η = η(a, b) >  such that

A
(
tx, t–y

) ≥ t( + η)A(x, y), ∀a ≤ t ≤ b, θ ≤ y ≤ x ≤ v. (.)

Then A has a unique fixed point x∗ in [θ , v] with x∗ > θ . Moreover, for any initial values
x, y ∈ [θ , v], constructing successively the sequences

xn = A(xn–, yn–), yn = A(yn–, xn–), n = , , . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.

Lemma . (see Theorem . in []) Let h > θ and β ∈ (, ). A : P × P → P is a mixed
monotone operator and satisfies

A
(
tx, t–y

) ≥ tβA(x, y), ∀t ∈ (, ), x, y ∈ P. (.)

B : P → P is an increasing sub-homogeneous operator. Assume that:
(i) there is h ∈ Ph such that A(h, h) ∈ Ph and Bh ∈ Ph;

(ii) there exists a constant δ >  such that A(x, y) ≥ δBx, ∀x, y ∈ P.
Then:

() A : Ph × Ph → Ph and B : Ph → Ph;
() there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ A(u, v) + Bu ≤ A(v, u) + Bv ≤ v;

() the operator equation A(x, x) + Bx = x has a unique solution x∗ in Ph;
() for any initial values x, y ∈ Ph, constructing successively the sequences

xn = A(xn–, yn–) + Bxn–, yn = A(yn–, xn–) + Byn–, n = , , . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.

Lemma . (see Theorem . in []) Let h > θ and β ∈ (, ). A : P × P → P is a mixed
monotone operator and satisfies

A
(
tx, t–y

) ≥ tA(x, y), ∀t ∈ (, ), x, y ∈ P. (.)

B : P → P is an increasing β-concave operator. Assume that:
(i) there is h ∈ Ph such that A(h, h) ∈ Ph and Bh ∈ Ph;

(ii) there exists a constant δ >  such that A(x, y) ≤ δBx, ∀x, y ∈ P.
Then:

() A : Ph × Ph → Ph and B : Ph → Ph;
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() there exist u, v ∈ Ph and r ∈ (, ) such that

rv ≤ u < v, u ≤ A(u, v) + Bu ≤ A(v, u) + Bv ≤ v;

() the operator equation A(x, x) + Bx = x has a unique solution x∗ in Ph;
() for any initial values x, y ∈ Ph, constructing successively the sequences

xn = A(xn–, yn–) + Bxn–, yn = A(yn–, xn–) + Byn–, n = , , . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.

3 Main results
In this section, we apply Lemmas .-. to study problem (.), and we obtain some new
results on the existence and uniqueness of positive periodic solutions. The method used
here is relatively new in the literature and so are the existence and uniqueness results
regarding functional differential equations.

In our considerations we will work in the Banach space

E =
{

x ∈ C(R, R) : x(t + T) = x(t)
}

endowed with the norm ‖x‖ = supt∈[,T] |x(t)|. Notice that this space can be equipped with
a partial order given by

x, y ∈ E, x ≤ y ⇔ x(t) ≤ y(t), t ∈ [, T].

Define a cone P = {x ∈ E | x(t) ≥ , t ∈ [, T]}. It is easy to see that the cone P is normal.
Consider the operator Q : P → E by

(Qy)(t) =
∫ t+T

t
G(t, s)

[
f
(
s, y

(
s – τ (s)

)
, y

(
s – τ (s)

))
+ g

(
s, y

(
s – τ (s)

))]
ds, (.)

where

G(t, s) =
e
∫ s

t δ(u) du

e
∫ T

 δ(u) du – 
. (.)

Now define, as in [],

 < m ≡ min
≤t,s≤T

G(t, s) ≤ max
≤t,s≤T

G(t, s) ≡ M < ∞. (.)

Firstly, we will use Lemma . to establish the existence and uniqueness of a positive pe-
riodic solution for problem (.).

For convenience, we make the assumptions:

(C) f (t, x, y) ∈ C(R×[,∞)×[,∞), [,∞)) is T-periodic with respect to the first variable
and increasing with respect to the second variable and decreasing with respect to the
third variable;

(C) g(t, y) ∈ C(R × [,∞), [,∞)) is T-periodic with respect to the first variable and de-
creasing with respect to the second variable;
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(C) g(t, ) �≡  for t ∈ R;
(C) for any  < p < q < , there exist β,β ∈ (,∞), depending on p and q, such that

f
(
t,λu,λ–v

) ≥ λ

 – λβ
f (t, u, v), ∀t ∈ R, p ≤ λ ≤ q, u, v ∈ [,∞),

g
(
t,λ–v

) ≥ λ

 – λβ
g(t, v), ∀t ∈ R, p ≤ λ ≤ q, v ∈ [,∞).

Lemma . (see []) Assume that (C), (C) hold, then Q maps P into P.

Following the approach in [], we can easily prove the following lemma. So we omit the
proof.

Lemma . y(t) is a positive T-periodic solution of problem (.) if and only if y(t) is a
positive solution of the operator equation y(t) = (Qy)(t), where Q is given as in (.).

Theorem . Assume that (C)-(C) are satisfied and there exists R >  such that

MT(M + M) ≤ R, (.)

where M is given as in (.) and M = maxt∈R f (t, R, ), M = maxt∈R g(t, ).
Then problem (.) has a unique positive periodic solution u∗ in P[θ ,R] = {y ∈ P |  ≤

y(t) ≤ R, t ∈ R} with u∗(t) �= , t ∈ R. Moreover, for any initial values x, y ∈ P, construct-
ing successively the sequences

xn+(t) =
∫ t+T

t
G(t, s)

[
f
(
s, xn

(
s – τ (s)

)
, yn

(
s – τ (s)

))
+ g

(
s, yn

(
s – τ (s)

))]
ds,

n = , , , . . . ,

yn+(t) =
∫ t+T

t
G(t, s)

[
f
(
s, yn

(
s – τ (s)

)
, xn

(
s – τ (s)

))
+ g

(
s, xn

(
s – τ (s)

))]
ds,

n = , , , . . . ,

where G(t, s) is given as in (.), we have that ‖xn – u∗‖ →  and ‖yn – u∗‖ →  as n → ∞.

Proof To begin with, from Lemma ., problem (.) has an integral formulation given by

y(t) =
∫ t+T

t
G(t, s)

[
f
(
s, y

(
s – τ (s)

)
, y

(
s – τ (s)

))
+ g

(
s, y

(
s – τ (s)

))]
ds,

where G(t, s) is given as in (.). Define an operator S : P × P → E by

S(u, v)(t) =
∫ t+T

t
G(t, s)

[
f
(
s, u

(
s – τ (s)

)
, v

(
s – τ (s)

))
+ g

(
s, v

(
s – τ (s)

))]
ds.

From Lemma ., it is easy to prove that u is the solution of problem (.) if and only if u
is the fixed point of S. From (C), (C) and (.), we know that S : P × P → P. In the sequel
we check that S satisfies all the assumptions of Lemma ..
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Step . We prove that S is a mixed monotone operator. In fact, for ui, vi ∈ P, i = , , with
u ≥ u, v ≤ v, we know that u(t) ≥ u(t), v(t) ≤ v(t), t ∈ R and by (C), (C),

S(u, v)(t) =
∫ t+T

t
G(t, s)

[
f
(
s, u

(
s – τ (s)

)
, v

(
s – τ (s)

))
+ g

(
s, v

(
s – τ (s)

))]
ds

≥
∫ t+T

t
G(t, s)

[
f
(
s, u

(
s – τ (s)

)
, v

(
s – τ (s)

))
+ g

(
s, v

(
s – τ (s)

))]
ds

= S(u, v)(t),

that is to say, S(u, v) ≥ S(u, v) for u ≥ u, v ≤ v.
Step . We show that S satisfies condition (a) of Lemma .. Now, we set v(t) = R for

t ∈ R. Then v > θ . On the one hand, from (.) and (C)-(C), we obtain

S(v, θ )(t) =
∫ t+T

t
G(t, s)

[
f (s, R, ) + g(s, )

]
ds > ,

that is to say, S(v, θ ) > θ . From (.), for any t ∈ R, we have

S(v, θ )(t) ≤ MT(M + M) ≤ R = v(t),

i.e., S(v, θ ) ≤ v. On the other hand, we take c ∈ (, ) such that

c ≤ m + m

M + M
,

where m = mint∈R f (t, , R), m = mint∈R g(t, R). For any t ∈ R,

S(θ , v)(t) =
∫ t+T

t
G(t, s)

[
f (s, , R) + g(s, R)

]
ds

≥
∫ t+T

t
G(t, s)(m + m) ds

≥
∫ t+T

t
G(t, s)c(M + M) ds

≥
∫ t+T

t
G(t, s)c

[
f (s, R, ) + g(s, )

]
ds

= cS(v, θ )(t),

that is, S(θ , v) ≥ cS(v, θ ). Hence, condition (a) of Lemma . holds.
Step . We show that S satisfies condition (b) of Lemma .. Let  < a < b <  and

η = min

{


 – aβ
– ,


 – aβ

– 
}

> .

For any a ≤ λ ≤ b, x, y ∈ P and t ∈ R, by (C) we have

S
(
λx,λ–y

)
(t)

=
∫ t+T

t
G(t, s)

[
f
(
s,λx

(
s – τ (s)

)
,λ–y

(
s – τ (s)

))
+ g

(
s,λ–y

(
s – τ (s)

))]
ds
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≥
∫ t+T

t
G(t, s)

[
λ

 – λβ
f
(
s, x

(
s – τ (s)

)
, y

(
s – τ (s)

))
+

λ

 – λβ
g
(
s, y

(
s – τ (s)

))
]

ds

≥
∫ t+T

t
G(t, s)

[
λ

 – aβ
f
(
s, x

(
s – τ (s)

)
, y

(
s – τ (s)

))
+

λ

 – aβ
g
(
s, y

(
s – τ (s)

))]
ds

≥
∫ t+T

t
G(t, s)

[
λ( + η)f

(
s, x

(
s – τ (s)

)
, y

(
s – τ (s)

))
+ λ( + η)g

(
s, y

(
s – τ (s)

))]
ds

= λ( + η)S(x, y)(t).

That is to say, S(λx,λ–y) ≥ λ( + η)S(x, y), ∀a ≤ λ ≤ b, x, y ∈ P. Therefore, condition (b) of
Lemma . is satisfied. Hence, the conclusion of Theorem . follows from Lemma ..

�

Secondly, we will use Lemma . to study the existence and uniqueness of positive pe-
riodic solutions for problem (.).

For convenience, we make the assumptions:

(C) g(t, x) ∈ C(R × [,∞), [,∞)) is T-periodic with respect to the first variable and in-
creasing with respect to the second variable;

(C) g(t,λu) ≥ λg(t, u) for λ ∈ (, ), t ∈ [, T], u ∈ [,∞), and there exists a constant β ∈
(, ) such that f (t,λu,λ–v) ≥ λβ f (t, u, v), ∀t ∈ [, T], λ ∈ (, ), u, v ∈ [,∞);

(C) there exists a constant δ >  such that f (t, u, v) ≥ δg(t, u), t ∈ [, T], u, v ∈ [,∞);
(C) f (t, mT , MT) > , g(t, mT) >  for any t ∈ R, where m, M is given as in (.).

Theorem . Let h(t) =
∫ t+T

t G(t, s) ds, t ∈ R. Suppose that (C) and (C)-(C) hold. Then:
() there exist u, v ∈ Ph and r ∈ (, ) such that rv ≤ u < v and

u(t) ≤
∫ t+T

t
G(t, s)

[
f
(
s, u

(
s – τ (s)

)
, v

(
s – τ (s)

))
+ g

(
s, u

(
s – τ (s)

))]
ds,

t ∈ [, T],

v(t) ≥
∫ t+T

t
G(t, s)

[
f
(
s, v

(
s – τ (s)

)
, u

(
s – τ (s)

))
+ g

(
s, v

(
s – τ (s)

))]
ds,

t ∈ [, T],

where G(t, s) is given as in (.);
() problem (.) has a unique positive solution u∗ in Ph;
() for any x, y ∈ Ph, constructing successively the sequences

xn+(t) =
∫ t+T

t
G(t, s)

[
f
(
s, xn

(
s – τ (s)

)
, yn

(
s – τ (s)

))
+ g

(
s, xn

(
s – τ (s)

))]
ds,

n = , , , . . . ,

yn+(t) =
∫ t+T

t
G(t, s)

[
f
(
s, yn

(
s – τ (s)

)
, xn

(
s – τ (s)

))
+ g

(
s, yn

(
s – τ (s)

))]
ds,

n = , , , . . . ,

we have ‖xn – u∗‖ →  and ‖yn – u∗‖ →  as n → ∞.
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Proof We first need to assert that h ∈ P. It is clear that h ∈ C(R, R), and we have

h(t + T) =
∫ t+T

t+T
G(t + T , s) ds =

∫ t+T

t
G(t + T , u + T) du

=
∫ t+T

t
G(t, u) du = h(t).

Hence, h ∈ E. Note that G(t, s) > , so we have h ∈ P. Also, mT ≤ h(t) ≤ MT , t ∈ R. From
Lemma ., problem (.) has an integral formulation given by

u(t) =
∫ t+T

t
G(t, s)

[
f
(
s, u

(
s – τ (s)

)
, u

(
s – τ (s)

))
+ g

(
s, u

(
s – τ (s)

))]
ds.

Define two operators A : P × P → E and B : P → E by

A(u, v)(t) =
∫ t+T

t
G(t, s)f

(
s, u

(
s – τ (s)

)
, v

(
s – τ (s)

))
ds,

(Bu)(t) =
∫ t+T

t
G(t, s)g

(
s, u

(
s – τ (s)

))
ds.

It is easy to prove that u is the solution of problem (.) if and only if u = A(u, u) + Bu. From
(C) and (C), we know that A : P × P → P and B : P → P. In the sequel we check that A,
B satisfy all the assumptions of Lemma ..

Step . We prove that A is mixed monotone and B is increasing. In fact, for ui, vi ∈ P,
i = , , with u ≥ u, v ≤ v, we know that u(t) ≥ u(t), v(t) ≤ v(t), t ∈ [, ], and by
(C) and (.),

A(u, v)(t) =
∫ t+T

t
G(t, s)f

(
s, u

(
s – τ (s)

)
, v

(
s – τ (s)

))
ds

≥
∫ t+T

t
G(t, s)f

(
s, u

(
s – τ (s)

)
, v

(
s – τ (s)

))
ds = A(u, v)(t).

That is, A(u, v) ≥ A(u, v) for u ≥ u, v ≤ v. Further, it follows from (C) and (.) that
B is increasing.

Step . We show that A satisfies condition (.) and B is sub-homogeneous. For any
λ ∈ (, ) and u, v ∈ P, by (C) we have

A
(
λu,λ–v

)
(t) =

∫ t+T

t
G(t, s)f

(
s,λu

(
s – τ (s)

)
,λ–v

(
s – τ (s)

))
ds

≥ λβ

∫ t+T

t
G(t, s)f

(
s, u

(
s – τ (s)

)
, v

(
s – τ (s)

))
ds = λβA(u, v)(t).

That is, A(λu,λ–v) ≥ λβA(u, v) for λ ∈ (, ), u, v ∈ P. So the operator A satisfies (.).
Also, for any λ ∈ (, ), u ∈ P, from (C) we know that

B(λu)(t) =
∫ t+T

t
G(t, s)g

(
s,λu

(
s –τ (s)

))
ds ≥ λ

∫ t+T

t
G(t, s)g

(
s, u

(
s –τ (s)

))
ds = λBu(t),

that is, B(λu) ≥ λBu for λ ∈ (, ), u ∈ P. That is, the operator B is sub-homogeneous.
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Step . We show that A(h, h) ∈ Ph and Bh ∈ Ph. Set

r = min
t∈[,T]

f (t, mT , MT), r = max
t∈[,T]

f (t, MT , mT).

Then, from (C), we obtain  < r ≤ r. So

A(h, h)(t) =
∫ t+T

t
G(t, s)f

(
s, h

(
s – τ (s)

)
, h

(
s – τ (s)

))
ds ≥ r

∫ t+T

t
G(t, s) = rh(t), (.)

A(h, h)(t) =
∫ t+T

t
G(t, s)f

(
s, h

(
s – τ (s)

)
, h

(
s – τ (s)

))
ds ≤ r

∫ t+T

t
G(t, s) = rh(t), (.)

that is to say, rh ≤ A(h, h) ≤ rh, i.e., A(h, h) ∈ Ph. Similarly, from (C) we can get Bh ∈ Ph.
Hence, condition (i) of Lemma . is satisfied.

Step . We show that condition (ii) of Lemma . is satisfied. For u, v ∈ P and any t ∈
[, T], from (C) we have

A(u, v)(t) =
∫ t+T

t
G(t, s)f

(
s, u

(
s – τ (s)

)
, v

(
s – τ (s)

))
ds

≥ δ

∫ t+T

t
G(t, s)g

(
s, u

(
s – τ (s)

))
ds = δBu(t).

Then we get A(u, v) ≥ δBu for u, v ∈ P.
Hence, all the conditions of Lemma . are satisfied. Applying Lemma . we have

that there exist u, v ∈ Ph and r ∈ (, ) such that rv ≤ u < v, u ≤ A(u, v) + Bu ≤
A(v, u) + Bv ≤ v; the operator A(u, u) + Bu = u has a unique solution u∗ in Ph, and, for
any initial values x, y ∈ Ph, constructing successively the sequences

xn = A(xn–, yn–) + Bxn–, yn = A(yn–, xn–) + Byn–, n = , , . . . ,

we have xn → u∗ and yn → u∗ as n → ∞. That is,

u(t) ≤
∫ t+T

t
G(t, s)

[
f
(
s, u

(
s – τ (s)

)
, v

(
s – τ (s)

))
+ g

(
s, u

(
s – τ (s)

))]
ds, t ∈ [, T],

v(t) ≥
∫ t+T

t
G(t, s)

[
f
(
s, v

(
s – τ (s)

)
, u

(
s – τ (s)

))
+ g

(
s, v

(
s – τ (s)

))]
ds, t ∈ [, T];

problem (.) has a unique positive solution u∗ in Ph, and, for x, y ∈ Ph, the sequences

xn+(t) =
∫ t+T

t
G(t, s)

[
f
(
s, xn

(
s – τ (s)

)
, yn

(
s – τ (s)

))
+ g

(
s, xn

(
s – τ (s)

))]
ds,

n = , , , . . . ,

yn+(t) =
∫ t+T

t
G(t, s)

[
f
(
s, yn

(
s – τ (s)

)
, xn

(
s – τ (s)

))
+ g

(
s, yn

(
s – τ (s)

))]
ds,

n = , , , . . . ,

satisfy ‖xn – u∗‖ →  and ‖yn – u∗‖ →  as n → ∞. �
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Finally, we will use Lemma . to study the existence and uniqueness of positive periodic
solutions of problem (.).

For convenience, we make the assumptions:

(C) there exists a constant β ∈ (, ) such that g(t,λu) ≥ λβg(t, u), ∀t ∈ [, T], λ ∈ (, ),
u ∈ [,∞), and f (t,λu,λ–v) ≥ λf (t, u, v) for λ ∈ (, ), t ∈ [, T], u, v ∈ [,∞);

(C) there exists a constant δ >  such that f (t, u, v) ≤ δg(t, u), t ∈ [, T], u, v ∈ [,∞).

Theorem . Suppose that (C), (C), (C)-(C) hold. Then:
() there exist u, v ∈ Ph and r ∈ (, ) such that rv ≤ u < v and

u(t) ≤
∫ t+T

t
G(t, s)

[
f
(
s, u

(
s – τ (s)

)
, v

(
s – τ (s)

))
+ g

(
s, u

(
s – τ (s)

))]
ds,

t ∈ [, T],

v(t) ≥
∫ t+T

t
G(t, s)

[
f
(
s, v

(
s – τ (s)

)
, u

(
s – τ (s)

))
+ g

(
s, v

(
s – τ (s)

))]
ds,

t ∈ [, T],

where h(t) =
∫ t+T

t G(t, s) ds, t ∈ R, and G(t, s) is given as in (.);
() problem (.) has a unique positive solution u∗ in Ph;
() for any x, y ∈ Ph, constructing successively the sequences

xn+(t) =
∫ t+T

t
G(t, s)

[
f
(
s, xn

(
s – τ (s)

)
, yn

(
s – τ (s)

))
+ g

(
s, xn

(
s – τ (s)

))]
ds,

n = , , , . . . ,

yn+(t) =
∫ t+T

t
G(t, s)

[
f
(
s, yn

(
s – τ (s)

)
, xn

(
s – τ (s)

))
+ g

(
s, yn

(
s – τ (s)

))]
ds,

n = , , , . . . ,

we have ‖xn – u∗‖ →  and ‖yn – u∗‖ →  as n → ∞.

Sketch of the proof Consider two operators A, B defined in the proof of Theorem ..
Similarly, from (C) and (C) we obtain that A : P × P → P is a mixed monotone operator
and B : P → P is increasing. From (C) we have

A
(
λu,λ–v

) ≥ λA(u, v), B(λu) ≥ λβBu, for λ ∈ (, ), u, v ∈ P.

Also, we can obtain (.) and (.). So, A(h, h) ∈ Ph and Bh ∈ Ph. Hence, condition (i) of
Lemma . is satisfied. For u, v ∈ P and any t ∈ [, T], from (C) we have

A(u, v)(t) =
∫ t+T

t
G(t, s)f

(
s, u

(
s – τ (s)

)
, v

(
s – τ (s)

))
ds

≤ δ

∫ t+T

t
G(t, s)g

(
s, u

(
s – τ (s)

))
ds = δBu(t).

Then we get A(u, v) ≤ δBu for u, v ∈ P.
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An application of Lemma . implies that there exist u, v ∈ Ph and r ∈ (, ) such that
rv ≤ u < v, u ≤ A(u, v) + Bu ≤ A(v, u) + Bv ≤ v; the operator A(u, u) + Bu = u has
a unique solution u∗ in Ph, and, for any initial values x, y ∈ Ph, constructing successively
the sequences

xn = A(xn–, yn–) + Bxn–, yn = A(yn–, xn–) + Byn–, n = , , . . . ,

we have xn → u∗ and yn → u∗ as n → ∞. That is,

u(t) ≤
∫ t+T

t
G(t, s)

[
f
(
s, u

(
s – τ (s)

)
, v

(
s – τ (s)

))
+ g

(
s, u

(
s – τ (s)

))]
ds, t ∈ [, T],

v(t) ≥
∫ t+T

t
G(t, s)

[
f
(
s, v

(
s – τ (s)

)
, u

(
s – τ (s)

))
+ g

(
s, v

(
s – τ (s)

))]
ds, t ∈ [, T];

problem (.) has a unique positive solution u∗ in Ph, and, for x, y ∈ Ph, the sequences

xn+(t) =
∫ t+T

t
G(t, s)

[
f
(
s, xn

(
s – τ (s)

)
, yn

(
s – τ (s)

))
+ g

(
s, xn

(
s – τ (s)

))]
ds,

n = , , , . . . ,

yn+(t) =
∫ t+T

t
G(t, s)

[
f
(
s, yn

(
s – τ (s)

)
, xn

(
s – τ (s)

))
+ g

(
s, yn

(
s – τ (s)

))]
ds,

n = , , , . . . ,

satisfy ‖xn – u∗‖ →  and ‖yn – u∗‖ →  as n → ∞. �

Remark . Comparing Theorems .-. with the main results in [], we provide some
alternative approaches to study a similar type of problems under different conditions. Our
results can guarantee the existence of a unique positive periodic solution without assum-
ing the existence of upper-lower solutions. Our results are seldom seen in the literature.

4 Examples
First, we present one example to illustrate Theorem ..

Example . Consider the following equation:

y′(t) = F
(
t, y(t), y

(
t – τ (t)

))
. (.)

In this example, we choose T = π ,

F
(
t, y(t), y

(
t – τ (t)

))
= –


π

y(t) + sin t +
y(t – π

 )
 + y(t – π

 )
+ cos t +


 + y(t – π

 )
+ ,

and take

δ(t) =

π

, τ (t) =
π


,

f (t, x, y) = sin t +  +
x

 + x
+


 + y

, g(t, y) = cos t +  +


 + y
.
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Then f (t, x, y) ∈ C(R × [,∞) × [,∞), [,∞)) is π-periodic with respect to the first vari-
able, increasing with respect to the second variable and decreasing with respect to the
third variable. g(t, y) ∈ C(R × [,∞), [,∞)) is π-periodic with respect to the first variable
and decreasing with respect to the second variable. Moreover, for any  < p < q < , we
take

β ≥ logq

(
 –

q
 + q

)
, β ≥ logq

(
 –

q
 + q

)
. (.)

For any p ≤ λ ≤ q, t ∈ R, x, y ∈ [,∞), we have

f
(
t,λx,λ–y

)
= sin t +  +

λx
 + λx

+
λ

λ + y
≥ λ

q
(
sin t + 

)
+ λ

(
x

 + x
+


 + y

)
.

We show that

f
(
t,λx,λ–y

) ≥ λ

 – λβ
f (t, x, y), (.)

if and only if we can prove


q
(
sin t + 

)
+

x
 + x

+


 + y
≥ 

 – λβ

(
sin t +  +

x
 + x

+


 + y

)
,

that is to say,

(
sin t + 

)
(


q

–


 – λβ

)
≥

(


 – λβ
– 

)(
x

 + x
+


 + y

)
. (.)

From (.) we get


q

–


 – λβ
≥ 

(


 – λβ
– 

)
.

Hence, (.) is satisfied. So, (.) holds. Similarly, we obtain that

g
(
t,λ–y

)
= cos t +  +

λ

λ + y
≥ λ

q
(
cos t + 

)
+

λ

 + y
≥ λ

 – λβ
g(t, y).

Further, g(t, ) = cos t +  ≥  �≡ . Finally, from (.) we have

G(t, s) =
e
∫ s

t δ(u) du

e
∫ T

 δ(u) du – 
=

e s–t
π

e T
π – 

≤ e T
π

e T
π – 

=
e

e – 
≡ M.

We take R >  such that

R ≥ eπ .

And thus

M = max
t∈R

f (t, R, ) = max
t∈R

(
sin t +  +

R

R + 
+ 

)
≤ ,

M = max
t∈R

g(t, ) = max
t∈R

(
cos t +  + 

)
= .
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Then

MT(M + M) ≤ e
e – 

π ( + ) =
eπ
e – 

≤ eπ ≤ R.

Hence, (.) holds. Therefore, all of the conditions of Theorem . are satisfied. An appli-
cation of Theorem . implies that problem (.) has a unique positive periodic solution
in P[θ ,R] = {y ∈ P |  ≤ y(t) ≤ R, t ∈ R}.

Next, we present another example to illustrate Theorem ..

Example . Consider the following equation:

y′(t) = F
(
t, y(t), y

(
t – τ (t)

))
. (.)

In this example, we choose T = π ,

F
(
t, y(t), y

(
t – τ (t)

))
= –


π

y(t) + sin t + y
(

t –
π



) 


+ y
(

t –
π



)– 


+ 

+ cos t +
y(t – π

 )
 + y(t – π

 )
,

and take

δ(t) =


π
, τ (t) =

π


,

f (t, x, y) = sin t + x

 + y– 

 + , g(t, x) = cos t +
x

 + x
.

Then f (t, x, y) ∈ C(R × [,∞) × [,∞), [,∞)) is π-periodic with respect to the first vari-
able, increasing with respect to the second variable and decreasing with respect to the
third variable. g(t, y) ∈ C(R × [,∞), [,∞)) is π-periodic with respect to the first vari-
able and increasing with respect to the second variable. Moreover, for λ ∈ (, ), t ∈ R,
x, y ∈ [,∞), we have

f
(
t,λx,λ–y

)
= sin t + λ


 x


 + λ


 y– 

 +  ≥ λ


(
sin t + x


 + y– 

 + 
)

= λβ f (t, x, y),

where β = 
 , and

g(t,λx) = cos t +
λx

 + λx
≥ cos t +

λx
 + x

≥ λ

(
cos t +

x
 + x

)
= λg(t, x).

Further, we take δ ∈ (, ], then

f (t, x, y) = sin t + x

 + y– 

 +  ≥  ≥ δ

(
cos t +

x
 + x

)
= δg(t, x).

Hence all of the conditions of Theorem . are satisfied. An application of Theorem .
implies that problem (.) has a unique positive solution in Ph = P̊ = {x ∈ C(R, R) :
x(t + T) = x(t) and x(t) > , t ∈ [,π ]}, where h(t) = π .
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Finally, we present another example to illustrate Theorem ..

Example . Consider the following equation:

y′(t) = F
(
t, y(t), y

(
t – τ (t)

))
. (.)

In this example, we choose T = π ,

F
(
t, y(t), y

(
t – τ (t)

))
= –


π

y(t) + sin t +
y(t – π

 )
 + y(t – π

 )
+


 + y(t – π

 )

+ cos t +
y(t – π

 ) 


 + y(t – π
 ) 


+ ,

and take

δ(t) =


π
, τ (t) =

π


,

f (t, x, y) = sin t +
x

 + x
+


 + y

, g(t, x) = cos t +
x 



 + x 


+ .

Then f (t, x, y) ∈ C(R × [,∞) × [,∞), [,∞)) is π-periodic with respect to the first vari-
able, increasing with respect to the second variable and decreasing with respect to the
third variable. g(t, y) ∈ C(R × [,∞), [,∞)) is π-periodic with respect to the first vari-
able and increasing with respect to the second variable. Moreover, for λ ∈ (, ), t ∈ R,
x, y ∈ [,∞), we have

f
(
t,λx,λ–y

)
= sin t +

λx
 + λx

+


 + λ–y
≥ λ

(
sin t +

x
 + x

+


 + y

)
= λf (t, x, y),

g(t,λx) = cos t +
λ


 x 



 + λ

 x 


+  ≥ λ




(
cos t +

x 


 + x 


+ 
)

= λβg(t, x),

where β = 
 . Further, we take δ ∈ (, ], then

g(t, x) = cos t +
x 



 + x 


+  ≥  ≥ δ

(
sin t +

x
 + x

+


 + y

)
= δf (t, x, y).

Hence all of the conditions of Theorem . are satisfied. An application of Theorem .
implies that problem (.) has a unique positive solution in Ph = P̊ = {x ∈ C(R, R) :
x(t + T) = x(t) and x(t) > , t ∈ [,π ]}, where h(t) = π .

Remark . To summarize, Examples .-. illustrate different situations in which the
conditions of Theorems .-. are satisfied for some particular functions. In addition, the
conditions of Theorems .-. are also easy to check for any given periodicity T > .
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