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Abstract
The aim of this paper is to investigate the infinite horizon linear quadratic (LQ) optimal
control for stochastic time-delay difference systems with both state and control
dependent noise. To do this, the notion of exact observability of a stochastic
time-delay deference system is introduced and its PBH criterion is presented by the
spectrum of an operator related with stochastic time-delay deference systems. Under
the assumptions of stabilization and exact observability, it is shown that the optimal
control law and optimal value exist, and also the properties of the associated general
algebraic Ricatti equation (GARE) are discussed.
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1 Introduction
As is well known, the optimal linear quadratic regulation (LQR) problem was initiated by
Kalman in [], which is one of the most important optimal control problems. In [, ], the
authors further investigated the LQR problem of the deterministic case. In [], Wonham
first studied stochastic linear quadratic (LQ) control for Itô systems. In [], the authors
investigated LQ optimal control when the state and control weighting matrices Q and R
are indefinite, and they proved the stochastic LQ optimal control may be still well posed.
The discrete-time stochastic LQ problem involving state and control dependent noises
has been introduced in []. Virtually most of the studies on optimal control in time-delay
systems consider only delays in the state. By exploiting the dynamic programming ap-
proach, the authors presented a solution to the stochastic LQR problem for systems with
input delay and stochastic parameter uncertainties in []. This paper will discuss the in-
finite horizon linear quadratic regulation problem for discrete-time stochastic systems
with input delay and state delay. In order to guarantee the well posedness of the quadratic
performance and the existence of the feedback stabilizing control law, we shall introduce
some concepts such as stabilizability and exact observability, as regards which similar def-
initions have been well defined in [] for stochastic Itô systems. By exact observability, we
are able to discuss the infinite horizon stochastic LQ problem as well as the properties
of the related generalized algebraic Ricatti equation (GARE). It is worth pointing out that,
similar to the continuous context [], stabilizability and exact observability will play an im-
portant role in discussing other problems, such as stochastic time-delay difference H/H∞
control.
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For stochastic time-delay difference systems, we concentrate our attention upon infinite
horizon linear quadratic optimal control. This paper is organized as follows. In Section ,
by the Lyapunov equation and the H-presentation, we give the equivalent condition for
the stabilizability of stochastic time-delay systems. We introduce the definition of exact
observability of time-delay systems, and under the exact observability, we give an equiva-
lent condition for the stabilizability of stochastic time-delay systems. In Section , under
assumptions of stabilization and exact observability, we prove that the optimal control law
and optimal value exist of stochastic time-delay difference systems.

To avoid confusion, we fix the following traditional notation. Rn×n: the set of all real
matrices; Sn: the set of all symmetric matrices; N = {, , , . . .}; A′(Ker(A)): the trans-
pose (kernel space) of a matrix A; A ≥  (A > ) is a positive semidefinite (positive def-
inite) symmetric matrix A; I : identity matrix; σ (L): spectral set of the operator or ma-
trix L; D(,α) = {λ | ‖λ‖ < α}; ‖ · ‖ is the l-norm · ; L

Ft
(R+, Rnv ): space of nonanticipative

stochastic processes x(t) ∈ Rnv with respect to an increasing σ -algebra {Ft}t≥ satisfying
E‖x(t)‖ < ∞. Finally, we make the assumption throughout this paper that all systems have
real coefficients.

2 Stabilizability and exact observability
In this section, we introduce a general Lyapunov operator and the notion of exact observ-
ability of stochastic time-delay deference systems. By the spectrum of the general Lya-
punov operator, we present the PBH criterion of exact observability of stochastic time-
delay systems. By the Lyapunov functional approach and the H-representation in [],
some sufficient and necessary conditions of the asymptotical mean square stabilization of
stochastic time-delay systems are given.

Consider the initial-value problem for the following linear difference time-delay system:

⎧
⎪⎨

⎪⎩

x(t + ) = Fx(t) + Mu(t) + (Gx(t) + Nu(t))w(t) +
∑m

j=[Fjx(t – j)
+ Mju(t – j) + (Gjx(t – j) + Nju(t – j))w(t)],

x(θ ) = ϕ(θ ) ∈ Rn, θ = , –, . . . , –m, t ∈ N ,
(.)

here x ∈ Rn is a column vector, Fj, Gj, Mj, Nj ∈ Rn×n, j = , , . . . , m, are constant coefficient
matrices, u(t) ∈ Rn is the control input, {w(t) ∈ R, t ∈ N} is a sequence of real random
variables defined on a complete probability space {�,F ,Ft ,μ} which is in a wide sense a
stationary, second-order process with E(w(t)) =  and E(w(t)w(s)) = δs,t , where δs,t is the
Kronecker delta withFt = σ {w(s) :  ≤ s ≤ t}. ϕ(θ ) ∈ Rn, θ = , –, . . . , –m are deterministic
column vectors.

Definition . The trivial stationary solution x =  of system (.) is called mean square
stabilization if there exists an input feedback K such that for any arbitrarily small number
ε > , one can find a number δ > , when supθ∈[–m,] ‖ϕ(θ )‖ < δ, such that

E‖x‖ < ε

for a solution x(t) = x(t, x(θ )) satisfying the initial values x(θ ) = ϕ(θ ) ∈ Rn, θ = , –, . . . , –m.

Definition . The trivial stationary solution x =  of system (.) is called asymptotical
mean square stabilization in the mean square if it is stable in the sense of Definition .
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and

lim
t→+∞ E‖x‖ = .

For a state feedback control law u(t) = Kx(t), we introduce a linear operator LK associ-
ated with the closed-loop system

⎧
⎪⎨

⎪⎩

x(t + ) = (F + MK)x(t) + (G + NK)x(t)w(t) +
∑m

j=[(Fjx(t – j)
+ MjKx(t – j)) + (Gjx(t – j) + NjKx(t – j))w(t)],

x(θ ) = ϕ(θ ) ∈ Rn, θ = , –, . . . , –m, t ∈ N .
(.)

Let x(t) = [x′(t), x′(t – ), . . . , x′(t – m)]′ and u(t) = [u′(t), u′(t – ), . . . , u′(t – m)]′. System (.)
can now be written in the form of an equivalent stochastic system of dimension n(m + ),
namely,

x(t + ) = Fx(t) + Mu(t) +
(
Gx(t) + Nu(t)

)
ω(t), (.)

where

F =

⎛

⎜
⎜
⎜
⎜
⎝

F F · · · Fm– Fm

I  · · ·  
...

... · · · ...
...

  · · · I 

⎞

⎟
⎟
⎟
⎟
⎠

, G =

⎛

⎜
⎜
⎜
⎜
⎝

G G · · · Gm– Gm

  · · ·  
...

... · · · ...
...

  · · ·  

⎞

⎟
⎟
⎟
⎟
⎠

,

M =

⎛

⎜
⎜
⎜
⎜
⎝

M M · · · Mm– Mm

  · · ·  
...

... · · · ...
...

  · · ·  

⎞

⎟
⎟
⎟
⎟
⎠

, N =

⎛

⎜
⎜
⎜
⎜
⎝

N N · · · Nm– Nm

  · · ·  
...

... · · · ...
...

  · · ·  

⎞

⎟
⎟
⎟
⎟
⎠

.

Take a control input u(t) = Kx(t) with

K =

⎛

⎜
⎜
⎜
⎜
⎝

K  · · ·  
 K · · ·  
...

... · · · ...
...

  · · ·  K

⎞

⎟
⎟
⎟
⎟
⎠

,

and let X(t) = Ex(t)x′(t), system (.) can now be written in the following form:

X(t + ) = (F + MK )X(t)(F + MK)′ + (G + NK)X(t)(G + NK)′. (.)

Now we introduce an operator

LK : X ∈ Sn(m+) → (F + MK)X(F + MK )′ + (G + NK)X(G + NK)′ ∈ Sn(m+).

With the Kronecker matrix product, (.) can be rewritten in the following form:

–→X (t + ) = Â–→X , (.)
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where –→X (t) denotes the n(m + )-dimensional column vector

–→X (t) =
[
X,(t), . . . , X,n(t), . . . , X,n(m+)(t), . . . , Xn(m+),n(m+)(t)

]′

and Â ∈ Rn(m+)×n(m+) has the form Â = (F + MK) ⊗ (F + MK) + (G + NK) ⊗ (G + NK).

Lemma . Let Hn,m be a n(m + ) × n(m+)[n(m+)+]
 matrix and

rank(Hn,m) =
n(m + )[n(m + ) + ]


.

Then H ′
n,mHn,m is invertible.

Theorem . The trivial solution –→X (t) =  of system (.) has asymptotical stabilization
if and only if, for any Q > , there exists a positive-definite matrix P ∈ S

n(m+)[n(m+)+]
 such

that P is a solution of the following Lyapunov equation:

P – θ (Hn,m)′Pθ (Hn,m) = Q,

where θ (Hn,m) = [H ′
n,mHn,m]–H ′

n,m[(F + MK) ⊗ (F + MK) + (G + NK) ⊗ (G + NK)]Hn.

Proof If we set X(t) = Ex(t)x′(t), X(t) satisfies

{
X(t + ) = (F + MK)X(t)(F + MK)′ + (G + NK )X(t)(G + NK)′,
X() = x()x′() ∈ Rn(m+), t ∈ N .

(.)

Since the matrix X(·) is real symmetric, (.) is a linear matrix equation with n(m+)[n(m+)+]


different variables, i.e., it is in fact a n(m+)[n(m+)+]
 th-order linear system. Assume we define

a map L̃ from Sn(m+) to C
n(m+)[n(m+)+]

 as follows:
for any Y = (Yij)n(m+)×n(m+) ∈ Sn(m+), set

Ỹ = L̃(Ỹ ) = (Y, . . . , Yn(m+), . . . , Yn(m+)–,n(m+)–, Yn(m+)–,n(m+); Yn(m+)n(m+))′.

Then there exists a unique matrix �(Hn,m) ∈ R
n(m+)[n(m+)+]

 × n(m+)[n(m+)+]
 , by Lemma .

and the H-representation of [], such that (.) is equivalent to

{
X̃(t + ) = L̃(LK (X)) = θ (Hn,m)X̃(t),
X̃() = [H ′

n,mHn,m]–H ′
n,m

–→X (),
(.)

where �(Hn,m) = [H ′
n,mHn,m]–H ′

n,m[(F + MK) ⊗ (F + MK) + (G + NK) ⊗ (G + NK )]Hn,m,
X̃(t) ∈ R

n(m+)[n(m+)+]
 due to X(t) = Ex(t)x′(t) being real positive semidefinite. It is obvi-

ous, since system (.) is deterministic. The statement of the theorem can be established
in a way that is standard for the method of Lyapunov functions for deterministic differ-
ence equations, namely, considering an n(m+)[n(m+)+]

 -parameter Lyapunov function as a
quadratic form

V
(
X̃(t)

)
= X̃ ′PX̃, P ∈ S

n(m+)[n(m+)+]
 . (.)



Li and Chen Advances in Difference Equations  (2015) 2015:14 Page 5 of 12

The role of the parameters is played by n(m+)[n(m+)+][n(m+)[n(m+)+]+]
 elements of the

positive-definite matrix P, which should be determined. �

From the proofs of Theorem ., we easily get the following result.

Corollary . The trivial solution x(t) =  of system (.) being asymptotically mean
square stabilizable is equivalent to one of the following results:

() The trivial solution x(t) =  of system (.) is asymptotically mean square
stabilizable.

() The trivial solution –→X (t) =  of system (.) is asymptotically stabilizable.

Similar to Definition  of [], we define ‘exact observability’ for stochastic time-delay
difference systems as follows, which will be used in Section .

Definition . Consider the following linear difference system:

{
x(t + ) = Fx(t) + Gx(t)w(t) +

∑m
j=[Fjx(t – j) + Gjx(t – j)w(t)],

y(t) = C(x′(t), x′(t – ), . . . , x′(t – m))′, t ∈ N .
(.)

We call (.) or (
∑m

j= Fj,
∑m

j= Gj | C) exactly observable, if y(t) = , a.s., t ∈ N ⇒ x() = .

The following lemma extends Theorem  of [] to a time-delay version by the H-
representation approach in [].

Lemma . (PBH Criterion) (
∑m

j= Fj,
∑m

j= Gj | C) is exactly observable if and only if there
does not exist  �= Z ∈ Sn(m+) such that

F ′ZF + G′ZG = λZ, CZ = . (.)

Proof If we set X(t) = Ex(t)x′(t), X(t) satisfies the following difference equation:

{
X(t + ) = FX(t)F ′ + GX(t)G′, t ∈ N ,
X() = x()x′() ∈ Rn(m+)×n(m+).

(.)

Since X(·) is real symmetric, (.) is a linear matrix equation with n(m+)[n(m+)+]
 different

variables, i.e., it is in fact an n(m+)[n(m+)+]
 th-order linear system. On the other hand, from

Definition ., (
∑m

j= Fj,
∑m

j= Gj | C) is exactly observable if and only if for any arbitrary
X() �= , there exists a k ∈ N such that

Y (k) = E
[
y(k)y′(k)

]
= CX(k)C′ �= . (.)

In addition, since X(k) ≥  for any k ∈ N , (.) is equivalent to

 �= Y ∗(k) = CX(k) ∈ Rn(m+)
, (.)

which is equivalent to

 �= Ỹ ∗(k) = (I ⊗ C)Hn,mX̃(k) ∈ Rn(m+)×n(m+).
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So (.) is exactly observable if and only if the deterministic system

{
X̃(t + ) = L̃(LF ,G(X)) = θ (Hn,m)X̃(t),
Ỹ (t) = (I ⊗ C)Hn,mX̃(t), t ∈ N ,

(.)

is completely observable, where

�(Hn,m) =
[
H ′

n,mHn,m
]–H ′

n,m(F ⊗ F + G ⊗ G)Hn,m

and

LF ,G : X ∈ Sn(m+) → FXF ′ + GX(t)G′ ∈ Sn(m+).

By the PBH criterion for complete observability, (.) is completely observable if and only
if there does not exist an eigenvector ξ �=  in n(m+)[n(m+)+]

 dimensions such that

L̃(LF ,G)ξ = θ (Hn,m)ξ = λξ , (I ⊗ C)Hn,mξ = . (.)

Obviously, (.) is equivalent to the nonexistence of  �= Z ∈ S
n(m+)[n(m+)+]

 satisfying
(.). �

Theorem . A nonsingular transformation does not change the exact detectability of the
original systems.

Proof Assume (
∑m

j= Fj,
∑m

j= Gj | C) is exactly detectable; arbitrarily choose a nonsin-
gular matrix T , let x(t) = Tξ (t); a transformed system takes the following form of
(
∑m

j= Fj,
∑m

j= Gj | C):

⎧
⎪⎨

⎪⎩

ξ (t + ) = T–FTξ (t) + T–GTξ (t)w(t)
+

∑m
j=[T–FjTξ (t – j) + T–GjTξ (t – j)w(t)],

y(t) = CT(ξ ′(t), ξ ′(t – ), . . . , ξ ′(t – m))′, t ∈ N .
(.)

Here

T =

⎛

⎜
⎜
⎜
⎜
⎝

T  · · ·  
 T · · ·  
...

... · · · ...
...

  · · ·  T

⎞

⎟
⎟
⎟
⎟
⎠

.

If we let

F =

⎛

⎜
⎜
⎜
⎜
⎝

F F · · · Fm– Fm

I  · · ·  
...

... · · · ...
...

  · · · I 

⎞

⎟
⎟
⎟
⎟
⎠

, G =

⎛

⎜
⎜
⎜
⎜
⎝

G G · · · Gm– Gm

  · · ·  
...

... · · · ...
...

  · · ·  

⎞

⎟
⎟
⎟
⎟
⎠

,
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then system (.) becomes

{
ξ (t + ) = T–FTξ (t) + T–GTξ (t)w(t),
y(t) = CT(x′(t), x′(t – ), . . . , x′(t – m))′, t ∈ N .

(.)

We shall show that (.) is also exactly detectable. Otherwise, by Lemma ., there does
not exist  �= Z ∈ Sn(m+) such that

(
T–FT

)
Z
(
T–FT

)′ +
(
T–GT

)
Z
(
T–GT

)′ = λZ, CTZ = . (.)

Pre- and post-multiplying (.) by T and T ′, respectively, yields

FTZT ′F ′ + GTZT ′G′ = λZ, CTZT ′ = . (.)

If we set X(t) = TZT ′, then from Lemma ., we know that (.) contradicts the exact
detectability of (

∑m
j= Fj,

∑m
j= Gj | C). �

Lemma . If (
∑m

j= Fj,
∑m

j= Gj | C) is exactly observable, then (
∑m

j= Fj,
∑m

j= Gj) is asymp-
totically mean square stable if and only if the Lyapunov-type equation

–P + F ′PF + G′PG + C′C =  (.)

has a solution P > .

Proof Necessity part. If (
∑m

j= Fj,
∑m

j= Gj) is asymptotically mean square stable, from the
method of Lyapunov functions for linear stochastic difference equations, (.) has a
unique solution P ≥ . Now we show P > . Otherwise, there exists x �=  such that
Px = . We obtain, for T ∈ N ,

 ≤ Eyy′ =
T∑

t=

E
∥
∥Cx(t)

∥
∥

=
T∑

t=

E
[
x′(t)

(
–P + F ′PF + G′PG + C′C

)
x(t)

]

+ x′
Px – Ex′(T + )Px(T + )

= –Ex′(T + )Px(T + ) ≤ ,

from which follows y(t) = C(x′(t), x′(t – ), . . . , x′(t – m))′ = Cx(t) = , a.s., t ∈ NT . Together
with the exact observability of (

∑m
j= Fj,

∑m
j= Gj | C), we obtain x = , which contradicts

x �= . So P > .
Sufficiency part. Assume P >  is a solution to (.). Let V (x(t)) = Ex′(t)Px(t), then we

have

V
(
x(t)

)
= x′()Px() –

t–∑

j=

E
∥
∥Cx(j)

∥
∥,
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which indicates that V (x(t)) is monotonically decreasing and bounded from below with
respect to t, so limt→+∞ V (x(t)) exists. The rest of the proof proceeds along the lines of
Theorem  of [] and is omitted. �

Corollary . If (
∑m

j= Fj,
∑m

j= Gj | C) is exactly observable, then the Lyapunov-type equa-
tion (.) has at most one positive definite solution.

Proof If (.) has a positive semidefinite solution P ≥ , from the proof of Lemma .,
we find that under the condition of exact observability, P > . So (

∑m
j= Fj,

∑m
j= Gj | C) is

asymptotically mean square stable. By Lemma  in [], (.) admits a unique positive
semidefinite solution P. �

3 Stochastic time-delay LQ control
In this section, under the assumptions of stabilization and exact observability, we investi-
gate the problem of the existence of the optimal control law and optimal value of stochastic
time-delay difference systems.

Considering the following linear stochastic system with time-delays:

⎧
⎪⎨

⎪⎩

x(t + ) = Fx(t) + Mu(t) + (Gx(t) + Nu(t))w(t) +
∑m

j=[Fjx(t – j)
+ Mju(t – j) + (Gjx(t – j) + Nju(t – j))w(t)], t ∈ N ,

y(t) = C(x′(t), x′(t – ), . . . , x′(t – m))′, x(k) = ϕ(k) ∈ Rn, k ∈ [–m, ].
(.)

For the linear stochastic time-delay controlled system (.), we define the admissible con-
trol input set

uad =
{

u(t) ∈ l
w
(
N , Rl) : u(t) is asymptotical mean square stabilizing control

}

with the associated cost

J(x, u) =
∞∑

t=

E
[
x′(t)Qx(t) + u′(t)Ru(t)

]
, (.)

where Q ≥ , R > . The LQ optimal control problem is to find a control u∗ ∈ uad called
the optimal control such that

J
(
x, u∗) = V (x) = inf

u∈uad
J(x, u).

We call x(t) corresponding to u∗(t) the optimal trajectory, and V (x) is the optimal cost
value.

Theorem . Assume that (
∑m

j= Fj,
∑m

j= Mj,
∑m

j= Gj,
∑m

j= Nj) is asymptotically mean
square stabilizable, and (

∑m
j= Fj,

∑m
j= Gj | Q 

 ) is exactly observable. Then the GARE

⎧
⎪⎨

⎪⎩

P = F ′PF + G′PG + Q
– (F ′PM + G′PN)(R + M′PM + N ′PN)–(F ′PM + G′PN)′,

R + M′PM + N ′PN > 
(.)

has a solution P > , which is the unique nonnegative definite solution of (.).
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Proof Let x(t) = [x′(t), x′(t – ), . . . , x′(t – m)]′, u(t) = [u′(t), u′(t – ), . . . , u′(t – m)]′. (
∑m

j= Fj,
∑m

j= Mj,
∑m

j= Gj,
∑m

j= Nj) can be written in the form of an equivalent stochastic system
of dimension n(m + ), namely,

x(t + ) = Fx(t) + Mu(t) +
(
Gx(t) + Nu(t)

)
ω(t),

where

F =

⎛

⎜
⎜
⎜
⎜
⎝

F F · · · Fm– Fm

I  · · ·  
...

... · · · ...
...

  · · · I 

⎞

⎟
⎟
⎟
⎟
⎠

, G =

⎛

⎜
⎜
⎜
⎜
⎝

G G · · · Gm– Gm

  · · ·  
...

... · · · ...
...

  · · ·  

⎞

⎟
⎟
⎟
⎟
⎠

,

M =

⎛

⎜
⎜
⎜
⎜
⎝

M M · · · Mm– Mm

  · · ·  
...

... · · · ...
...

  · · ·  

⎞

⎟
⎟
⎟
⎟
⎠

, N =

⎛

⎜
⎜
⎜
⎜
⎝

N N · · · Nm– Nm

  · · ·  
...

... · · · ...
...

  · · ·  

⎞

⎟
⎟
⎟
⎟
⎠

.

For a control input u(t) = Kx(t), (
∑m

j= Fj,
∑m

j= Mj,
∑m

j= Gj,
∑m

j= Nj) becomes

x(t + ) = (F + MK)x(t) + (G + NK )x(t)ω(t),

where

K =

⎛

⎜
⎜
⎜
⎜
⎝

K  · · ·  
 K · · ·  
...

... · · · ...
...

  · · ·  K

⎞

⎟
⎟
⎟
⎟
⎠

.

Since (
∑m

j= Fj,
∑m

j= Mj,
∑m

j= Gj,
∑m

j= Nj) is asymptotically mean square stabilizable, (.)
has a stabilizable solution P ≥ . Since (

∑m
j= Fj,

∑m
j= Gj | Q 

 ) is exactly observable, by
Lemma ., P > . By the uniqueness of stabilizable solution of (.), we know that (.)
has only one positive-definite solution. �

Corollary . Assume that (
∑m

j= Fj,
∑m

j= Gj | Q 
 ) is exactly observable. Then system

(
∑m

j= Fj,
∑m

j= Gj) is asymptotically mean square stable if and only if the Lyapunov equa-
tion

P = F ′PF + G′PG + Q

has a solution P > .

Lemma . In system (
∑m

j= Fj,
∑m

j= Gj), t ∈ N , P ∈ Sn(m+), and x() ∈ Rn(m+), we have

T∑

t=

E

[(
x(t)
u(t)

)′
Q(P)

(
x(t)
u(t)

)]

= E
[
x′(T + )Px(T + )

]
– x′()Px(), (.)
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where

Q(P) =

(
–P + F ′PF + G′PG F ′PM + G′PN

M′PF + N ′PG M′PM + N ′PN

)

.

Proof It can easily be derived by the following identity:

E
[
x′(T + )Px(T + )

]
– x′()Px() =

T∑

t=

E
[
x′(t + )Px(t + ) – x′(t)Px(t)

]

and the fact that Fx(t) + Mu(t) and Gx(t) + Nu(t) are independent for w(t). �

Theorem . Assume that (
∑m

j= Fj,
∑m

j= Mj,
∑m

j= Gj,
∑m

j= Nj) is asymptotically mean
square stabilizable, and (

∑m
j= Fj,

∑m
j= Gj | Q 

 ) is exactly observable. Then the optimal
cost value is given by V (x) = x′

Px, where P >  is the unique feedback and stabiliz-
ing solution of (.), and the optimal control is uniquely determined by u(t) = Kx(t) where
K = –(R + M′PM + N ′PN)–(F ′PG + M′PN)′.

Proof Note that GARE (.) can be written as

–P + (F + MK)′P(F + MK ) + (G + NK)′PG + NK + Q + K ′RK = . (.)

From Lemma ., we know (.) has a stabilizing solution P > , so limt→+∞ E‖x(t)‖ = 
when K = –(R + M′PM + N ′PN)–(F ′PG + M′PN)′x(t).

From Lemma .,

∞∑

t=

E
[
x′(t)Qx(t) + u′(t)Ru(t)

]

= lim
T→∞

T∑

t=

E
[
x′(t)Qx(t) + u′(t)Ru(t)

]
+ x′()Px() – E

[
x′(T + )Px(T + )

]

+ E

[(
x(t)
u(t)

)′
Q(P)

(
x(t)
u(t)

)]

= x′
Px – lim

T→∞ E
[
x′(T + )Px(T + )

]
+ E

[(
x(t)
u(t)

)′
H(P)

(
x(t)
u(t)

)]

= x′
Px – lim

T→∞ E
[
x′(T + )Px(T + )

]
+

∞∑

t=

E
[
u(t) – Kx(t)

]′R
[
u(t) – Kx(t)

]

+
∞∑

t=

E
[
x′(t)H̃x(t)

]
,

where

H(P) =

(
E L
L′ T

)
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with

H̃ = –P + F ′PF + G′PG + Q – F ′PM
(
R + M′PM

)–M′PF ,

E = –P + F ′PF + G′PG + Q, L = F ′PM,

T = M′PM + R, K = –T–F ′PM.

Hence we have

min
u∈lw(N ,Rnu )

∞∑

t=

E
[
x′(t)Qx(t) + u′(t)Ru(t)

]
= x′

Px,

and the optimal control is uniquely determined by u(t) = Kx(t) where K = –(R + M′PM +
N ′PN)–(F ′PG + M′PN)′. �

Example . Consider the following stochastic time-delay system:

{
x(t + ) = ax(t) + mu(t) + ax(t – ) + mu(t – ) + gx(t)ω(t) + nu(t)ω(t),
y(t) = C(x(t), x(t – ))′, x(k) = ϕ(k), k = , –, . . . , –m, t ∈ N .

Let x(t) = (x(t), x(t – ))′ and u(t) = (u(t), u(t – ))′. The above system can be written in the
form of an equivalent stochastic system

x(t + ) =

(
a a

 

)

x(t) +

(
m m

 

)

u(t) +

(
g 
 

)

x(t)ω(t) +

(
n 
 

)

u(t)ω(t).

Here

F =

(
a a

 

)

, G =

(
g 
 

)

, M =

(
m m

 

)

, N =

(
n 
 

)

.

Now we solve the following general algebraic Ricatti equation:

{
P = F ′PF + G′PG + CC′ – (F ′PM + G′PN)(R + M′PM + N ′PN)–(F ′PM + G′PN)′,
R + M′PM + N ′PN > .

Using Matlab, solving the stabilizing solution of the above GARE, i.e., solving the optimal
solution of the following SDP problem:

maxT r(P)

subject to

(
–P + F ′PF + G′PG + CC′ F ′PM + G′PN

M′PF + N ′PG R + M′PM + N ′PN

)

≥ , P ≥ ,

we can get the following optimal solution (actually, from Theorem  in [], we know the
optimal solution is the stabilizing solution P of the above GARE), with the optimal control:

u(t) = –
(
R + M′PM + N ′PN

)–(F ′PM + G′PN
)′x(t).
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Specially put a = , a = , m = , m = g = n = , R = I , and C =
(  

 

)
, we get the

stabilizing solution of the above GARE

P =

(
. 

 .

)

and the optimal control

u(t) =

(
–. 

 –.

)

x(t).
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