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Abstract
In this paper, we consider the existence of stationary distribution and extinction for a
stochastic generalized logistic system. Sufficient and necessary conditions for the
existence of a stationary distribution and extinction are obtained. (a) The system has a
unique stationary distribution if and only if the noise intensity is less than twice the
intrinsic growth rate. The probability density function has been solved by the
stationary Fokker-Planck equation. (b) The system will become extinct when and only
when the noise intensity is no less than twice the intrinsic growth rate, and the
exponential extinction rate is estimated precisely by two parameters of the systems.
A new perspective is provided to explain the recurrence phenomenon in practice.
Nontrivial examples are provided to illustrate our results.

Keywords: stochastic generalized logistic system; extinction; stationary
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1 Introduction
In the past few decades, population systems have received a great deal of research attention
since they have been successfully used in a variety of application fields, including biology,
epidemiology, economics, and neural networks (see [–]). Population systems are always
subject to environmental noise. It is therefore necessary to reveal how the noise affects
the population systems. Recently, the population dynamics under environmental noise
has been extensively considered by many authors (see [–]). It is well known that when
the noise intensity is sufficiently large, the population will become extinct, while it will
remain stochastic permanent when the noise intensity is small.

In fact, if we make a great number of records to investigate the dynamic behavior of
a permanent population system, we may find that a single record may fluctuate around
a fixed point even if the number of records is large. In order to illustrate such biological
phenomena clearly, more and more attention has been paid to the existence of stationary
distribution and positive recurrence of population systems in recent years (see [–]). In
this paper, we will concentrate on the stationary distribution and extinction of a stochastic
generalized logistic system. The obtained results provide a new perspective to explain such
biological phenomena (see Remark ).
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Consider the stochastic generalized logistic system (Gilpin-Ayala) with the following
form:

dx(t) = x
(
r – axα

)
dt + σx dB(t), ()

where r is the intrinsic growth rate, σ  >  is the noise intensity, and B(t) is the one-
dimensional Brownian motion. Throughout this paper, we impose the condition:

r > , a > , α > . ()

The logistic system is one of the famous population systems due to its universal existence
and importance. More recently, the asymptotic behavior of a stochastic logistic system has
received a lot of attention (see [–]). Jiang et al. [] showed the stability in time average
and stochastic permanence of a non-autonomous logistic equation with random pertur-
bation. Li et al. [] discussed the stochastic logistic population under regime switching,
and sufficient and necessary conditions for stochastic permanence and extinction under
some assumptions are obtained. Liu and Wang [] and Mao [] studied the stationary
distribution of more general stochastic population systems than system (); the result in
[] and [] showed that when  < α ≤ , the system () has a stationary distribution.
Then some questions arise naturally: Is there a stationary distribution to system () in the
case of α > ? If yes, can we compute the probability density function of the stationary
distribution? And can we compute the mean or variance?

In addition, the existing literature (see [, , ]) shows clearly that if the noise intensity
is more than twice the intrinsic growth rate, the population will become extinct exponen-
tially, whereas it will remain stochastic permanent or has a stationary distribution when
the noise intensity is less than twice the intrinsic growth rate. Then one interesting ques-
tion is: What will happen if the noise intensity equals twice the intrinsic growth rate?

However, to the best of the author’s knowledge, few studies have attempted to investigate
the density function of the stationary distribution and the asymptotic behavior under the
assumption that the intrinsic growth rate equals half of the noise intensity. In this paper,
we are concerned with these topics. The primary contributions of this paper are as follows:

• The probability density function of the stationary distribution was obtained by solving
the stationary Fokker-Planck equation.

• By using some novel techniques, we point out that system () will also be extinct when
the noise intensity equals twice the intrinsic growth rate.

• Sufficient and necessary conditions for the existence of stationary distribution and
extinction are established.

The organization of the paper is as follows. Section  describes some preliminaries. The
main results are stated in Sections  and . In Sections  and , we show that system ()
either has a stationary distribution or becomes extinct. The probability density function,
mean, and variance of the stationary distribution are obtained in Section . The exponen-
tial extinction rate is given precisely in Section . In Section , the sufficient and necessary
conditions and some important remarks are stated and three numerical examples are given
to illustrate the effectiveness of our results.
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2 Notation
Throughout this paper, unless otherwise specified, let (�,F , {Ft}t≥,P) be a complete
probability space with a filtration {Ft}t≥ satisfying the usual conditions (i.e. it is increas-
ing and right continuous, while F contains all P-null sets). The gamma function �(s) is
defined for positive real number s > , which is defined via a convergent improper integral,
�(s) =

∫ ∞
 ts– exp(–t) dt.

In the same way as Mao et al. [] did, we can also show the following result on the
existence of global positive solution.

Lemma . Assume that condition () holds. Then for any given initial value x ∈ R+,
there is a unique solution x(t, x) to system () and the solution will remain in R+ with
probability , namely

P
{

x(t, x) ∈ R+,∀t ≥ 
}

= ,

for any x ∈ R+.

Lemma . Let condition () hold. Then for any p > , there exists a constant Kp such that
sup≤t≤∞ Ex(t)p < Kp.

The proof is similar to Liu et al. []; it is omitted here.

3 Stationary distribution and its probability density function
The main aim of this section is to study the existence of a unique stationary distribution of
system (). Let us prepare by a well-known lemma (see Hasminskii [, pp.-]). Let
X(t) be a homogeneous Markov process in En ⊂ Rn described by the following stochastic
differential equation:

dX(t) = b(X) dt +
d∑

m=

σm(X) dBm(t). ()

The diffusion matrix is A(x) = (aij(x)), aij(x) =
∑d

m= σ i
m(x)σ j

m(x).

Lemma . [] We assume that there is a bounded open subset G ⊂ En with a regular (i.e.
smooth) boundary such that its closure Ḡ ⊂ En, and

(i) in the domain G and some neighborhood therefore, the smallest eigenvalue of the
diffusion matrix A(x) is bounded away from zero;

(ii) if x ∈ En \ G, the mean time τ at which a path issuing from x reaches the set G is
finite, and supx∈K Exτ < +∞ for every compact subset K ∈ En and throughout this
paper we set inf∅ = ∞.

We then have the following assertions:
() The Markov process X(t) has a stationary distribution μ(·) with density in En. Let

f (x) be a function integrable with respect to the measure μ(·). Then

P

{
lim

t→∞

t

∫ t


f
(
x(s)

)
ds =

∫

En
f (y)μ(dy)

}
= . ()
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() The probability density function ϕ(y) of μ(·) is the unique bounded solution to the
stationary Fokker-Planck equation




d∑

i,j=

∂

∂yi∂yj

(
aij(y)ϕ

)
–

d∑

i=

∂

∂yi

(
bi(y)ϕ

)
= , ()

satisfying the additional condition
∫

En ϕ(y) dx = .

Theorem . Let condition () and σ  < r hold. We then have the following assertions:
() System () has a unique stationary distribution denoted by μ(·).
() The probability density function of μ(·) denoted by ϕ(y) has the following form:

ϕ(y) =
α

�( r–σ

ασ )

(
a
ασ 

) r–σ
ασ

y
r
σ – exp

(
–

a
ασ  yα

)
I(,∞)(y), ()

where I(,∞)(y) is the indicator function for the set (,∞). Its mean and variance are

( ασ

a ) 
α

�( r
ασ )

�( r–σ
ασ )

and ( ασ

a ) 
α (

�( r+σ
ασ )

�( r–σ
ασ )

– (
�( r

ασ )

�( r–σ
ασ )

)), respectively.

Proof The proof is composed of two parts. The first part is to prove the existence of sta-
tionary distribution. The second part is to obtain the probability density function by solv-
ing the stationary Fokker-Planck equation. Let x(t) = x(t; x) for simplicity.

Let us now show the existence of a stationary distribution. To validate condition (i)
and (ii), it suffices to prove that there exist some neighborhood U and a nonnegative C-
function V such that σ x is uniformly elliptical in U and LV ≤ – for any x ∈ R+ \ U (for
details refer to [, p.]). By the condition σ  < r, we can find a number η >  such that
η ∈ (, r

σ – ), η < α. Applying Itô’s formula to V (x) = x + x–η we have

LV (x) =
(

rx + aηxα–η –
a


xα+
)

–
a


xα+ –
(

rη –
η(η + )σ 



)
x–η.

Since a > , there exists a constant K >  such that sup≤x<∞[rx + aηxα–η – a
 xα+] ≤ K .

This implies

LV (x) ≤ K –
a


xα+ –
(

rη –
η(η + )σ 



)
x–η.

Note from rη – η(η+)σ

 >  that there is a sufficiently large N , such that

LV (x) ≤ –, ∀x ∈ R+\GN ; inf
x∈GN

λmin
(
σ x) =

σ 

N > ,

where GN = {x : 
N < x < N} ⊂ R+. This immediately implies condition (i) and (ii) in

Lemma .. Therefore, system () has a stationary distribution μ(·).
Now, we aim to prove the assertion (). Since system () has a unique positive solution,

the μ(·) will be restricted to region R+. By virtue of Lemma ., we have the probability
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density function ϕ(y) satisfying the following stationary Fokker-Planck equation:




∂

∂y

(
σ yϕ

)
–

∂

∂y
(
y
(
r – ayα

)
ϕ
)

= , y > , ()

with the normalization condition
∫ ∞

 ϕ(y) dy = . Using the integrating factor

exp

(
 –

∫ y(r – ayα)
σ  y

)
dy,

the solution to () can be expressed in the form of (). Now, we proceed to compute the
mean and variance of the stationary distribution. For the readers’ convenience, some no-
tations are given as follows:

μp =
∫ ∞


ypϕ(y) dy, � = μ – μ

 .

It is easy to observe that μ and � are just the mean and variance of the stationary distribu-

tion, respectively. Simple computations show that μ = ( ασ

a ) 
α

�( r
ασ )

�( r–σ
ασ )

, μ = ( ασ
a ) 

α
�( r+σ

ασ )

�( r–σ
ασ )

.

This implies

μ =
(

ασ 

a

) 
α �( r

ασ )

�( r–σ

ασ )
, � =

(
ασ 

a

) 
α
(

�( r+σ

ασ )

�( r–σ

ασ )
–

(
�( r

ασ )

�( r–σ

ασ )

))
.

The proof is completed. �

Remark  Note, for α = , d = , the system () becomes the classic logistic system (see
[]). The probability density function has the following form:

ϕ(y) =


�( r–σ

σ )

(
a
σ 

) r–σ
σ

y
r
σ – exp

(
–

a
σ  y

)
I(,∞)(y).

It is easy to observe that the stationary distribution μ(·) obeys the gamma distribution in
this case. The mean and variance become μ = r–σ

a , � = σ(r–σ)
a . In this case, our result

on mean and variance coincides with the result in Mao [, p.]. It is worth noting that
we provide a more detailed description of the stationary distribution than that by Mao
[].

4 Extinction
In this section, we will show that if the noise is sufficiently large, the solution to system ()
will become extinct with probability .

Theorem . Let condition () and σ  ≥ r hold and x(t, x) be the global solution to
system () with any positive initial value x. We then have the following assertions:

(i) If σ  > r, the solution x(t, x) to system () has the property that

lim
t→∞

ln x(t, x)
t

= –
(

σ 


– r

)
a.s. ()
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That is, the population will become extinct exponentially with probability one and
the exponential extinction rate is –( σ

 – r).
(ii) If σ  = r, the solution x(t, x) to system () has the property that

lim
t→∞ x(t, x) =  a.s., lim

t→∞
ln x(t, x)

t
=  a.s. ()

That is, system () still becomes extinct with zero exponential extinction rate.

To prove Theorem ., let us present three lemmas which are essential to the proof.

Lemma . [] Suppose that an n-dimensional stochastic process x(t) on t ≥  satisfies
the condition

E
∣∣x(t) – x(s)

∣∣α ≤ C|t – s|+β ,  ≤ s, t < ∞

for some positive constants α, β , and C. Then there exists a continuous modification x̃(t)
of x(t) which has the property that, for every γ ∈ (, β

α
), there is a positive random variable

δ(ω) such that

P

{
ω : sup

<t–s<δ(ω)
≤s,t<∞

|x̃(t,ω) – x̃(s,ω)|
|t – s|γ ≤ 

 – –γ

}
= .

In other words, almost every sample path of x̃ is locally but uniformly Hölder-continuous
with exponent γ .

Lemma . Let condition () hold and x(t, x) be the global solution to system () with any
positive initial value x. For any β > , xβ (t, x) is uniformly continuous on [,∞) a.s.

The proof of this lemma is rather standard; hence it is omitted. For details the reader is
referred to [].

Proof of Theorem . As the whole proof is very technical, we will divide it into two steps.
The first step is to show the exponential extinction of system () when σ  > r. The second
step is to show the extinction with zero exponential extinction rate in the case of σ  = r.
Let x(t) = x(t; x) for simplicity.

Step : In this step, we aim to prove assertion (). It follows from Itô’s formula that

ln x(t) = ln x() +
∫ t



(
r –

σ 



)
ds – a

∫ t


xα(s) ds +

∫ t


σ dB(s).

Dividing both sides by t yields

ln x(t)
t

=
ln x()

t
+


t

∫ t



(
r –

σ 



)
ds –

a
t

∫ t


xα(s) ds +


t

∫ t


σ dB(s). ()

Using the law of strong large numbers for martingales (see []), we can claim that

lim
t→∞


t

∫ t


σ dB(s) =  a.s.
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Letting t → ∞ yields

lim sup
t→∞

ln x(t)
t

≤ –
(

σ 


– r

)
a.s.

This shows that for any ε ∈ (, σ

 – r), there is a positive random variable T(ε) such that,
with probability ,

x(t) ≤ e–( σ
 –r)t+εt , ∀t > T(ε) a.s.

It follows that

xα(t) ≤ e–α( σ
 –r)t+αεt , ∀t > T(ε) a.s.,

which means
∫ ∞


xα(s) ds < ∞ a.s.

Then letting t → ∞ on both sides of () yields

lim
t→∞

ln x(t)
t

= –
(

σ 


– r

)
a.s.

Step : Now, let us finally show assertion (). The proof of this step is composed of two
parts. We first show the almost sure convergence of x(t) to zero as t → ∞. Then we show
that the exponential extinction rate is zero.

Decompose the sample space into three mutually exclusive events as follows:

E =
{
ω : lim sup

t→∞

∣∣x(t)
∣∣ ≥ lim inf

t→∞
∣∣x(t)

∣∣ = γ > 
}

;

E =
{
ω : lim sup

t→∞

∣∣x(t)
∣∣ > lim inf

t→∞
∣∣x(t)

∣∣ = 
}

;

E =
{
ω : lim

t→∞
∣
∣x(t)

∣
∣ = 

}
.

When σ  = r, () has the following form:

ln x(t)
t

=
ln x()

t
–

a
t

∫ t


xα(s) ds +


t

∫ t


σ dB(s). ()

We, furthermore, decompose the sample space into the following two mutually exclusive
events according to the convergence of

∫ ∞
 xα(s) ds:

J =
{
ω :

∫ ∞


xα(s) ds < ∞

}
, J =

{
ω :

∫ ∞


xα(s) ds = ∞

}
.

The proof of limt→∞ x(t) =  is equivalent to showing J ⊂ E, J ⊂ E a.s. The strategy of
the proof is as follows:

• First, using Lemmas . and ., we show that J ⊂ E.
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• Second, using some novel techniques, we prove that P(J ∩ E) =  and P(J ∩ E) = ,
which means J ⊂ E a.s.

Now we realize this strategy as follows:
Case : Let us now show J ⊂ E a.s. It follows from Lemma . that almost every sam-

ple path of xα(t) is locally but uniformly Hölder continuous. And therefore almost every
sample path of xα(t) must be uniformly continuous. Combining the definition of J and
Lemma ., we have

lim
t→∞ x(t) =  a.s.,

which means J ⊂ E a.s.
Case : Now, we turn to the proof that J ⊂ E a.s. It is sufficient to show P(J ∩ E) = 

and P(J ∩ E) = . We prove by contradiction.
If P(J ∩ E) > , for any ω ∈ J ∩ E, ε ∈ (, γ

 ), there exists T = (ε,ω) such that

x(t) > γ – ε >
γ


, ∀t > T a.s.

It then follows from () that


t

∫ t


xα(s) ds =


t

∫ T


xα(s) ds +


t

∫ t

t
xα(s) ds ≥ 

t

∫ T


xα(s) ds +

t – T
t

(
γ



)α

.

Letting t → ∞, we obtain

lim inf
t→∞


t

∫ t


xα(s) ds >

(
γ



)α

>  a.s.

This implies

lim sup
t→∞

ln x(t)
t

≤ –a
(

γ



)α

<  a.s.,

which contradicts the definition of J and E. So P(J ∩ E) =  must hold.
Now we proceed to show P(J ∩ E) >  is false. For this purpose, we need a few more

notations as follows:

Aε
t :=

{
 ≤ s ≤ t : x(s) ≥ ε

}
, dε

t :=
m(Aε

t )
t

,

dε := lim inf
t→∞ dε

t , Dε :=
{
ω ∈ J ∩ E : dε > 

}
,

where m(Aε
t ) indicates the length of Aε

t . It is easy to see that D = J ∩ E. For any ε < ε,
simple computations show that

Aε
t ⊃ Aε

t , m
(
Aε

t
) ≥ m

(
Aε

t
)
, dε

t =
m(Aε

t )
t

≥ dε
t =

m(Aε
t )

t
,

which implies

dε ≤ dε , Dε ⊂ Dε , ∀ε < ε.
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It is easy to observe from the continuity of probability that

P
(
Dε

) → P
(
D) = P(J ∩ E) as ε → .

IfP(J ∩E) > , there exists ε >  such thatP(Dε) > . For any ω ∈ Dε , simple computations
show that


t

∫ t


xα(s) ds =


t

∫

Aε
t

xα(s) ds +

t

∫

[,t]\Aε
t

xα(s) ds ≥ 
t

∫

Aε
t

xα(s) ds.

By letting t → ∞, we have

lim inf
t→∞


t

∫ t


xα(s) ds ≥ lim inf

t→∞

t

∫

Aε
t

xα(s) ds ≥ dεεα a.s. ()

Substituting () into (), we obtain

lim sup
t→∞

ln x(t)
t

≤ –adεεα <  a.s.

This contradicts the definition of J and E. It yields the desired assertion P(J ∩ E) = 
immediately. Combining with the fact J ⊂ E, P(J ∩ E) = , and P(J ∩ E) = , we can
claim that

lim
t→∞ x(t) =  a.s.,

which means system () is extinct when σ  = r. It follows that limt→∞ xα(t) =  a.s. This
implies

lim
t→∞


t

∫ t


xα(s) =  a.s. ()

By the law of strong large numbers for martingales and (), letting t → ∞ on both sides
of () yields

lim
t→∞

ln x(t)
t

=  a.s.

The proof is completed. �

Remark  Comparing with the existing literature [, ], we point out that the expo-
nential extinction rate is just the difference between intrinsic growth rate and half of the
noise intensity. Especially, we present some novel techniques to show the extinction of the
system when σ  = r.

5 Summary and numerical examples
In this paper, we have discussed the existence of a stationary distribution and extinction of
system (), and sufficient conditions have been established in Theorems . and .. Note
that the two sufficient conditions are complementary and mutually exclusive. Thus, there
are also the necessary conditions. In conclusion, we formulate the sufficient and necessary
conditions as a theorem.
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Figure 1 Stochastic trajectory of x(t) for system (14) with σ = 0.5.

Figure 2 Probability density function of system (14) with σ = 0.5.

Figure 3 Stochastic trajectory of ln x(t)
t for system (14) with σ = 2.

Theorem . Let condition () hold. There are two mutually exclusive possibilities for sys-
tems (): either a stationary distribution exists, or it becomes extinct. That is, the system is
stationary if and only if σ  < r, while it is extinctive if and only if r ≤ σ

 .

Remark  In the existing literature (see []), the recurrence phenomenon is attributed
to the positive recurrence. Now we try to explain the phenomenon via the divergence of
the solution to the system. Note from Theorems . and . that there is E ∪ E ⊂ � with
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Figure 4 Stochastic trajectory of x(t) for system (14) with σ = 2.

Figure 5 Stochastic trajectory of ln x(t)
t for system (14) with σ = 1.

P(E ∪ E) =  when σ  < r. It is easy to prove by contradiction that

P

(
lim sup

t→∞
x(t,ω) = lim inf

t→∞ x(t,ω) > 
)

= .

Thus, for almost sure ω ∈ E ∪ E, we have

lim sup
t→∞

x(t,ω) > lim inf
t→∞ x(t,ω).

Then there exists θ(ω) > θ(ω) >  such that the process x(t,ω) is up-crossing the inter-
val (θ(ω), θ(ω)) infinitely many times. Let θ, θ denote the higher and lower population
levels, respectively. Defining a sequence of stopping times:

τ = inf
{

t ≥  : x(t) ≥ θ
}

,

τk = inf
{

t ≥ σk– : x(t) ≤ θ
}

, τk+ = inf
{

t ≥ σk : x(t) ≥ θ
}

, k = , , . . . .

It follows from the definition of E and E that τk < ∞, ∀k ≥ , a.s. This implies that the
higher and lower population levels of the population occur infinite times. Meanwhile, by
virtue of the ergodic property, the average of records approaches the means of their in-
variant distributions as the number is large. In conclusion, we provide a new point of view
to describe some biological phenomena of a permanent population system.
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Figure 6 Stochastic trajectory of x(t) for system (14) with σ = 1.

Example . Consider a stochastic generalized logistic system as follows:

dx(t) = x
(
. – x)dt + σx dB(t). ()

The existence and uniqueness of the solution follows from Lemma .. We consider the
solution x(t, x) with initial date x = . Let x(t) = x(t; ) for simplicity.

(i) σ = .:
Since . > .

 , by virtue of Theorem ., system () is stochastically permanent and
has a unique stationary distribution. Figure  shows a stochastic trajectory of x(t) gener-
ated by the Euler scheme for time step � = – for system () on [, ]. Figure  shows
the probability density function p(y) of system ().

(ii) σ = :
Note that . < 

 , by virtue of Theorem ., system () is exponentially extinctive.
Figures  and  show the stochastic trajectory of ln x(t)

t and x(t) generated by the Heun
scheme for time step � = – for system () on [, ] and [, ], respectively.

(iii) σ = :
Note that . = 

 , by virtue of Theorem ., system () is extinctive with zero expo-
nential extinction rate. Figures  and  show the stochastic trajectory of x(t) and ln x(t)

t
generated by the Heun scheme for time step � = – for system () on [, ].
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