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Abstract
In this paper, we investigate the existence and growth of solutions of the q-difference
equation

∏n
i=1 f (qiz) = R(z, f (z)), where R(z, f (z)) is an irreducible rational function in

f (z). We also give an estimation of the growth of transcendental meromorphic
solutions of the equation

∏n
i=1 f (qiz) = f (z)m.
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1 Introduction and main results
A meromorphic function f (z) means meromorphic in the complex plane C. If no poles
occur, then f (z) reduces to an entire function. Assume that n(r, f ) counts the number of
poles of f in |z| ≤ r, each pole is counted according to its multiplicity, and that n(r, f ) counts
the number of the distinct poles of f in |z| ≤ r, ignoring the multiplicity. The characteristic
function of f is defined by

T(r, f ) := m(r, f ) + N(r, f ),

where

N(r, f ) :=
∫ r



n(t, f ) – n(, f )
t

dt + n(, f ) log r

and

m(r, f ) :=


π

∫ π


log+∣

∣f
(
reiθ )∣∣dθ .

For more notations and definitions of the Nevanlinna value distribution theory of mero-
morphic functions, we refer to [, ].

A meromorphic function α(z) is called a small function with respect to f (z), if T(r,α) =
S(r, f ), where S(r, f ) denotes any quantity satisfying S(r, f ) = o(T(r, f )) as r → ∞ outside a
possible exceptional set E of logarithmic density . The order and the exponent of con-
vergence of zeros of meromorphic function f (z) is, respectively, defined as

σ (f ) = lim sup
r→∞

log T(r, f )
log r

, λ(f ) = lim sup
r→∞

log N(r, 
f )

log r
.
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The difference operators for a meromorphic function f (z) are defined as

�cf (z) = f (z + c) – f (z) (c �= ),

∇qf (z) = f (qz) – f (z) (q �= , ).

In the following, f (qz + c) is the q-shift of f (z), f (qz) – f (z) is the q-difference of f (z), where
q �= , . If an equation includes q-shifts or q-differences of f (z), then the equation is called
the q-difference equation. A Borel exceptional value of f (z) is any value a satisfying λ(f –
a) < σ (f ).

In the last two decades, the existence and growth of meromorphic solutions of differ-
ence equations have been investigated in many papers [–]. Recently, with the develop-
ment of the q-difference analog of Nevanlinna theory, there has been a renewed interest in
studying meromorphic solutions of q-difference equations. For instance, Zheng and Chen
[] considered the growth problem of transcendental meromorphic solutions of some q-
difference equations.

Theorem A [, Theorem ] Suppose that f is a transcendental meromorphic solution of
the equation

n∑

j=

aj(z)f
(
qjz

)
= R

(
z, f (z)

)
=

P(z, f (z))
Q(z, f (z))

,

where q ∈C, |q| > , the coefficients aj(z) are rational functions and P, Q are relatively prime
polynomials in f over the rational functions satisfying p = degf P, t = degf Q, d = p – t ≥ .

If f has infinitely many poles, then for sufficiently large r, n(r, f ) ≥ Kd
log r

n log |q| holds for some
constant K > . Thus, the lower order of f , which has infinitely many poles, satisfies μ(f ) ≥
d

log d
n log |q| .

In [], Heittokangas et al. first considered meromorphic solutions with Borel excep-
tional zeros and poles of some type of difference equations and obtained the result as
follows.

Theorem B [, Theorem ] Let c, . . . , cn ∈C \ {} and suppose that f is a non-rational
meromorphic solution of a difference equation of the form

n∏

i=

f (z + ci) =
a(z) + a(z)f (z) + · · · + ap(z)f (z)p

b(z) + b(z)f (z) + · · · + bt(z)f (z)t ,

with meromorphic coefficients ai(z), bj(z) of growth S(r, f ) such that ap(z)bt(z) �≡ . If

max

{

λ(f ),λ
(


f

)}

< ρ(f ),

then the above equation is of the form

n∏

i=

f (z + ci) = c(z)f (z)k ,

where c(z) is meromorphic, T(r, c) = S(r, f ), and k ∈ Z.
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Recently, Zheng and Chen [] considered a q-difference equation under a condition sim-
ilar to Theorem B on meromorphic solution, and they obtained the following result.

Theorem C [, Theorem ] Suppose that f is a transcendental meromorphic solution of a
q-difference equation of the form

n∏

i=

f (qiz) = R
(
z, f (z)

)
=

a(z) + a(z)f (z) + · · · + ap(z)f (z)p

b(z) + b(z)f (z) + · · · + bt(z)f (z)t , (.)

where qi ∈ C \ {, }, i = , . . . , n, and R(z, f ) is an irreducible rational function in f with
meromorphic coefficients ai(z) (i = , . . . , p) and bj(z) (j = , . . . , t) of growth S(r, f ) such that
bt(z) ≡ , ap(z) �≡ . If

max

{

λ(f ),λ
(


f

)}

< ρ(f ) = ρ,

then the above equation is reduced to the form

n∏

i=

f (qiz) = ap(z)f (z)p

or

n∏

i=

f (qiz) =
a(z)
f (z)t .

For the q-difference equation (.), Theorem C only considered the case when solutions
have Borel exceptional zeros and poles. But how about the existence and growth of mero-
morphic solutions of (.)? Theorem . considers under what conditions (.) will not
have solutions with zero order.

Theorem . Let R(z, f ) be an irreducible rational function in f with meromorphic coeffi-
cients ai(z) (i = , . . . , p) and bj(z) (j = , . . . , t) of growth S(r, f ), d = max{p, t}, qi ∈ C \ {, },
i = , . . . , n.

() If d > n, then (.) has no transcendental meromorphic solution of zero order.
() If d �= n, then (.) has no transcendental entire solution of zero order.

As many papers (see [, ]) obtained the lower bound of the order of solutions of dif-
ference equations. The natural question arises of the upper bound of the order of the so-
lutions of (.). The following theorem answers this question partly.

Theorem . Suppose that f (z) is a transcendental meromorphic solution of (.), where
R(z, f ) is an irreducible rational function in f with meromorphic coefficients ai(z) (i =
, . . . , p) and bj(z) (j = , . . . , t) of growth S(r, f ), d = max{p, t}, qi ∈ C, |qi| >  (i = , . . . , n),
|q| ≤ |q| ≤ · · · ≤ |qn–| < |qn|. Then

σ (f ) ≤ log(d + n – )
log |qn| – log |qn–| .
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When the function R(z, f ) in (.) is reduced to f (z)m, we consider the q-difference equa-
tion

n∏

i=

f (qiz) = f (z)m. (.)

From the proof of Theorem ., one can immediately get the following corollary.

Corollary . Let m, n be positive integers, qi ∈C \ {, }, i = , . . . , n.
() If m > n, then (.) has no transcendental meromorphic solution of zero order.
() If m �= n, then (.) has no transcendental entire solution of zero order.

The following theorem gives an estimation of the growth of the meromorphic solutions
of (.), where qi ∈C, |qi| >  (i = , . . . , n).

Theorem . Suppose that f (z) is a transcendental meromorphic solution of (.), where
m, n are positive integers, |qi| >  (i = , . . . , n), |q| = max{|q|, |q|, . . . , |qn|}. Then

σ (f ) ≥ μ(f ) ≥ log m – log n
log |q| .

Remark If |qk| = |q|, we denote |s| = max{|qi|, i = , . . . , n, i �= k}, then |s| ≤ |q|. If |s| �= |q|,
then from the proof of Theorem ., we can immediately get

σ (f ) ≤ log(m + n – )
log |q| – log |s| .

In the following, we consider transcendental entire solutions with λ(f ) < σ (f ) of (.).

Theorem . Suppose that f (z) is a transcendental entire solution of finite order of (.),
where m, n are positive integers, qi ∈C \ {, }, i = , . . . , n, if λ(f ) < σ (f ), then

n∑

i=

qσ (f )
i = m.

The following example shows that the case of Theorem . can occur.

Example  Let m = , q = , q = , then the transcendental entire function f (z) = ez

satisfies the equation

f (z)f (z) = f (z).

Here, f (z) has finitely many zeros and satisfies qσ (f )
 + qσ (f )

 = m.

2 Lemmas
To prove our results, we need some lemmas.
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Lemma . [] (Valiron-Mohon‘ko) Let f (z) be a meromorphic function, then for all ir-
reducible rational functions in f ,

R
(
z, f (z)

)
=

∑m
i= ai(z)f (z)i

∑n
j= bj(z)f (z)j ,

with meromorphic coefficients ai(z), bj(z), the characteristic function of R(z, f (z)) satisfies

T
(
r, R

(
z, f (z)

))
= dT(r, f ) + O

(
ψ(r)

)
,

where d = max{m, n} and ψ(r) = max{T(r, ai), T(r, bj)}.

Lemma . gives us the relationship of the characteristic function between f (z) and
f (qz), provided that f (z) is a non-constant meromorphic function of zero order.

Lemma . [] If f (z) is a non-constant meromorphic function of zero order, and q ∈ C \
{}, then

T
(
r, f (qz)

)
=

(
 + o()

)
T(r, f ) (.)

on a set of lower logarithmic density .

Lemma . [] Let f (z) be a non-constant meromorphic function of zero order, and q ∈
C \ {}, then

m
(

r,
f (qz)
f (z)

)

= S(r, f ) (.)

on a set of logarithmic density .

The next lemma is the relationship between T(r, f (qz)) and T(|q|r, f (z)).

Lemma . [] Let f (z) be a meromorphic function, and let q ∈C \ {}, then

T
(
r, f (qz)

)
= T

(|q|r, f
)

+ O(). (.)

Lemma . [] Let φ : (,∞) → (,∞) be a monotone increasing function, and let f be
a non-constant meromorphic function. If for some real constant α ∈ (, ), there exist real
constants K >  and K ≥  such that

T(r, f ) ≤ Kφ(αr) + KT(αr, f ) + S(αr, f ),

then

σ (f ) ≤ log K

– logα
+ lim sup

r→∞
logφ(r)

log r
.

The following are the well-known Weierstrass factorization theorem and Hadamard fac-
torization theorem.
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Lemma . [] If an entire function f has a finite exponent of convergence λ(f ) for its
zero-sequence, then f has a representation in the form

f (z) = Q(z)eg(z),

satisfying λ(Q) = σ (Q) = λ(f ). Further, if f is of finite order, then g in the above form is a
polynomial of degree less than or equal to the order of f .

3 The proofs
3.1 Proof of Theorem 1.1
() Suppose that f (z) is a transcendental meromorphic solution of zero order of (.), it
follows from Lemma . that

T
(
r, R

(
z, f (z)

))
= dT(r, f ) + S(r, f ) = T

(

r,
n∏

i=

f (qiz)

)

,

which implies

dT(r, f ) < T

(

r,
n∏

i=

f (qiz)

)

≤
n∑

i=

T
(
r, f (qiz)

)
+ S(r, f ).

By Lemma ., we obtain

dT(r, f ) ≤ nT(r, f ) + S(r, f ) (.)

on a set of lower logarithmic density . It is clear that (.) is a contradiction when d > n.
Thus if d > n, (.) has no transcendental meromorphic solution of zero order.
() Suppose that f (z) is a transcendental entire solution of zero order of (.), it follows

from (.) that

nT(r, f ) = nm(r, f ) = m
(
r, f n)

≤ m
(

r,
f (z)n

f (qz)f (qz) · · · f (qnz)

)

+ m
(
r, f (qz)f (qz) · · · f (qnz)

)

≤
n∑

i=

m
(

r,
f (z)

f (qiz)

)

+ m
(
r, R(z, f )

)
.

Since f (z) is a transcendental entire solution of zero order, by Lemma . and Lemma .,
the above inequality can be reduced to

nT(r, f ) ≤ dT(r, f ) + S(r, f ) (.)

on a set of lower logarithmic density . It is clear that (.) is a contradiction when d < n.
Using the same method of the proof of (), we can get if d > n, (.) has no transcendental

entire solution of zero order.
Thus if d �= n, (.) has no transcendental entire solution of zero order.
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3.2 Proof of Theorem 1.2
It follows from (.) and Lemma . that

T
(
r, f (qnz)

)
= T

(

r,
R(z, f )

∏n–
i= f (qiz)

)

≤ dT(r, f ) +
n–∑

i=

T
(
r, f (qiz)

)
+ S(r, f ).

Since |qi| >  (i = , . . . , n), |q| ≤ |q| ≤ · · · ≤ |qn–| < |qn|, by Lemma ., we obtain

T
(|qn|r, f

) ≤ dT(r, f ) + (n – )T
(|qn–|r, f

)
+ S

(|qn–|r, f
)
.

Setting R = |qn|r, α = |qn–|
|qn| , we have

T(R, f ) ≤ (d + n – )T(αR, f ) + S(αR, f ). (.)

By Lemma . and (.), we obtain

σ (f ) ≤ log(d + n – )
log |qn| – log |qn–| .

3.3 Proof of Theorem 1.4
We will divide the argument into two cases.

Case . If n ≥ m, it is easily to see σ (f ) ≥ μ(f ) ≥ log m–log n
log |q| is obviously true.

Case . If n < m, by Corollary ., we get when n < m, (.) has no transcendental mero-
morphic solution of zero order. So f (z) is a transcendental meromorphic solution of pos-
itive order. It follows from Lemma . that

T
(
r, f (qiz)

)
= T

(|qi|r, f
)

+ O().

Note that |q| = max{|q|, |q|, . . . , |qn|}, thus by (.), we obtain

mT(r, f ) = T
(
r, f m)

= T

(

r,
n∏

i=

f (qiz)

)

≤
n∑

i=

T
(
r, f (qiz)

)
+ S(r, f )

≤ nT
(|q|r, f

)
+ S(r, f ).

By the above inequality, we have, for any given ε ( < ε < ),

mT(r, f ) ≤ n( + ε)T
(|q|r, f

)
(.)

outside of a possible exceptional set of finite logarithmic measure. Now we can use [,
Lemma ..] to deal with the exceptional set here. It follows from (.) that for any given
α > , there exists an r >  such that

mT(r, f ) ≤ n( + ε)T
(
α|q|r, f

)
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holds for all r ≥ r. This implies that

T
(
α|q|r, f

) ≥ m
n( + ε)

T(r, f ). (.)

Inductively, for any k ∈N, we obtain

T
((

α|q|)kr, f
) ≥

(
m

n( + ε)

)k

T(r, f ), (.)

for all r > r. By (.), we can get for sufficiently large d, there exists a k ∈ N such that
d ∈ ((α|q|)kr, (α|q|)k+r), that is

k >
log d – log(α|q|r)

log(α|q|) . (.)

By (.) and (.), we obtain

T(d, f ) ≥ T
((

α|q|)kr, f
) ≥

(
m

n( + ε)

) log d–log(α|q|r)
log(α|q|)

T(r, f ). (.)

Letting ε →  and α → , it follows from (.) that

T(d, f ) ≥
(

m
n

) log d–log(|q|r)
log |q|

T(r, f ) = H
(

m
n

) log d
log |q|

,

where H = ( m
n )– log(|q|r)

log |q| T(r, f ) is a positive constant.
Thus we get

σ (f ) ≥ μ(f ) ≥ log m – log n
log |q| .

3.4 Proof of Theorem 1.5
Since f (z) is a transcendental entire function of finite order and λ(f ) < σ (f ), by Lemma .,
f (z) can be written as

f (z) = g(z)eh(z),

where g(z) ( �≡ ) is an entire function such that σ (g) = λ(g) = λ(f ) < σ (f ), h(z) is a polyno-
mial. Set

h(z) = adzd + · · · + a,

where ad, . . . , a are constants. Since σ (f ) < ∞, it follows that

σ (f ) = deg
(
h(z)

)
= d.

We obtain

n∏

i=

f (qiz) = g(qz) · · · g(qnz)eh(qz)+···+h(qnz) = p(z)ead(qd
 +···+qd

n)zd
, (.)
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where

p(z) = g(qz) · · · g(qnz)ead–(qd–
 +···+qd–

n )zd–+···+na .

On the other hand, we have

f (z)m = g(z)memh(z) = g(z)memadzd+mad–zd–+···+ma . (.)

Since σ (g) < d, by (.), (.) and (.), we obtain

p(z)ead(qd
 +···+qd

n)zd
= g(z)memadzd+mad–zd–+···+ma ,

which implies that

qd
 + · · · + qd

n = m.

Since σ (f ) = deg(h(z)) = d, we have

n∑

i=

qσ (f )
i = m.
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