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Abstract
In this paper we define new concepts of fractional quantum calculus by defining a
new q-shifting operator. After giving the basic properties we define the q-derivative
and q-integral. New definitions of Riemann-Liouville fractional q-integral and
q-difference on an interval [a,b] are given and their basic properties are discussed. As
applications of the new concepts, we prove existence and uniqueness results for first
and second order initial value problems for impulsive fractional q-difference
equations.
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1 Introduction
The quantum calculus is known as the calculus without limits. It substitutes the classical
derivative by a difference operator, which allows one to deal with sets of nondifferentiable
functions. Quantum difference operators have an interest role due to their applications in
several mathematical areas such as orthogonal polynomials, basic hypergeometric func-
tions, combinatorics, the calculus of variations, mechanics and the theory of relativity.
The book by Kac and Cheung [] covers many of the fundamental aspects of the quantum
calculus.

In recent years, the topic of q-calculus has attracted the attention of several researchers
and a variety of new results can be found in the papers [–] and the references cited
therein.

In [] the notions of qk-derivative and qk-integral of a function f : Jk := [tk , tk+] → R,
have been introduced and their basic properties was proved. As applications existence
and uniqueness results for initial value problems for first and second order impulsive qk-
difference equations are proved. q-calculus analogs of some classical integral inequalities,
such as the Hölder, Hermite-Hadamard, Trapezoid, Ostrowski, Cauchy-Bunyakovsky-
Schwarz, Grüss, and Grüss-Čebyšev ones are proved in [].

In this paper we define new concepts of fractional quantum calculus by defining a new
q-shifting operator a�q(m) = qm + ( – q)a. After giving the basic properties we define
the q-derivative and q-integral. New definitions of Riemann-Liouville fractional q-integral
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and q-difference on an interval [a, b] are given and their basic properties are discussed. As
applications of the new concepts, we prove existence and uniqueness results for first and
second order initial value problems for impulsive fractional q-difference equations.

In applications, as in constructing a q-Taylor formula or solving q-differential equations
and inequalities of fractional order, it is interesting to allow nonzero lower limits of q-
integration. In [, ], the authors studied fractional q-integrals and q-derivatives which
are based on Jackson sense on interval [a, b]. However, if the upper and lower limits of
q-integration are b and a = bqn for some n ∈ N, respectively, then the infinite sum of the
definition of q-integration is reduced to a finite sum, which is the restriction of definition
of q-integral. From this point, our results generalized the classical definitions of fractional
q-integrals and q-derivatives by shifting the point of the origin from zero to be a constant
a ∈ R and applying the results to establish the impulsive fractional quantum difference
equations.

2 Preliminaries
To make this paper self-contained, below we recall some known facts on fractional
q-calculus. The presentation here can be found in, for example, [, ].

For q ∈ (, ), define

[m]q =
 – qm

 – q
, m ∈ R. (.)

The q-analog of the power function (n – m)k with k ∈ N := {, , , . . .} is

(n – m)() = , (n – m)(k) =
k–∏

i=

(
n – mqi), k ∈N, n, m ∈R. (.)

More generally, if γ ∈R, then

(n – m)(γ ) =
∞∏

i=

n – mqi

n – mqγ +i , n �= . (.)

Note if m = , then n(γ ) = nγ . We also use the natation (γ ) =  for γ > . The q-gamma
function is defined by

�q(t) =
( – q)(t–)

( – q)t– , t ∈R \ {, –, –, . . .}. (.)

Obviously, �q(t + ) = [t]q�q(t).
The q-derivative of a function h is defined by

(Dqh)(t) =
h(t) – h(qt)

( – q)t
for t �=  and (Dqh)() = lim

t→
(Dqh)(t), (.)

and the q-derivatives of higher order are given by

(
D

qh
)
(t) = h(t) and

(
Dk

qh
)
(t) = Dq

(
Dk–

q h
)
(t), k ∈ N. (.)
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The q-integral of a function h defined on the interval [, b] is given by

(Iqh)(t) =
∫ t


h(s) dqs = t( – q)

∞∑

i=

h
(
tqi)qi, t ∈ [, b]. (.)

If a ∈ [, b] and h is defined in the interval [, b], then its integral from a to b is defined by

∫ b

a
h(s) dqs =

∫ b


h(s) dqs –

∫ a


h(s) dqs. (.)

Similar to derivatives, an operator Ik
q is given by

(
I

q h
)
(t) = h(t) and

(
Ik

q h
)
(t) = Iq

(
Ik–

q h
)
(t), k ∈ N. (.)

The fundamental theorem of calculus applies to these operators Dq and Iq, i.e.,

(DqIqh)(t) = h(t), (.)

and if h is continuous at t = , then

(IqDqh)(t) = h(t) – h(). (.)

For any s, t > , the q-beta function is defined by

Bq(s, t) =
∫ 


u(s–)( – qu)(t–) dqu. (.)

The expression of q-beta function in terms of the q-gamma function can be written as

Bq(s, t) =
�q(s)�q(t)
�q(s + t)

. (.)

Definition . Let ν ≥  and h be a function defined on [, T]. The fractional q-integral
of Riemann-Liouville type is given by (I

q h)(t) = h(t) and

(
Iν

q h
)
(t) =


�q(ν)

∫ t


(t – qs)(ν–)h(s) dqs, ν > , t ∈ [, T]. (.)

Definition . The fractional q-derivative of Riemann-Liouville type of order ν ≥  is
defined by (D

qh)(t) = h(t) and

(
Dν

qh
)
(t) =

(
Dl

qIl–ν
q h

)
(t), ν > , (.)

where l is the smallest integer greater than or equal to ν .

Lemma . [] Let α,β ≥  and f be a function defined in [, T]. Then the following for-
mulas hold:

() (Iβ
q Iα

q f )(t) = (Iα+β
q f )(t),

() (Dα
q Iα

q f )(t) = f (t).
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Lemma . [] Let α >  and n be a positive integer. Then the following equality holds:

(
Iα

q Dn
qf

)
(t) =

(
Dn

qIα
q f

)
(t) –

n–∑

i=

tα–n+i

�q(α + i – n + )
(
Di

qf
)
(). (.)

3 New concepts of fractional quantum calculus
Let us define a q-shifting operator as

a�q(m) = qm + ( – q)a. (.)

For any positive integer k, we have

a�
k
q(m) = a�

k–
q

(
a�q(m)

)
and a�


q(m) = m. (.)

By computing directly, we get the following results.

Property . For any m, n ∈R and for all positive integer k, j, we have:
(i) a�

k
q(m) = a�qk (m);

(ii) a�
j
q(a�

k
q(m)) = a�

k
q(a�

j
q(m)) = a�

j+k
q (m);

(iii) a�q(a) = a;
(iv) a�

k
q(m) – a = qk(m – a);

(v) m – a�
k
q(m) = ( – qk)(m – a);

(vi) a�
k
q(m) = m a

m
�k

q() for m �= ;
(vii) a�q(m) – a�

k
q(n) = q(m – a�

k–
q (n)).

The q-analog of the Pochhammer symbol is defined by

(m; q) = , (m; q)k =
k–∏

i=

(
 – qim

)
, k ∈N∪ {∞}. (.)

We also define the new power of q-shifting operator as

(n – m)()
a = , (n – m)(k)

a =
k–∏

i=

(
n – a�

i
q(m)

)
, k ∈N∪ {∞}. (.)

More generally, if γ ∈R, then

(n – m)(γ )
a =

∞∏

i=

n – a�
i
q(m)

n – a�
γ +i
q (m)

. (.)

If a = , then �
i
q(m) = mqi which implies that (.) and (.) are reduced to the classical

q-analog of the power function (n – m)k in (.) and (.), respectively.

Property . For any γ , n, m ∈R with n �= a and k ∈N∪ {∞}, we have:
(i) (n – m)(k)

a = (n – a)k( m–a
n–a ; q)k ;

(ii) (n – m)(γ )
a = (n – a)γ

∏∞
i=

– m–a
n–a qi

– m–a
n–a qγ +i = (n – a)γ ( m–a

n–a ;q)∞
( m–a

n–a qγ ;q)∞ ;

(iii) (n – a�
k
q(n))(γ )

a = (n – a)γ (qk ;q)∞
(qγ +k ;q)∞ .
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Proof To prove (i), for any n, m ∈R with n �= a, it follows that

(n – m)k
a = (n – m)

(
n – a�q(m)

) · · · (n – a�
k–
q (m)

)

=
(
n – a – (m – a)

)(
n – a –

(
a�q(m) – a

)) · · · (n – a –
(

a�
k–
q (m) – a

))

= (n – a)k
(

 –
m – a
n – a

)(
 –

m – a
n – a

q
)

· · ·
(

 –
m – a
n – a

qk–
)

= (n – a)k
(

m – a
n – a

; q
)

k
.

Applying the method to prove (i) for (.), we have the results in (ii). Using the Pochham-
mer symbol, we obtain the last relation (ii) as requested.

Substituting m = a�
k
q(n) in (ii) and using Property .(v), we obtain the desired result

in (iii). �

The q-derivative of a function f on interval [a, b] is defined by

(aDqf )(t) =
f (t) – f (a�q(t))

( – q)(t – a)
, t �= a, and (aDqf )(a) = lim

t→a
(aDqf )(t), (.)

and the q-derivatives of higher order are given by

(
aD

qf
)
(t) = f (t) and

(
aDk

qf
)
(t) = aDk–

q (aDqf )(t), k ∈N. (.)

The q-derivative of a product and ratio of functions f and g on [a, b] are

aDq(fg)(t) = f (t)aDqg(t) + g
(

a�q(t)
)

aDqf (t)

= g(t)aDqf (t) + f
(

a�q(t)
)

aDqg(t), (.)

and

aDq

(
f
g

)
(t) =

g(t)aDqf (t) – f (t)aDqg(t)
g(t)g(a�q(t))

, (.)

where g(t)g(a�q(t)) �= .
The q-integral of a function f defined on the interval [a, b] is given by

(aIqf )(t) =
∫ t

a
f (s) ads = ( – q)(t – a)

∞∑

i=

qif
(

a�qi (t)
)
, t ∈ [a, b]. (.)

Also similar to the derivative, an operator aIk
q is given by

(
aI

q f
)
(t) = f (t) and

(
aIk

q f
)
(t) = aIk–

q (aIqf )(t), k ∈N. (.)

The fundamental theorem of calculus applies to these operator aDq and aIq, i.e.,

(aDqaIqf )(t) = f (t), (.)
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and if f is continuous at t = a, then

(aIqaDqf )(t) = f (t) – f (a). (.)

The formula for q-integration by parts on an interval [a, b] is

∫ b

a
f (s)aDqg(s) adqs = (fg)(t)

∣∣∣
b

a
–

∫ b

a
g
(

a�q(s)
)

aDqf (s) adqs. (.)

The reversing order of q-integration formula on [a, b] is given by

∫ t

a

∫ s

a
f (r) adqr adqs =

∫ t

a

∫ t

a�q(r)
f (r) adqs adqr. (.)

Then, from (.), the multiple q-integrals can be converted to a single q-integral on [a, b]
as

aIn
q f (t) =

∫ t

a

∫ xn–

a
· · ·

∫ x

a
f (s) adqs adqx · · · adqxn–

=


�q(n)

∫ t

a

(
t – a�q(s)

)(n–)
a f (s) adqs. (.)

Let us give the new definitions of Riemann-Liouville fractional q-integral and q-
difference on interval [a, b].

Definition . Let ν ≥  and f be a function defined on [a, b]. The fractional q-integral
of Riemann-Liouville type is given by (aI

q f )(t) = h(t) and

(
aIν

q f
)
(t) =


�q(ν)

∫ t

a

(
t – a�q(s)

)(ν–)
a f (s) adqs, ν > , t ∈ [a, b]. (.)

Definition . The fractional q-derivative of Riemann-Liouville type of order ν ≥  on
interval [a, b] is defined by (aD

qf )(t) = f (t) and

(
aDν

qf
)
(t) =

(
aDl

qaIl–ν
q f

)
(t), ν > , (.)

where l is the smallest integer greater than or equal to ν .

In [], we have the following formula for t ∈ [a, b], α ∈R:

aDq(t – a)α = [α]q(t – a)α–. (.)

It is easy to verify that

aDl
q(t – a)α =

�q(α + )
�q(α – l + )

(t – a)α–l, (.)

where l is a positive integer. The next result gives the generalization of (.).
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Lemma . Let ν > , α ∈R. Then for t ∈ [a, b], the following relation holds:

aDν
q(t – a)α =

�q(α + )
�q(α – ν + )

(t – a)α–ν . (.)

Proof From Definitions .-., we have

aDν
q(t – a)α = aDl

qaIl–ν
q (t – a)α

= aDl
q


�q(l – ν)

∫ t

a

(
t – a�q(s)

)(l–ν–)
a (s – a)α adqs. (.)

Using (.) and applying Property .(iv), Property .(iii), it follows that

∫ t

a

(
t – a�q(s)

)(l–ν–)
a (s – a)α adqs

= ( – q)(t – a)
∞∑

i=

qi(t – a�
i+
q (t)

)(l–ν–)
a

(
a�

i
q(t) – a

)α

= ( – q)(t – a)
∞∑

i=

qi(t – a)l–ν– (qi+; q)∞
(ql–ν+i; q)∞

· qαi(t – a)α

= ( – q)(t – a)l–ν+α

∞∑

i=

qi( – qi)(l–ν–)qαi

= (t – a)l–ν+α

∫ 


( – qs)(l–ν–)s(α) dqs

= (t – a)l–ν+αBq(l – ν,α + ). (.)

Applying (.) for (.)-(.), we obtain the desired formula in (.). �

It follows from (.), (.), and Properties .(v) and .(iii) that the Riemann-Liouville
fractional q-integral (.) can be written in the form of an infinite series as

aIν
q f (t) =

( – q)(t – a)
�q(ν)

∞∑

i=

qi(t – a�
i+
q (t)

)(ν–)
a f

(
a�

i
q(t)

)

= ( – q)ν(t – a)ν
∞∑

i=

qi (qν ; q)i

(q; q)i
f
(

a�
i
q(t)

)
. (.)

We recall the definition of the basic q-hypergeometric function as

rFs[c, . . . , cr ; d, . . . , ds; x] =
∞∑

k=

(c; q)k · · · (cr ; q)k

(q; q)k(d; q)k · · · (ds; q)k
xk . (.)

The q-Vandermonde reversing the order of summation [] is

F

[
q–n, b; c;

cqn

b

]
=

(c/b; q)n

(c; q)n
. (.)
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Lemma . Let α,β ∈ R
+, and f be a continuous function on [a, b], a ≥ . The Riemann-

Liouville fractional q-integral has the following semi-group property:

aIβ
q aIα

q f (t) = aIα
q aIβ

q f (t) = aIα+β
q f (t). (.)

Proof By taking into account of (.) and using Property ., we have

aIα
q a

(
Iβ

q f (t)
)

= ( – q)α+β (t – a)α+β

∞∑

i=

qi(+β) (qα ; q)i

(q; q)i

∞∑

j=

qj (qβ ; q)j

(q; q)j
f
(

a�
i+j
q (t)

)
. (.)

Applying the substitution k = i + j, we obtain

aIα
q a

(
Iβ

q f (t)
)

= ( – q)α+β (t – a)α+β

×
∞∑

i=

qi(+β) (qα ; q)i

(q; q)i

∞∑

k=i

qk–i (qβ ; q)k–i

(q; q)k–i
f
(

a�
k
q(t)

)
. (.)

In (.) we interchange the order of the summations to get

aIα
q a

(
Iβ

q f (t)
)

= ( – q)α+β (t – a)α+β

∞∑

k=

qkf
(

a�
k
q(t)

) k∑

i=

qiβ (qα ; q)i

(q; q)i

(qβ ; q)k–i

(q; q)k–i
. (.)

It is easy to verify that

(qβ ; q)k–i

(q; q)k–i
=

(q–k ; q)i

(q–k–β ; q)i
q(–β)i.

Consequently,

aIα
q a

(
Iβ

q f (t)
)

= ( – q)α+β (t – a)α+β

×
∞∑

k=

qkf
(

a�
k
q(t)

) (qβ ; q)k

(q; q)k
F

(
q–k , qα ; q–k–β ; q

)
. (.)

From (.), we have

F
(
q–k , qα ; q–k–β ; q

)
=

(q–k–β–α ; q)k

(q–k–β ; q)k
qkα =

(qα+β ; q)k

(qβ ; q)k
. (.)

Substituting (.) into (.), we obtain the series representation of aIα+β
q f (t) and (.)

holds. �

Lemma . Let f be a q-integrable function on [a, b]. Then the following equality holds:

aDα
q aIα

q f (t) = f (t), for α > , t ∈ [a, b]. (.)

Proof If α = n, n ∈ N, then aDn
qaIn

q f (t) = f (t). For a positive noninteger α, n –  < α < n,
n ∈N, by using Lemma ., we obtain

aDα
q aIα

q f (t) = aDn
qaIn–α

q aIα
q f (t) = aDn

qaIn
q f (t) = f (t),

for all t ∈ [a, b]. �
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Lemma . For any t, s ∈ [a, b]. The following formulas hold:
(i) t

aDq(t – s)(α)
a = [α]q(t – s)(α–)

a ;
(ii) s

aDq(t – s)(α)
a = –[α]q(t – a�q(s))(α–)

a ,
where i

aDq denotes the q-derivative with respect to variable i.

Proof From (.) and Property .(vii), we have

t
aDq(t – s)(α)

a =
(t – s)(α)

a – (a�q(t) – s)(α)
a

( – q)(t – a)

=

∏∞
i=

t–a�i
q(s)

t–a�α+i
q (s)

–
∏∞

i=
a�q(t)–a�i

q(s)

a�q(t)–a�α+i
q (s)

( – q)(t – a)

=
(t – s)(α–)

a [t – a�
α–
q (s) – qα–(a�q(t) – s)]

( – q)(t – a)

= [α]q(t – s)(α–)
a .

To prove (ii), we use (.) with respect to s and Property .(v). We omit the details. �

Lemma . Let α >  and p be a positive integer. Then for t ∈ [a, b] the following equality
holds:

aIα
q aDp

qf (t) = aDp
qaIα

q f (t) –
p–∑

k=

(t – a)α–p+k

�q(α + k – p + ) aDk
qf (a). (.)

Proof Let α be a positive constant. Now, we will prove the formula (.) by using the
mathematical induction. Suppose that p = . By Lemma ., we get

s
aDq

[
(t – s)(α–)

a f (s)
]

=
(
t – a�q(s)

)(α–)
a

s
aDqf (s) – [α – ]q

(
t – a�q(s)

)(α–)
a f (s).

Therefore, by Lemma . and Property .(iii), we obtain

aIα
q aDqf (t) =


�q(α)

∫ t

a

(
t – a�q(s)

)(α–)
a aDqf (s)a ds

=
[α – ]q

�q(α)

∫ t

a

(
t – a�q(s)

)(α–)
a f (s)a ds +


�q(α)

[
(t – s)(α–)

a f (s)
]s=t

s=a

= aDqaIα
q f (t) –

(t – a)α–

�q(α)
f (a).

Next, suppose that (.) holds for p ∈N. Then we have

aIα
q aDp+

q f (t) = aIα
q aDp

qaDqf (t)

= aDp
qaIα

q aDqf (t) –
p–∑

k=

(t – a)α–p+k

�q(α + k – p + ) aDk+
q f (a)

= aDp
q

[
aDqaIα

q f (t) –
(t – a)α–

�q(α)
f (a)

]
–

p–∑

k=

(t – a)α–p+k

�q(α + k – p + ) aDk+
q f (a)
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= aDp+
q aIα

q f (t) –
(t – a)α––p

�q(α – p)
f (a) –

p∑

k=

(t – a)α–(p+)+k

�q(α + k – (p + ) + ) aDk
qf (a)

= aDp+
q aIα

q f (t) –
p∑

k=

(t – a)α–(p+)+k

�q(α + k – (p + ) + ) aDk
qf (a). �

4 Impulsive fractional q-difference equations
Let J = [, T], J = [t, t], Jk = (tk , tk+] for k = , , , . . . , m. Let PC(J ,R) = {x : J → R,
x(t) is continuous everywhere except for some tk at which x(t+

k ) and x(t–
k ) exist and

x(t–
k ) = x(tk), k = , , , . . . , m}. For γ ∈ R+, we introduce the space Cγ ,k(Jk ,R) = {x : Jk →

R : (t – tk)γ x(t) ∈ C(Jk ,R)} with the norm ‖x‖Cγ ,k = supt∈Jk
|(t – tk)γ x(t)| and PCγ = {x : J →

R : for each t ∈ Jk and (t – tk)γ x(t) ∈ C(Jk ,R), k = , , , . . . , m} with the norm ‖x‖PCγ =
max{supt∈Jk

|(t – tk)γ x(t)| : k = , , , . . . , m}. Clearly PCγ is a Banach space.

4.1 Impulsive fractional q-difference equation of order 0 < α ≤ 1
In this subsection, we initiate the study of the existence and uniqueness of solutions for
the following initial value problem for impulsive fractional q-difference equation of order
 < α ≤ 

⎧
⎪⎪⎨

⎪⎪⎩

tk Dα
qk

x(t) = f (t, x(t)), t ∈ J , t �= tk ,

�̃x(tk) = ϕk(x(tk)), k = , , . . . , m,

x() = ,

(.)

where tk Dα
qk

is the Riemann-Liouville fractional q-difference of order α defined by (.)
on interval Jk ,  < qk <  for k = , , , . . . , m,  = t < t < t < · · · < tk < · · · < tm < tm+ = T ,
f : J ×R →R is a continuous function, ϕk ∈ C(R,R). The notation �̃x(tk) is defined by

�̃x(tk) = tk I–α
qk

x
(
t+
k
)

– tk– I–α
qk–

x(tk), k = , , . . . , m, (.)

where tk I–α
qk

is the Riemann-Liouville fractional q-integral of order  – α defined by (.)
on Jk . It should be noticed that if α =  in (.), then �̃x(tk) = �x(tk) = x(t+

k ) – x(tk) for
k = , , . . . , m.

Lemma . If x ∈ PC(J ,R) is a solution of (.), then for any t ∈ Jk , k = , , , . . . , m,

x(t) =
(t – tk)α–

�qk (α)

[ ∑

<tk <t

(
tk– I

qk–
f
(
tk , x(tk)

)
+ ϕk

(
x(tk)

))]
+ tk Iα

qk
f
(
t, x(t)

)
, (.)

with
∑

<(·) = . The converse is also true.

Proof In view of Definition ., for t ∈ J and t = , it follows that

Iα
q Dα

q x(t) = Iα
q Dq I–α

q x(t) = Iα
q f

(
t, x(t)

)
.

By Lemmas . and ., t ∈ J, we have

x(t) = c
tα–

�q (α)
+ Iα

q f
(
t, x(t)

)
,
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where c = I–α
q x(). The initial condition x() =  leads to c =  which yields for t ∈ J,

x(t) = Iα
q f

(
t, x(t)

)
.

The Riemann-Liouville fractional q-integrating for order  – α for t = t leads to

I–α
q x(t) = I

q f
(
t, x(t)

)
. (.)

For t ∈ J, taking the Riemann-Liouville fractional q-integral of order α to (.) and using
the above process, we have

x(t) =
(t – t)α–

�q (α) t I–α
q x

(
t+

)

+ t Iα
q f

(
t, x(t)

)
.

Since t I–α
q x(t+

 ) = I–α
q x(t) + ϕ(x(t)), it follows using (.) for t ∈ J that

x(t) =
(t – t)α–

�q (α)
[

I
q f

(
t, x(t)

)
+ ϕ

(
x(t)

)]
+ t Iα

q f
(
t, x(t)

)
. (.)

By computing directly, for t = t, we obtain from (.)

t I–α
q x(t) = I

q f
(
t, x(t)

)
+ t I

q f
(
t, x(t)

)
+ ϕ

(
x(t)

)
.

Applying the Riemann-Liouville fractional q-integrating of order α for (.) from t to t,
where t ∈ J, then we have

x(t) =
(t – t)α–

�q (α) t I–α
q x

(
t+

)

+ t Iα
q f

(
t, x(t)

)

=
(t – t)α–

�q (α)
[

I
q f

(
t, x(t)

)
+ t I

q f
(
t, x(t)

)
+ ϕ

(
x(t)

)
+ ϕ

(
x(t)

)]

+ t Iα
q f

(
t, x(t)

)
.

Repeating the above process, for t ∈ J , we obtain (.).
On the other hand, assume that x is a solution of (.). Applying the Riemann-Liouville

fractional qk-derivative of order α on (.) for t ∈ Jk , k = , , , . . . , m and using �() = ∞,
it follows that

tk Dα
qk

x(t) = f
(
t, x(t)

)
.

It is easy to verify that �̃x(tk) = ϕk(x(tk)), k = , , . . . , m and x() = . This completes the
proof. �

Theorem . Assume that the following assumptions hold:

(H) f : J ×R→R is a continuous function and satisfies

∣∣f (t, x) – f (t, y)
∣∣ ≤ L|x – y|, L > ,∀t ∈ J , x, y ∈R;
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(H) ϕk : R →R, k = , , . . . , m, are continuous functions and satisfy

∣∣ϕk(x) – ϕk(y)
∣∣ ≤ M|x – y|, M > ,∀x, y ∈R.

If


 ≤ δ < ,

where


 =
T∗

�∗ (LT + mM + L),

T∗ = max{Tγ +α–, Tγ +α}, �∗ = min{�qk (α),�qk (α + ), k = , , , . . . , m}, and γ + α > , then
the nonlinear impulsive fractional q-difference initial value problem (.) has a unique
solution on J .

Proof We define an operator A : PC(J ,R) → PC(J ,R) by

(Ax)(t) =
(t – tk)α–

�qk (α)

[ ∑

<tk <t

(
tk– I

qk–
f
(
s, x(s)

)
(tk) + ϕk

(
x(tk)

))]
+ tk Iα

qk
f
(
s, x(s)

)
(t),

with
∑

<(·) = .
In addition, we define a ball Br = {x ∈ PCγ (J ,R) : ‖x‖PCγ ≤ r}. To show that Ax ∈ PCγ ,

we suppose τ, τ ∈ Jk , and then

∣∣(τ – tk)γAx(τ) – (τ – tk)γAx(τ)
∣∣

≤
∣∣∣∣
(τ – tk)γ +α– – (τ – tk)γ +α–

�qk (α)

∣∣∣∣

[ k∑

j=

(
tj– I

qj–

∣∣f
(
s, x(s)

)∣∣(tj) +
∣∣ϕj

(
x(tj)

)∣∣)
]

+
∣∣(τ – tk)γ tk Iα

qk
f
(
s, x(s)

)
(τ) – (τ – tk)γ tk Iα

qk
f
(
s, x(s)

)
(τ)

∣∣.

As τ → τ, we have |(τ – tk)γAx(τ) – (τ – tk)γAx(τ)| →  for each k = , , , . . . , m.
Therefore, we get Ax(t) ∈ PCγ . Now, we will show that ABr ⊂ Br . Assume that
supt∈J |f (t, )| = N and max{|Ik()| : k = , , . . . , m} = N, and setting

 =
T∗

�∗ (NT + mN + N),

we choose a constant r such that

r ≥ 
 – ε

,

where δ ≤ ε < . For any x ∈ Br and for each t ∈ Jk , we have

∣∣(Ax)(t)
∣∣ ≤ (t – tk)α–

�qk (α)

[ ∑

<tk <t

(
tk– I

qk–

∣∣f
(
s, x(s)

)∣∣(tk) +
∣∣ϕk

(
x(tk)

)∣∣)
]

+ tk Iα
qk

∣∣f
(
s, x(s)

)∣∣(t)
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≤ (t – tk)α–

�qk (α)

[ k∑

j=

(
tj– I

qj–

(∣∣f
(
s, x(s)

)
– f (s, )

∣∣ +
∣∣f (s, )

∣∣)(tj)

+
(∣∣ϕj

(
x(tj)

)
– ϕj()

∣∣ +
∣∣ϕj()

∣∣))
]

+ tk Iα
qk

(∣∣f
(
s, x(s)

)
– f (s, )

∣∣ +
∣∣f (s, )

∣∣)(t)

≤ (t – tk)α–

�qk (α)
[
(Lr + N)tk + (Mr + N)k

]
+

(t – tk)α

�qk (α + )
(Lr + N).

Multiplying both sides of the above inequality by (t – tk)γ for each t ∈ Jk , we have

(t – tk)γ
∣∣(Ax)(t)

∣∣ ≤ (t – tk)γ +α–

�qk (α)
[
(Lr + N)tk + (Mr + N)k

]
+

(t – tk)γ +α

�qk (α + )
(Lr + N)

≤ T∗

�∗
[
(Lr + N)T + (Mr + N)m

]
+

T∗

�∗ (Lr + N)

≤ (δ +  – ε)r ≤ r.

This means that ‖Ax‖PCγ ≤ r, which leads to ABr ⊂ Br .
For x, y ∈ PCγ (J ,R) and for each t ∈ J , we have

∣∣(Ax)(t) – (Ay)(t)
∣∣ ≤ (t – tk)α–

�qk (α)

[ ∑

<tk <t

(
tk– I

qk–

(∣∣f
(
s, x(s)

)
– f

(
s, y(s)

)∣∣)(tk)

+
∣∣ϕk

(
x(tk)

)
– ϕk

(
y(tk)

)∣∣)
]

+ tk Iα
qk

(∣∣f
(
s, x(s)

)
– f

(
s, y(s)

)∣∣)(t)

≤ (t – tk)α–

�qk (α)

[ k∑

j=

(
tj– I

qj–

(
L
∣∣x(s) – y(s)

∣∣)(tj) + M
∣∣x(tj) – y(tj)

∣∣)
]

+ tk Iα
qk

(
L
∣∣x(s) – y(s)

∣∣)(t)

≤ (t – tk)α–

�qk (α)

[ k∑

j=

(
L(tj – tj–)‖x – y‖PCγ + M‖x – y‖PCγ

)
]

+
(t – tk)α

�qk (α + )
L‖x – y‖PCγ .

Multiplying both sides of the above inequality by (t – tk)γ for each t ∈ Jk , we have

∣∣(t – tk)γ (Ax)(t) – (t – tk)γ (Ay)(t)
∣∣ ≤ (t – tk)γ +α–

�qk (α)
(
tkL‖x – y‖PCγ + kM‖x – y‖PCγ

)

+
(t – tk)γ +α

�qk (α + )
L‖x – y‖PCγ

≤ T∗

�∗ (LT + mM + L)‖x – y‖PCγ .

It follows that

‖Ax – Ay‖PCγ ≤ 
‖x – y‖PCγ .

As 
 < , by the Banach contraction mapping principle, A is a contraction. Therefore,
A has a fixed point which is a unique solution of (.) on J . �
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Example . Consider the following impulsive fractional q-difference initial value prob-
lem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tk D



( k+k+
k+k+

)
x(t) = (t+)|x(t)|

t+(t+
√

)(+|x(t)|) + 
 , t ∈ [, 

 ], t �= tk ,

�̃x(tk) = |x(tk )|
(k+)+|x(tk )| , k = , , . . . , , tk = k

 ,

x() = ,

(.)

Here α = /, qk = (k + k + )/(k + k + ), k = , , , . . . , , m = , T = /, f (t, x) =
(((t + )|x|)/(t+(t +

√
)( + |x|))) + (/), and ϕk(x) = (|x|/((k + ) + |x|)). Since |f (t, x) –

f (t, y)| ≤ (/)|x – y| and |ϕk(x) – ϕk(y)| ≤ (/)|x – y|, (H), (H) are satisfied with
L = (/), M = (/). Choosing γ = / and using the Maple program, we can find
that T∗ = ., �∗ = ., and


 =
T∗

�∗ (LT + mM + L) ≈ . < .

Hence, by Theorem ., the initial value problem (.) has a unique solution on [, /].

4.2 Impulsive fractional q-difference equation of order 1 < α ≤ 2
In this subsection, we investigate the initial value problem of impulsive fractional q-
difference equation of order  < α ≤  the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

tk Dα
qk

x(t) = f (t, x(t)), t ∈ J , t �= tk ,

�̃x(tk) = ϕk(x(tk)), k = , , . . . , m,

�∗x(tk) = ϕ∗
k (x(tk)), k = , , . . . , m,

x() = , Dα–
q x() = β ,

(.)

where β ∈ R,  = t < t < t < · · · < tk < · · · < tm < tm+ = T , f : J × R → R is a continu-
ous function, ϕk ,ϕ∗

k ∈ C(R,R) for k = , , . . . , m and  < qk <  for k = , , , . . . , m. The
notation �̃x(tk) is defined by (.) and �∗x(tk) is defined by

�∗x(tk) = tk I–α
qk

x
(
t+
k
)

– tk– I–α
qk–

x(tk), k = , , . . . , m, (.)

where tk I–α
qk

is the Riemann-Liouville fractional q-integral of order  – α defined by (.)
on Jk . It should be noticed that if α = , then �̃x(tk) = tk Dqk x(t+

k ) – tk– Dqk– x(tk) and
�∗x(tk) = �x(tk) = x(t+

k ) – x(tk) for k = , , . . . , m.

Lemma . The unique solution of problem (.) is given by

x(t) =
(t – tk)α–

�qk (α – )

[
βtk +

∑

<tk <t

∑

<tj<tk

(tk – tk–)
(

tj– I
qj–

f
(
tj, x(tj)

)
+ ϕj

(
x(tj)

))

+
∑

<tk <t

(
tk– I

qk–
f
(
tk , x(tk)

)
+ ϕ∗

k
(
x(tk)

))]

+
(t – tk)α–

�qk (α)

[
β +

∑

<tk <t
tk– I

qk–
f
(
tk , x(tk)

)
+ ϕk

(
x(tk)

)]
+ tk Iα

qk
f
(
t, x(t)

)
, (.)

with
∑

<(·) = .
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Proof For t ∈ J, taking the Riemann-Liouville fractional q-integral of order α for the first
equation of (.) and using Definition . with Lemma ., we get

x(t) =
tα–

�q (α – )
C +

tα–

�q (α)
C + Iα

q f
(
t, x(t)

)
, (.)

where C = I–α
q x() and C = I–α

q x(). The first initial condition of (.) implies that
C = .

Taking the Riemann-Liouville fractional q-derivative of order α –  for (.) on J, we
have

Dα–
q x(t) = C + I

q f
(
t, x(t)

)
. (.)

The second initial condition of (.) with (.) yields C = β . Therefore, (.) can be
written as

x(t) =
βtα–

�q (α)
+ Iα

q f
(
t, x(t)

)
. (.)

Applying the Riemann-Liouville fractional q-derivative of orders  –α and  –α for (.)
at t = t, we have

I–α
q x(t) = β + I

q f
(
t, x(t)

)
and I–α

q x(t) = βt + I
q f

(
t, x(t)

)
. (.)

For t ∈ J = (t, t], Riemann-Liouville fractional q-integrating (.), we obtain

x(t) =
(t – t)α–

�q (α – ) t I–α
q x

(
t+

)

+
(t – t)α–

�q (α) t I–α
q x

(
t+

)

+ t Iα
q f

(
t, x(t)

)
. (.)

Using the jump conditions of (.) with (.)-(.) for t ∈ J, we get

x(t) =
(t – t)α–

�q (α – )
[
βt + I

q f
(
t, x(t)

)
+ ϕ∗


(
x(t)

)]

+
(t – t)α–

�q (α)
[
β + I

q f
(
t, x(t)

)
+ ϕ

(
x(t)

)]
+ t Iα

q f
(
t, x(t)

)
.

Repeating the above process, for t ∈ J , we obtain (.) as required. �

Next, we prove the existence and uniqueness of a solution to the initial value problem
(.). We shall use the Banach fixed point theorem to accomplish this.

For convenience, we set the constants

� =
T̃
�̃

[
m

(
M + M∗) + L(tm + ) + L

m∑

j=

(tj – tj–)tj–

+ L
m∑

j=

(tj – tj–)

 + qj–
+ M

m∑

j=

(tj – tj–)(j – )

]
, (.)
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� =
T̃
�̃

[
(|β| + 

)
(tm + ) + m( + ) + 

m∑

j=

(tj – tj–)tj–

+ 

m∑

j=

(tj – tj–)

 + qj–
+ 

m∑

j=

(tj – tj–)(j – )

]
, (.)

where T̃ = max{Tγ +α–, Tγ +α–, Tγ +α}, �̃ = min{�qk (α – ),�qk (α),�qk (α + ), k = , , ,
. . . , m}, and γ + α > .

Theorem . Assume that (H) and (H) hold. In addition we suppose that:

(H) ϕ∗
k : R →R, k = , , . . . , m, are continuous functions and satisfy

∣∣ϕ∗
k (x) – ϕ∗

k (y)
∣∣ ≤ M∗|x – y|, M∗ > ,∀x, y ∈R.

If

� ≤ δ < ,

where � is defined by (.), then the initial value problem (.) has a unique solution
on J .

Proof Firstly, in view of Lemma ., we define an operator Q : PC(J ,R) → PC(J ,R) as

(Qx)(t) =
(t – tk)α–

�qk (α – )

[
βtk +

∑

<tk <t

∑

<tj<tk

(tk – tk–)
(

tj– I
qj–

f
(
tj, x(tj)

)
+ ϕj

(
x(tj)

))

+
∑

<tk <t

(
tk– I

qk–
f
(
tk , x(tk)

)
+ ϕ∗

k
(
x(tk)

))]

+
(t – tk)α–

�qk (α)

[
β +

∑

<tk <t

(
tk– I

qk–
f
(
tk , x(tk)

)
+ ϕk

(
x(tk)

))]
+ tk Iα

qk
f
(
t, x(t)

)
,

with
∑

<(·) = .
It is straightforward to show that Qx ∈ PCγ (J ,R); see Theorem .. Setting

supt∈J |f (t, )| = , max{ϕk() : k = , , . . . , m} = , and max{ϕ∗
k () : k = , , . . . , m} = ,

we will show that QBR ⊂ BR, where BR = {x ∈ PCγ (J ,R) : ‖x‖PCγ ≤ R} and a constant R
satisfies

R ≥ �

 – ε
,

where � is defined by (.) and δ ≤ ε < . Let x ∈ BR. For each t ∈ Jk , k = , , , . . . , m, we
have

∣∣(Qx)(t)
∣∣ ≤ (t – tk)α–

�qk (α – )

[
|β|tk +

∑

<tk <t

∑

<tj<tk

(tk – tk–)
(

tj– I
qj–

∣∣f
(
tj, x(tj)

)∣∣ +
∣∣ϕj

(
x(tj)

)∣∣)

+
∑

<tk <t

(
tk– I

qk–

∣∣f
(
tk , x(tk)

)∣∣ +
∣∣ϕ∗

k
(
x(tk)

)∣∣)
]
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+
(t – tk)α–

�qk (α)

[
|β| +

∑

<tk <t

(
tk– I

qk–

∣∣f
(
tk , x(tk)

)∣∣ +
∣∣ϕk

(
x(tk)

)∣∣)
]

+ tk Iα
qk

∣∣f
(
t, x(t)

)∣∣

≤ (t – tk)α–

�qk (α – )

[
|β|tk +

∑

<tk <t

∑

<tj<tk

(tk – tk–)

× (
tj– I

qj–

(∣∣f
(
s, x(s)

)
– f (s, )

∣∣ +
∣∣f (s, )

∣∣)(tj)

+
(∣∣ϕj

(
x(tj)

)
– ϕj()

∣∣ +
∣∣ϕj()

∣∣))

+
∑

<tk <t

{
tk– I

qk–

(∣∣f
(
s, x(s)

)
– f (s, )

∣∣ +
∣∣f (s, )

∣∣)(tk)

+
(∣∣ϕ∗

k
(
x(tk)

)
– ϕ∗

k ()
∣∣ +

∣∣ϕ∗
k ()

∣∣)}
]

+
(t – tk)α–

�qk (α)

[
|β| +

∑

<tk <t

(
tk– I

qk–

(∣∣f
(
s, x(s)

)
– f (s, )

∣∣ +
∣∣f (s, )

∣∣)(tk)

+
(∣∣ϕk

(
x(tk)

)
– ϕk()

∣∣ +
∣∣ϕk()

∣∣))
]

+ tk Iα
qk

(∣∣f
(
s, x(s)

)
– f (s, )

∣∣ +
∣∣f (s, )

∣∣)(t)

≤ (t – tk)α–

�qk (α – )

[
|β|tk +

(
M∗R + 

)
k + (LR + )

k∑

j=

(tj – tj–)tj–

+ (MR + )
k∑

j=

(tj – tj–)(j – ) + (LR + )
k∑

j=

(tj – tj–)

 + qj–

]

+
(t – tk)α–

�qk (α)
[|β| + (LR + )tk + (MR + )k

]
+

(t – tk)α

�qk (α + )
(LR + ).

Multiplying both sides of the above inequality by (t – tk)γ for t ∈ Jk , we have

(t – tk)γ
∣∣(Qx)(t)

∣∣

≤ (t – tk)γ +α–

�qk (α – )

[
|β|tk +

(
M∗R + 

)
k + (LR + )

k∑

j=

(tj – tj–)tj–

+ (MR + )
k∑

j=

(tj – tj–)(j – ) + (LR + )
k∑

j=

(tj – tj–)

 + qj–

]

+
(t – tk)γ +α–

�qk (α)
[|β| + (LR + )tk + (MR + )k

]
+

(t – tk)γ +α

�qk (α + )
(LR + )

≤ �R + � ≤ (δ +  – ε)R ≤ R,

which yields ‖Qx‖PCγ ≤ R. Then we get QBR ⊂ BR.
For any x, y ∈ PCγ (J ,R) and for each t ∈ Jk , we have

∣∣(Qx)(t) – (Qy)(t)
∣∣

≤ (t – tk)α–

�qk (α – )

[
kM∗‖x – y‖PCγ + L‖x – y‖PCγ

k∑

j=

(tj – tj–)tj–
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+ M‖x – y‖PCγ

k∑

j=

(tj – tj–)(j – ) + L‖x – y‖PCγ

k∑

j=

(tj – tj–)

 + qj–

]

+
(t – tk)α–

�qk (α)
[
Ltk‖x – y‖PCγ + kM‖x – y‖PCγ

]
+

(t – tk)α

�qk (α + )
L‖x – y‖PCγ .

Again multiplying both sides of the above inequality by (t – tk)γ for t ∈ Jk , we have

∣∣(t – tk)γ (Qx)(t) – (t – tk)γ (Qy)(t)
∣∣

≤ (t – tk)γ +α–

�qk (α – )

[
kM∗‖x – y‖PCγ + L‖x – y‖PCγ

k∑

j=

(tj – tj–)tj–

+ M‖x – y‖PCγ

k∑

j=

(tj – tj–)(j – ) + L‖x – y‖PCγ

k∑

j=

(tj – tj–)

 + qj–

]

+
(t – tk)γ +α–

�qk (α)
[
Ltk‖x – y‖PCγ + kM‖x – y‖PCγ

]
+

(t – tk)γ +α

�qk (α + )
L‖x – y‖PCγ

≤ �‖x – y‖PCγ ,

which implies that ‖Qx – Qy‖PCγ ≤ �‖x – y‖PCγ . As � < , by the Banach contraction
mapping principle, Q has a fixed point which is a unique solution of (.) on J . �

Example . Consider the following impulsive fractional q-difference initial value prob-
lem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

tk D



( k–k+
k+k+

)
x(t) = e– cos π t |x(t)|

(t+)(+|x(t)|) + 
 , t ∈ [, 

 ], t �= tk ,

�̃x(tk) = |x(tk )|
(k+)+|x(tk )| , k = , , . . . , , tk = k

 ,

�∗x(tk) = |x(tk )|
(k+)+|x(tk )| , k = , , . . . , , tk = k

 ,

x() = , D





x() = 
 .

(.)

Here α = /, qk = (k – k + )/(k + k + ), k = , , , . . . , , m = , T = /, β = /,
f (t, x) = ((e– cos π t|x|)/((t + )( + |x|))) + (/), ϕk(x) = (|x|)/((k + ) + |x|), and ϕ∗

k (x) =
(|x|)/((k + ) + |x|). Since |f (t, x) – f (t, y)| ≤ (/)|x – y|, |ϕk(x) – ϕk(y)| ≤ (/)|x – y|, and
|ϕ∗

k (x) – ϕ∗
k (y)| ≤ (/)|x – y|, we have (H), (H), and (H) are satisfied with L = (/),

M = (/), M∗ = (/). Choosing γ = / and using the Maple program, we find that
T̃ = ., �̃ = ., and

� =
T̃
�̃

[
m

(
M + M∗) + L(tm + ) + L

m∑

j=

(tj – tj–)tj–

+ L
m∑

j=

(tj – tj–)

 + qj–
+ M

m∑

j=

(tj – tj–)(j – )

]

≈ . < .

Hence, by Theorem ., the initial value problem (.) has a unique solution on [, /].
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