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Abstract
In this paper, an efficient Legendre-Gauss collocation method is introduced for
solving nonlinear neutral delay differential equations (NDDEs). Firstly, the single-step
Legendre-Gauss collocation method is presented for NDDEs; we analyze the
convergence of the method with different delay functions. Then the multi-domain
Legendre-Gauss collocation method is presented, which is based on the single-step
one; the results of convergence are also obtained. In addition, numerical results are
presented to confirm our analysis.
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1 Introduction
Delay differential equations (DDEs) arise in a variety of fields such as biology, economics,
control theory, and so on (see [–]). In particular, neutral delay differential equations
(NDDEs) provide an important mathematical instrument to model several electromag-
netic problems [].

Recently, much literature has been devoted to the numerical solutions of NDDEs (see
[–]). Meanwhile, a Legendre-tau method was proposed and analyzed for linear DDEs
with one constant delay in []. The Legendre-Gauss collocation methods were studied for
ordinary differential equations (ODEs) based on the Legendre polynomial expansions in
[, ]. Moreover, the Legendre-Gauss collocation methods were developed for nonlinear
DDEs in []. Wang and Guo proposed an efficient numerical integration process for initial
value problems of first order ODEs, based on the Legendre-Gauss-Radau interpolation,
which is easy to implement and possesses the spectral accuracy in []. However, it is
more interesting but challenging to develop and analyze the type of high-order methods
for nonlinear NDDEs of the form

{
U ′(t) = f (t, U(t), W (t), d

dt W (t)),  ≤ t ≤ T ,
U(t) = V (t), t ≤ ,

()

where W (t) = U(θ (t)), f , θ , and V are given functions.
If the initial function V (t) does not link smoothly with the solution U(t) at , this discon-

tinuity point is spread forward on a set of primary discontinuity points where the solution,
unlike the non-neutral case, remains solely of class C [].
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The question is crucial of how to deal with the primary discontinuity points. Firstly, we
assume that T is very small such that there is no primary discontinuity point on [, T],
then a single-step scheme for () is constructed. The scheme has an infinite order of accu-
racy both in time and delay variable. On the basis of the single-step scheme, we partition
[, T] into several subintervals, and construct multi-domain scheme on [, T], on which
there are primary discontinuity points. The multi-domain scheme enjoys remarkable ad-
vantages over the Runge-Kutta type methods, since the approximate solution of U(t) is
C∞-continuous in the interior of each subinterval if f , θ , V are C∞-continuous [].

The paper is organized as follows. In Section , we present and analyze the single-step
Legendre-Gauss collocation method with three different delay terms θ (t) on [, T], where
T is small enough, and we provide some numerical results to justify our theoretical anal-
ysis. In Section , the multi-domain version is described on [, T], on which there exist
primary discontinuity points, and the convergence results are also derived. Some numer-
ical results justify our theoretical analysis.

2 The single-step Legendre-Gauss collocation method
In this section, we describe and analyze a single-step numerical process for the NDDE ()
using the Legendre-Gauss interpolation when there is no discontinuous point on [, T].
The single-step scheme serves as a base for the multi-domain one to be presented in the
forthcoming section, which is suitable for the situation with discontinuous points.

2.1 Preliminaries
Let Ll(t) be the standard Legendre polynomial of degree l. The shifted Legendre polyno-
mials are defined by (see [])

LT ,l(t) = Ll

(
t
T

– 
)

=
(–)l

l!
∂ l

t

(
tl
(

 –
t
T

)l)
, l = , , , . . . .

According to the properties of the standard Legendre polynomials, we have

(l + )LT ,l+(t) – (l + )
(

t
T

– 
)

LT ,l(t) + lLT ,l–(t) = , l ≥ , ()

d
dt

LT ,l+(t) –
d
dt

LT ,l–(t) =

T

(l + )LT ,l(t), l ≥ , ()
∣∣LT ,l(t)

∣∣ ≤ , t ∈ [, T], l ≥ . ()

The set of LT ,l(t) is a complete L(, T)-orthogonal system, namely,
∫ T

 LT ,l(t)LT ,m(t) dt =
T

l+ δl,m, where δl,m is the Kronecker symbol. Thus, for any v ∈ L(, T), v(t) =
∑∞

l= v̂T ,lLT ,l

and v̂T ,l = l+
T

∫ T
 v(t)LT ,l(t) dt.

Now, we introduce the shifted Legendre-Gauss interpolation. Denote the nodes of the
standard Legendre-Gauss interpolation on the interval [–, ) by tN

j ( ≤ j ≤ N ). In par-
ticular, tN

 = –. The corresponding Christoffel numbers are ωN
j ( ≤ j ≤ N ). The nodes

of the shifted Legendre-Gauss interpolation on the interval [, T) are the distinct zeros of
LT ,N (t) + LT ,N+(t), denoted by tN

T ,j ( ≤ j ≤ N ). Clearly, tN
T ,j = T

 (tN
j + ). The corresponding

Christoffel numbers are ωN
T ,j = T

 ωN
j ( ≤ j ≤ N ).
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Let PN (, T) be the set of polynomials of degree at most N . Due to the property of the
standard Legendre-Gauss quadrature, it follows that, for any φ ∈PN (, T), one has

∫ T


φ(t) dt =

T


N∑
j=

ωN
j φ

(
T


(
tN
j + 

))
=

N∑
j=

ωN
T ,jφ

(
tN
T ,j

)
. ()

Let (u, v)T and ‖v‖T be the inner product and the norm of space L(, T), respectively. We
also introduce the following discrete inner product and norm:

(u, v)T ,N =
N∑

j=

u
(
tN
T ,j

)
v
(
tN
T ,j

)
ωN

T ,j,

‖v‖T ,N = (v, v)


T ,N .

According to (), for any ϕ ∈PN (, T) and φ · ψ ∈PN (, T), one can obtain

(φ,ψ)T = (φ,ψ)T ,N , ‖ϕ‖T = ‖ϕ‖T ,N . ()

For any v ∈ C[, T), the shifted Legendre-Gauss interpolation IT ,N v(t) ∈PN (, T) is de-
termined uniquely by

IT ,N v
(
tN
T ,j

)
= v

(
tN
T ,j

)
,  ≤ j ≤ N .

Let r be a nonnegative integer, Hr(, T) be the usual Sobolev space as defined in [],
and denote the semi-norm by | · |r,T , where |U|r,T = (

∫ T
 ( drU

dtr ) dt) 
 and U ∈ Hr(, T). We

have the following estimates.

Lemma  (see []) For any u ∈ Hr(, T) with integer  ≤ r ≤ N + , we have

‖IT ,N u – u‖T ≤ cTrN–r|u|r,T , ()∥∥(IT ,N u – u)′
∥∥

T ≤ cTr–N

 –r|u|r,T . ()

Lemma  Let u ∈PN+, then

‖u‖
T ,N ≤ ‖u‖

T . ()

Proof Let u ∈ PN+, u(t) =
∑N+

k= ũT ,kLT ,k , we have ‖u‖
T =

∑N+
k= ũ

T ,k
T

k+ . Moreover, ac-
cording to () and (), we can obtain

‖u‖
T ,N =

(N+∑
k=

ũT ,kLT ,k ,
N+∑
k=

ũT ,kLT ,k

)
T ,N

=
N∑

k=

ũ
T (LT ,k , LT ,k)T + ũT ,N ũT ,N+(LT ,N , LT ,N+)T ,N

+ ũ
T ,N+(LT ,N+, LT ,N+)T ,N .
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Due to (), we deduce that

(LT ,N+, LT ,N+)T ,N ≤ T


∣∣∣∣∣
N∑

j=

L
N
(
tN
j
)
ωN

j

∣∣∣∣∣ ≤ T
N + 

,

(LT ,N , LT ,N+)T ,N ≤
∣∣∣∣∣

N∑
j=

LT ,N
(
tN
T ,j

)
LT ,N+

(
tN
T ,j

)
ωN

T ,j

∣∣∣∣∣
=

T


∣∣∣∣∣
N∑

j=

LN
(
tN
j
)
LN+

(
tN
j
)
ωj

∣∣∣∣∣
=

T


∣∣∣∣∣ 
(N + ) LN

(
tN

)
LN+

(
tN

)

+
N∑
j=

–L
N (tN

j )( – tN
j )

(N + )(LN (tN
j ))

∣∣∣∣∣ ≤ T
N + 

.

Therefore, we have

‖u‖
T ,N ≤

N∑
k=

ũ
T ,k

T
k + 

+
(
ũ

T ,N + ũ
T ,N+

) T
N + 

+ ũ
T ,N+

T
N + 

≤
N–∑
k=

ũ
T ,k

T
k + 

+ ũ
T ,N

(
T

N + 
+

T
N + 

)
+ ũ

T ,N+
T

N + 

≤ 
N+∑
k=

ũ
T ,k

T
k + 

= ‖u‖
T .

This completes the proof. �

2.2 The single-step scheme
Now, we present the single-step scheme for the NDDEs (). Denote the grid set by 	N =
{tN

T ,k :  ≤ k ≤ N} ⊂ [, T). The single-step Legendre-Gauss collocation approximation to
() is to find uN (t) ∈PN+(, T), such that

{
d
dt uN (t) = f (t, uN (t), w(t), w′(t)), ∀t ∈ 	N ,
uN () = U() = V (),

()

where

w(t) =

{
uN (θ (t)), θ (t) ≥ ,
V (θ (t)), θ (t) < ,

w′(t) =

{
d
dt uN (θ (t)), θ (t) ≥ ,
V ′(θ (t)), θ (t) < .

Here, we recall that θ (t) and V (·) are known functions. Denote

	
N =

{
t ∈ 	N : θ (t) < 

}
, 	

N =
{

t ∈ 	N : θ (t) ≥ 
}

.

It is an important problem how to resolve (). Indeed, it is often used to resolve the
discrete system () based on the Lagrange interpolation. However, it is well known that a
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Lagrange interpolation is not stable for large N . Hence, we propose a more stable approach
by expanding uN (t) directly in terms of the shifted Legendre polynomials and solving the
unknown coefficients of the collocation scheme (). This approach is stable for large N ,
and much easier to implement.

To describe the numerical implementation of the collocation scheme (), we expand
the collocation solution as

uN (t) =
N+∑
l=

ûN
T ,lLT ,l(t) ∈PN+(, T),  < t ≤ T . ()

Let [l] be the integer part of l. According to [], we have d
dt LT ,l(t) = 

T
∑[ l–

 ]
m= (l – m –

)LT ,l–m–(t) and LT ,l() = (–)l . Hence, () is equivalent to
{∑N+

l= aN
T ,k,lû

N
T ,l = f N

T ,k ,  ≤ k ≤ N ,∑N+
l= (–)lûN

T ,l = V (),
()

where aN
T ,k,l = 

T
∑[ l–

 ]
m= (l – m – )LT ,l–m–(tN

T ,k),  ≤ k ≤ N ,  ≤ l ≤ N + , and

f N
T ,k =

⎧⎪⎪⎨
⎪⎪⎩

f (tN
T ,k ,

∑N+
l= ûN

T ,lLT ,l(tN
T ,k),

∑N+
l= ûN

T ,lLT ,l(θ (tN
T ,k)),

d
dt

∑N+
l= ûN

T ,lLT ,l(θ (t))|t=tN
T ,k

), tN
T ,k ∈ 	

N ,

f (tN
T ,k ,

∑N+
l= ûN

T ,lLT ,l(tN
T ,k), V (θ (tN

T ,k)), V ′(θ (tN
T ,k))), tN

T ,k ∈ 	
N .

Let AN
T be the matrix with the entries aN

T ,k,l ,  ≤ k ≤ N ,  ≤ l ≤ N + . We can give the
matrix form for () as follows:

{
AN

T ûN
T = FN

T (ûN
T ),

ûN
T , = V () –

∑N+
l= (–)lûN

T ,l,
()

where ûN
T = (ûN

T ,, ûN
T ,, . . . , ûN

T ,N+)′, FN
T (ûN

T ) = (f N
T ,, f N

T ,, . . . , f N
T ,N )′. In fact, () is a set of lin-

ear equations about {ûN
T ,l}N+

l= . Therefore, we can solve () and recover the collocation
solution uN (t),  < t ≤ T from ().

2.3 Error analysis
In this subsection, we shall analyze the convergence of the scheme () with three assump-
tions of delay function θ (t), respectively. In particular, we prove the spectral accuracy of
the numerical solution uN (t). Let IT ,N be the Legendre-Gauss interpolation operator as
defined before. Let EN (t) = uN (t) – IT ,N U(t) and GN

T ,(t) = IT ,N
d
dt U(t) – d

dtIT ,N U(t). Ac-
cording to (), we have

d
dt

IT ,N U(t) = f
(
t, U(t), W (t), W ′(t)

)
– GN

T ,(t), t ∈ 	N . ()

Subtracting () from (), we obtain
{

d
dt EN (t) = GN

T ,(t) + GN
T ,(t), t ∈ 	N ,

EN () = U() – IT ,N U(),
()

where GN
T ,(t) = f (t, uN (t), w(t), w′(t)) – f (t,IT ,N U(t),IT ,N W (t),IT ,N W ′(t)).
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Lemma  Let U and uN be the solutions of () and (), respectively, U ∈ Hr(, T) with
integer  ≤ r ≤ N + , then



∥∥t–(EN – EN ()

)∥∥
T + T–∣∣EN (T) – EN ()

∣∣ ≤ 
∥∥∥∥ d

dt
EN (t)

∥∥∥∥


T ,N
. ()

Proof Due to the proof of Lemma  in [], we have


(

EN – EN (),
d
dt

(
t–(EN – EN ()

)))
T ,N

= –
∥∥t–(EN – EN ()

)∥∥
T + T–∣∣EN (T) – EN ()

∣∣.

On the other hand, we derive that

d
dt

(
t–(EN (t) – EN ()

))
= –t–(EN (t) – EN ()

)
+ t– d

dt
EN (t), t ∈ 	N .

Hence, by (), we deduce that


(

EN – EN (),
d
dt

(
t–(EN – EN ()

)))
T ,N

≤ –
∥∥t–(EN – EN ()

)∥∥
T +



∥∥t–(EN – EN ()

)∥∥
T + 

∥∥∥∥ d
dt

EN
∥∥∥∥



T ,N
.

This completes the proof. �

Now, we consider three cases according to the delay terms and analyze the numerical
errors. Here, β , β, and β denote any positive numbers less than 

 .

Case . Consider () with the following delay:

θ (t) = λt,  < λ ≤ . ()

In this situation, no values of U(t) are needed in the delay term behind , therefore, no
discontinuities propagate from . Then the solution is regular according to the regularity
of f and θ .

Assume that f (t, x, y, z) satisfies the following Lipschitz conditions in x, y, and z. That is,
there exist real numbers r ≥ , r ≥ , and  ≤ r < √

λ
such that

∣∣f (t, x, y, z) – f (t, x, y, z)
∣∣ ≤ r|x – x|, ()∣∣f (t, x, y, z) – f (t, x, y, z)
∣∣ ≤ r|y – y|, ()∣∣f (t, x, y, z) – f (t, x, y, z)
∣∣ ≤ r|z – z|. ()

Theorem  Consider the NDDE (), where f (t, x, y, z) is Cr-continuous in [, T] × Rd ×
Rd × Rd , and the initial function V (t) is Cr-continuous. If the conditions ()-() hold,
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U ∈ Hr(, T) with  ≤ r ≤ N + , and, for certain δ, δ, δ, δ̂, δ̃ > ,

( + δ)( + δ–)( + δ)Tr
 + ( + δ)( + δ–)( + δ–

 )λ–Tr


 – ( + δ)( + δ)( + δ̂)( + δ̃)λr


≤ β <



, ()

then we have

∥∥U – uN∥∥
T ≤ cβTrN–r|U|r,T ,

∣∣U(T) – uN (T)
∣∣ ≤ cβTr–N–r|U|r,T .

In particular, maxt∈[,T] |U(t)–uN (t)| ≤ cβTr–N–r|U|r,T , where cβ is a positive constant
depending only on β .

Proof Obviously, in this case, 	
N = ∅. Denote

∥∥G̃N
T ,

∥∥
T ,N =

(
 + δ–)∥∥∥∥f

(
t, uN (t), w(t),IT ,N

d
dt

W (t)
)

– f
(

t,IT ,N U(t),IT ,N W (t),IT ,N
d
dt

W (t)
)∥∥∥∥



T ,N
.

Together with ()-() and (), for any δ̃, δ > , we can obtain

∥∥GN
T ,

∥∥
T ,N ≤ ( + δ)( + δ̃)r



∥∥∥∥ d
dt

w(t) –
d
dt

W (t)
∥∥∥∥



T

+ ( + δ)
(
 + δ̃–)r



∥∥∥∥ d
dt

W (t) – IT ,N
d
dt

W (t)
∥∥∥∥



T
+

∥∥G̃N
T ,

∥∥
T ,N ,

where

∥∥∥∥ d
dt

w(t) –
d
dt

W (t)
∥∥∥∥



T
=

∫ θ (T)

θ ()
λ

[
d
dt

uN (t) –
d
dt

U(t)
]

dt

≤ λ

∫ T



[
d
dt

uN (t) –
d
dt

U(t)
]

dt = λ

∥∥∥∥ d
dt

(
uN – U

)∥∥∥∥


T

and

∥∥∥∥ d
dt

W (t) – IT ,N
d
dt

W (t)
∥∥∥∥



T
≤ cT(r–)N–(r–)∣∣U ′(θ (t)

)∣∣
r–,T

≤ cTr–N–r∣∣U(t)
∣∣
r,T .

Applying (), we have

∥∥GN
T ,

∥∥
T ,N –

∥∥G̃N
T ,

∥∥
T ,N

≤ ( + δ)( + δ̃)( + δ̂)r
λ

∥∥∥∥ d
dt

(
uN – IT ,N U

)∥∥∥∥


T
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+ ( + δ)( + δ̃)
(
 + δ̂–)r

λ

∥∥∥∥ d
dt

(IT ,N U – U)
∥∥∥∥



T
+ cTr–N–r|U|r,T

≤ ( + δ)( + δ̃)( + δ̂)r
λ

∥∥∥∥ d
dt

EN
∥∥∥∥



T
+ cTr–N–r|U|r,T .

By (), we have

∥∥∥∥ d
dt

EN
∥∥∥∥



T ,N
≤ ( + δ)

∥∥GN
T ,

∥∥
T ,N +

(
 + δ–


)∥∥GN

T ,
∥∥

T ,N

≤ ( + δ)( + δ̃)( + δ̂)( + δ)λr


∥∥∥∥ d
dt

EN
∥∥∥∥



T ,N

+ cTr–N–r|U|r,T + ( + δ)
∥∥G̃N

T ,
∥∥

T ,N

+
(
 + δ–


)∥∥GN

T ,
∥∥

T ,N ,

where

∥∥GN
T ,

∥∥
T ,N =

∥∥GN
T ,

∥∥
T

≤ ( + δ)
∥∥∥∥ d

dt
(IT ,N U – U)

∥∥∥∥


T
+

(
 + δ–)∥∥∥∥IT ,N

d
dt

U –
d
dt

U
∥∥∥∥



T

≤ cTr–N–r|U|r,T .

The above fact leads to

∥∥∥∥ d
dt

EN
∥∥∥∥



T ,N
≤ ( + δ)

ĉ
∥∥G̃N

T ,
∥∥

T ,N + cTr–N–r|U|r,T ,

where ĉ =  – ( + δ)( + δ̃)( + δ̂)( + δ)λr
 .

Let us estimate ‖G̃N
T ,‖

T ,N . Clearly, by () and ()-(), we have

∥∥G̃N
T ,

∥∥
T ,N ≤ (

 + δ–)( + δ)r

∥∥EN∥∥

T ,N

+
(
 + δ–)( + δ–


)
r


∥∥w(t) – IT ,N W (t)

∥∥
T ,N

≤ (
 + δ–)( + δ)r


∥∥EN∥∥

T

+
(
 + δ–)( + δ–


)
r


∥∥w(t) – IT ,N W (t)

∥∥
T ,

where

∥∥w(t) – IT ,N W (t)
∥∥

T

≤ ( + ε)
∥∥w(t) – W (t)

∥∥
T +

(
 + ε–)∥∥W (t) – IT ,N W (t)

∥∥
T

≤ ( + ε)
∫ T



[
uN(

θ (t)
)

– U
(
θ (t)

)] dt + cε–TrN–r|U|r,T

≤ ( + ε)λ–∥∥uN – U
∥∥

T + cε–TrN–r|U|r,T .
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Thus, we can obtain
∥∥G̃N

T ,
∥∥

T ,N ≤ (
 + δ–)( + δ)r


∥∥EN∥∥

T

+
(
 + δ–)( + δ–


)
( + ε)λ–r


∥∥uN – U

∥∥
T

+ cε–Tr–N–r|U|r,T .

According to (), we have



∥∥t–(EN – EN ()

)∥∥
T + T–∣∣EN (T) – EN ()

∣∣

≤ ( + δ)( + δ–)( + δ)r


ĉ
∥∥EN∥∥

T

+
( + δ)( + δ–)( + δ–

 )( + ε)λ–r


ĉ
∥∥uN – U

∥∥
T

+ cε–TrN–r|U|r,T .

Moreover, we can obtain
∥∥EN∥∥

T ≤ ( + ε)T∥∥t–(EN – EN ()
)∥∥

T +
(
 + ε–)∥∥EN ()

∥∥
T

and



∥∥EN∥∥

T + ( + ε)T
∣∣EN (T) – EN ()

∣∣

≤ ( + ε)T
(



∥∥t–(EN – EN ()

)∥∥
T + T–∣∣EN (T) – EN ()

∣∣
)

+ cε–T
(
EN ()

)

≤ ( + ε)( + δ)( + δ–)( + δ)Tr


ĉ
∥∥EN∥∥

T

+
( + δ)( + δ–)( + δ–

 )( + ε)Tλ–r


ĉ
∥∥uN – U

∥∥
T

+ cε–TrN–r|U|r,T + cε–T
(
EN ()

).

Thanks to (), we have
∥∥U – uN∥∥

T ≤ ( + ε)
∥∥EN∥∥

T +
(
 + ε–)‖U – IT ,N U‖

T

≤ ( + ε)
∥∥EN∥∥

T + cε–TrN–r|U|r,T .

The above result yields
(




–
( + ε)( + δ)( + δ–)( + δ)Tr


ĉ

)∥∥U – uN∥∥
T

+ ( + ε)T
∣∣EN (T) – EN ()

∣∣

≤ ( + ε)( + δ)( + δ–)( + δ–
 )λ–Tr


ĉ

∥∥uN – U
∥∥

T

+ cε–TrN–r|U|r,T + cε–T
(
EN ()

).

Due to tN
T , = , we have EN () = .
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Let ε = ( 
β

)/ –  > , then ( + ε)β = 
 . Thus, we can obtain

q̂ =
( + δ)( + δ–)T(( + ε)( + δ)r

 + ( + ε)( + δ–
 )λ–r

)
 – ( + δ)( + δ)( + δ̃)( + δ̂)λr



< ( + ε) ( + δ)( + δ–)T(( + δ)r
 + ( + δ–

 )λ–r
)

 – ( + δ)( + δ)( + δ̃)( + δ̂)λr


≤ ( + ε)β =



.

By a combination of the above estimates, we deduce that

∥∥U – uN∥∥
T ≤ cβTrN–r|U|r,T ,(

EN (T)
) ≤ 

∣∣EN (T) – EN ()
∣∣ + 

∣∣EN ()
∣∣ ≤ cβTr–N–r|U|r,T ,

where cβ = cε–

 –q̂

. Consequently, we have

∣∣U(T) – uN (T)
∣∣ ≤ 

∣∣IT ,N U(T) – U(T)
∣∣ + 

∣∣EN (T)
∣∣

≤ cβTr–N–r|U|r,T ,∥∥∥∥ d
dt

(
U – uN)∥∥∥∥



T
≤ 

∥∥∥∥ d
dt

EN
∥∥∥∥



T
+ 

∥∥∥∥ d
dt

(U – IT ,N U)
∥∥∥∥



T
≤ cβTr–N–r|U|r,T .

From (.) of [], it can be seen that maxt∈[,T] |v(t)| ≤ 
T ‖v‖

T + T‖ dv
dt ‖

T for any v ∈
H(, T). Hence, we deduce that maxt∈[,T] |U(t) – uN (t)| ≤ cβTr–N–r|U|r,T . �

Remark  For () and () without the neutral term, the convergence results are the same
as Case I in [].

Remark  The condition () is necessary for the proof, but it is not sufficient. Some nu-
merical examples do not satisfy this condition, but the numerical scheme still converges.
This remark also applies to the multiple-domain case.

Case . Assume that the delay function θ (t) satisfies

θ (t) = t – τ , τ > , t ∈ [, T]. ()

In this situation, the points tk = kτ (k = , , . . .) are primary discontinuity points. There-
fore, there is no discontinuity point when T ≤ τ . Moreover, f (t, x, y, z) satisfies the
Lipschitz conditions ()-(), where r satisfies  ≤ r < .

Theorem  Consider the NDDE () with T ≤ τ , where f (t, x, y, z) is Cr-continuous in
[, T] × Rd × Rd × Rd , and the initial function V (t) is Cr-continuous. If the conditions
()-() and () hold, U ∈ Hr(, T) with integer  ≤ r ≤ N + , ( + δ)Tr

 ≤ β < 
 ,

and (T–τ )(+δ)(+δ–)((+δ)r
 +(+δ–

 )r
)

–(+δ)(+δ)(+δ̂)(+δ̃)r


≤ β < 
 for certain δ, δ, δ, δ̂, δ̃ > , then we have

∥∥U – uN∥∥
T ≤ cβ,β TrN–r|U|r,T ,∣∣U(T) – uN (T)

∣∣ ≤ cβ,β Tr–N–r|U|r,T .
()
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In particular, maxt∈[,T] |U(t) – uN (t)| ≤ cβ,β Tr–N–r|U|r,T , where cβ,β is a positive
constant depending only on β, β.

Proof As τ ≥ T , θ (t) <  for t ∈ [, T]. In this case, 	
N = ∅. Hence, by virtue of (), we

have ‖GN
T ,‖

T ,N ≤ r
 ‖EN‖

T ,N . Due to () and (), we derive that

(



– ( + ε)( + δ)Tr


)∥∥EN∥∥
T + ( + ε)T

∣∣EN (T) – EN ()
∣∣

≤ cε–TrN–r|U|r,T .

Let ε = ( 
β

) > , then

q̂ = ( + ε)( + δ)Tr
 < ( + ε)β = /.

Thus,

∥∥EN∥∥
T ≤ cβ TrN–r|U|r,T

and

∥∥U – uN∥∥
T ≤ ( + ε)

∥∥EN∥∥
T +

(
 + ε–)‖U – IT ,N U‖

T

≤ cβ TrN–r|U|r,T ,∣∣U(T) – uN (T)
∣∣ ≤ 

∣∣IT ,N U(T) – U(T)
∣∣ + 

∣∣EN (T)
∣∣

≤ cβ Tr–N–r|U|r,T ,∥∥∥∥ d
dt

(
U – uN)∥∥∥∥



T
≤ 

∥∥∥∥ d
dt

EN
∥∥∥∥



T
+ 

∥∥∥∥ d
dt

(U – IT ,N U)
∥∥∥∥



T

≤ cβ Tr–N–r|U|r,T ,

max
t∈[,T]

∣∣U(t) – uN (t)
∣∣ ≤ cβ Tr–N–r|U|r,T ,

where cβ = cε–

 –q̂

. �

Case . Assume that the delay function θ (t) satisfies

⎧⎪⎨
⎪⎩

D : θ (t) = t – τ (t), τ ∈ Cd(I), d ≥ ;
D : τ (t) ≥ τ > , t ∈ I;
D : θ is strictly increasing on I.

()

Now, we assume that {Tk}∞k= are primary discontinuity points which satisfy θ (tk+) = tk ,
t = . By the definition of θ (t), we conclude that tk+ ≥ tk + τ, k = , , . . . . When T ≤ t,
there is no discontinuity point.

Moreover, the function f (t, x, y, z) satisfies the Lipschitz conditions ()-(), but r sat-
isfies  ≤ r < √c

, where c = maxt∈[,T]


[θ–(t)]′ . Due to (), we see that the maximum and
minimum of 

[θ–(t)]′ exist in [, T].
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Theorem  Consider the NDDE () with T ≤ t which satisfy θ (t) = . f (t, x, y, z) is
Cr-continuous in [, T] × Rd × Rd × Rd , and the initial function V (t) is Cr-continuous.
If the conditions ()-() and () hold, U ∈ Hr(, T) with integer  ≤ r ≤ N + , c =
mint∈[,T]


[θ–(t)]′ , ( + δ)Tr

 ≤ β < 
 and

( + δ)( + δ–)( + δ)Tr
 + ( + δ)( + δ–)( + δ–

 )cTr


 – ( + δ)( + δ)( + δ̂)( + δ̃)cr


≤ β <



for certain δ, δ, δ, δ̂, δ̃ > , then we have (). In particular, maxt∈[,T] |U(t) – uN (t)| ≤
cβ,β Tr–N–r|U|r,T , where cβ,β is a positive constant depending only on β, β.

Proof Together with () and θ () < , we can find t which satisfies θ (t) = . Let

{
	

N = {tN
T ,k|θ (tN

T ,k) < ,  ≤ k ≤ N},
	

N = {tN
T ,k| ≤ θ (tN

T ,k) ≤ T ,  ≤ k ≤ N}.

If t ≥ T , obviously, 	
N = ∅. The proof is similar to τ ≥ T in Case ., thus we have

∥∥U – uN∥∥
T ≤ cβ TrN–r|U|r,T ,

∣∣U(T) – uN (T)
∣∣ ≤ cβ Tr–N–r|U|r,T ,

max
t∈[,T]

∣∣U(t) – uN (t)
∣∣ ≤ cβ Tr–N–r|U|r,T . �

2.4 Numerical results
In this subsection, we give some numerical results to illustrate the efficiency of our single-
step algorithm.

Example  Consider the following equation:

{
d
dt u(t) = 

 u(t) + 
 e t

 u( t
 ) + 

 e t
 u′( t

 ),  ≤ t ≤ T ,
u() = .

()

The exact solution is u(t) = et . Obviously, the conditions ()-() hold with r = 
 , r =


 e T

 , and r = 
 e T

 .

Moreover, the inequality () is satisfied for T = .. But it is no longer valid for T = .
In Figure , we plot the numerical errors at t = T for T = . and T = , respectively. It
indicates that the numerical errors decay exponentially as N increases. In particular, we
can observe that our algorithm is still valid even if the condition () is not satisfied.

Example  Consider the following equation:

⎧⎪⎨
⎪⎩

d
dt u(t) = 

 u(t) + 
 e 

 u(t – 
 ) + 

 e 
 u′(t – 

 ),  ≤ t ≤ T ,
u(t) = et , t < ,
u() = .

()

The exact solution is u(t) = et . Obviously, the conditions ()-() hold with r = 
 , r =


 e 

 , and r = 
 e 

 .



Zhao et al. Advances in Difference Equations  (2015) 2015:21 Page 13 of 24

Figure 1 The numerical errors of (25) at t = T for T = 0.3 and T = 1.

Figure 2 The numerical errors of (26) or (27) at t = T for T = 0.125 and T = 0.5.

Moreover, the inequality Tr
 ≤ β < 

 in Theorem  is satisfied for T = .. But it is
no longer valid for T = .. In Figure , we plot the numerical errors at t = T for T = .
and T = ., respectively. It indicates that the numerical errors decay exponentially as N
increases. In particular, we can observe that our algorithm is still valid even if the above
inequality is not satisfied.
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Example  Consider the following equation:

⎧⎪⎨
⎪⎩

d
dt u(t) = 

 u(t) + 
 e t+

 u(θ (t)) + 
 e t+

 u′(θ (t)),  ≤ t ≤ T ,
u(t) = et , t < ,
u() = ,

()

where θ (t) = t – ( t
 + 

 ). The exact solution is u(t) = et . Obviously, the conditions ()-()
hold with r = 

 , r = 
 e T+

 , and r = 
 e T+

 . The discrete scheme of () is the same as ().
So, we can also see the convergence of numerical solution of this equation in Figure .
Here, the inequality Tr

 ≤ β < 
 in Theorem  is satisfied for T = .. But it is no

longer valid for T = .. In Figure , we plot the numerical errors at t = T for T = .
and T = ., respectively. It indicates that the numerical errors decay exponentially as N
increases. In particular, we can observe that our algorithm is still valid even if the above
inequality is not satisfied.

3 The multiple-domain Legendre-Gauss collocation method
We investigate the single-step Legendre-Gauss collocation method in Section . The nu-
merical errors decay very rapidly as N and r increase. While the single-step collocation
method provides accurate results, it is not suitable for resolving the discrete system ()
with large T . When there are some discontinuity points on [, T], the single-step method
cannot be employed. We shall partition the interval [, T] into a finite number of subin-
tervals by a set of points {Tk}M

k=. The primary discontinuity points on [, T] should be all
contained in the set of {Tk}M

k= such that the solution U(t) is continuous in the interior of
each subinterval. Then we solve the equations subsequently on each subinterval.

3.1 The multiple-domain scheme
Now, we describe the multiple-domain scheme. Let M and Nm,  ≤ m ≤ M be any positive
integers. Decompose the interval [, T] into M subintervals [Tm–, Tm],  ≤ m ≤ M, such
that the set of Tm includes all breaking points, where T =  and TM = T . Let τm = Tm –
Tm–,  ≤ m ≤ M. We shall use uNm

m (t) ∈PNm+(, τm) to approximate the solution U in the
subinterval [Tm–, Tm].

Firstly, replacing T and N by τ and N in () and all other formulas in Section ., we
can derive an alternative algorithm, with which we obtain the numerical solution uN

 ∈
PN+(, τ). Then we evaluate the numerical solutions uNm

m ∈ PNm+(, τm),  ≤ m ≤ M,
step by step. Finally, the global numerical solution of () is given by

uN (Tm– + t) = uNm
m (t),  ≤ t ≤ τm,  ≤ m ≤ M. ()

We present the numerical scheme for uNm
m (t). Denote the nodes and the corresponding

Christoffel numbers of the shifted Legendre-Gauss interpolation on the interval (, τm) by
tNm
τm ,k and ω

Nm
τm ,k ,  ≤ k ≤ Nm, respectively.

Let

{
	

N ,m = {tNm
τm ,k|θ (Tm– + tNm

τm ,k) < ,  ≤ k ≤ Nm},
	

j
N ,m = {tNm

τm ,k|θ (Tm– + tNm
τm ,k) ∈ [Tj–, Tj),  ≤ k ≤ Nm},  ≤ j ≤ m.
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The multiple-domain collocation method for () is to seek uNm
m (t) ∈ PNm+(, τm), such

that {
d
dt uNm

m (t) = f (Tm– + t, uNm
m (t), wm(t), w′

m(t)), t ∈ 	
j
N ,m, j ≥ ,

uNm
m () = uNm–

m– (τm–),  ≤ m ≤ M,
()

where

wm(t) = uN(
θ (Tm– + t)

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

uNm
m (θ (Tm– + t) – Tm–), θ (Tm– + t) ∈ [Tm–, Tm),

. . . ,
uNj

j (θ (Tm– + t) – Tj–), θ (Tm– + t) ∈ [Tj–, Tj),
. . . ,
uN

 (θ (Tm– + t) – T), θ (Tm– + t) ∈ [T, T),
V (θ (Tm– + t)), θ (Tm– + t) < .

Denote Um(t) = U(Tm– + t) for  ≤ t ≤ τm. By (), we have⎧⎪⎨
⎪⎩

d
dt Um(t) = f (Tm– + t, Um(t), Wm(t), W ′

m(t)), t ∈ 	
j
N ,m, j ≥ ,

Um() = Um–(τm–),  ≤ m ≤ M,
U() = U() = V (),

()

where

Wm(t) = U
(
θ (Tm– + t)

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Um(θ (Tm– + t) – Tm–), θ (Tm– + t) ∈ [Tm–, Tm),
. . . ,
Uj(θ (Tm– + t) – Tj–), θ (Tm– + t) ∈ [Tj–, Tj),
. . . ,
U(θ (Tm– + t) – T), θ (Tm– + t) ∈ [T, T),
V (θ (Tm– + t)), θ (Tm– + t) < .

It can be seen from () and () that the local numerical solution uNm
m (t) is actually an

approximation to the local exact solution Um(t), with the approximate initial data uNm
m () =

uNm–
m– (τm–).

3.2 Error analysis
We now analyze the numerical errors. Let ENm

m (t) = uNm
m (t) – Iτm ,Nm Um(t). Together with

() and (), we have⎧⎪⎨
⎪⎩

d
dt ENm

m (t) = GNm
τm ,(t) + GNm

τm ,(t), t ∈ 	
j
N ,m, j ≥ ,

ENm
m () = uNm

m () – Iτm ,Nm Um(),  ≤ m ≤ M,
EN

 () = U() – Iτ,N U(),
()

where

GNm
τm ,(t) = f

(
Tm– + t, uNm

m , wm(t), w′
m(t)

)
– f

(
Tm– + t,Iτm ,Nm Um(t), Wm(t), W ′

m(t)
)
,

and GNm
τm ,(t) = Iτm ,Nm

d
dt Um(t) – d

dtIτm ,Nm Um(t) for t ∈ 	
j
N ,m and j ≥ .
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Lemma  Let uNm
m (t) and Um be the solutions of () and (), respectively. If Um ∈

Hr(, τm) with integer  ≤ r ≤ Nm + , then



∥∥t–(ENm

m – ENm
m ()

)∥∥
τm

+ τ–
m

∣∣ENm
m (τm) – ENm

m ()
∣∣ ≤ 

∥∥∥∥ d
dt

ENm
m

∥∥∥∥


τm ,Nm

. ()

Proof Applying Lemma , we have

d
dt

(
t–(ENm

m (t) – ENm
m ()

))
= –t–(ENm

m (t) – ENm
m ()

)
+ t– d

dt
ENm

m (t)

and


(

ENm
m – ENm

m (),
d
dt

(
t–(ENm

m – ENm
m ()

)))
τm ,Nm

= –
∥∥t–(ENm

m – ENm
m ()

)∥∥
τm

+ τ–
m

∣∣ENm
m (τm) – ENm

m ()
∣∣,

where t ∈ 	
j
N ,m for j ≥ . By () with τm and Nm instead of T and N , we deduce that


(

ENm
m – ENm

m (),
d
dt

(
t–(ENm

m – ENm
m ()

)))
τm ,Nm

= –
(
ENm

m – ENm
m (), t–(ENm

m – ENm
m ()

))
τm

+ 
(

t–(ENm
m – ENm

m ()
)
,

d
dt

ENm
m (t)

)
τm ,Nm

≤ –
∥∥t–(ENm

m – ENm
m ()

)∥∥
τm

+


∥∥t–(ENm

m – ENm
m ()

)∥∥
τm

+ 
∥∥∥∥ d

dt
ENm

m

∥∥∥∥


τm ,Nm

.

This completes the proof. �

We shall analyze the numerical errors in the following three cases. Let τ̂ = max≤j≤M τj

and N = min≤j≤M Nj. Assume that, for any  ≤ i ≤ j ≤ M, τi/τj is bounded.

Case . Consider the delay function θ (t) satisfying the condition (). The solution
U(t) is regular according to the regularity of f and θ . Assume that f (t, x, y, z) satisfies the
Lipschitz conditions ()-(), where r ≥ , r ≥ , and  ≤ r < √

λ
.

Theorem  Consider the NDDE (), where f (t, x, y, z) is Cr-continuous in [, T] × Rd ×
Rd × Rd , and the initial function V (t) is Cr-continuous. If the conditions ()-() hold,
U ∈ Hr(, T) with  ≤ r ≤ N + , and, for certain δ, δ, δ, δ̂, δ̃ > ,

( + δ)( + δ–)( + δ)τ 
mr

 + ( + δ)( + δ–)( + δ–
 )λ–τ 

mr


 – ( + δ)( + δ)( + δ̂)( + δ̃)λr


≤ β <



, ()
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then, for any  ≤ m ≤ M, we have

∥∥U – uN∥∥
L(Tm–,Tm) ≤ cβ τ̂ rN–r|U|r,Tm ,∣∣U(Tm) – uN (Tm)

∣∣ ≤ cβ τ̂ r–N–r|U|r,Tm .
()

In particular, maxt∈[Tm–,Tm] |U(t) – uN (t)| ≤ cβ τ̂ rN–r|U|r,Tm , where cβ is a positive con-
stant depending only on β .

Proof Clearly, in this case, 	
N ,m = ∅. Denote

∥∥G̃Nm
τm ,

∥∥
τm ,Nm

=
(
 + δ–)∥∥∥∥f

(
t, uNm

m (t), wm(t),Iτm ,Nm
d
dt

Wm(t)
)

– f
(

t,Iτm ,Nm Um(t),Iτm ,Nm Wm(t),Iτm ,Nm
d
dt

Wm(t)
)∥∥∥∥



τm ,Nm

.

By () and the fact that
∑Nm

k= ω
Nm
τm ,k = τm, for any δ >  and m > , we deduce that

∥∥GNm
τm ,

∥∥
τm ,Nm

≤ ( + δ)( + δ̃)r


∥∥∥∥ d
dt

wm –
d
dt

Wm

∥∥∥∥


τm

+ ( + δ)
(
 + δ̃–)r



∥∥∥∥ d
dt

Wm – Iτm ,Nm
d
dt

Wm

∥∥∥∥


τm ,Nm

+
∥∥G̃Nm

τm ,
∥∥

τm ,Nm
,

where ‖ d
dt Wm – Iτm ,Nm

d
dt Wm‖

τm ≤ ∑m
j= cτ̂ r–N–r|Uj|r,τj

≤ cτ̂ r–N–r|U|r,Tm and

∥∥∥∥ d
dt

wm –
d
dt

Wm

∥∥∥∥


τm

=
∫ τm



[
d
dt

uN(
θ (Tm– + t)

)
–

d
dt

U
(
θ (Tm– + t)

)]

dt

=
∫ Tm

Tm–

[
d
dt

uN(
θ (t)

)
–

d
dt

U
(
θ (t)

)]

dt

= λ

∫ λTm

λTm–

[
d
dt

uN (t) –
d
dt

U(t)
]

dt

≤ λ

∫ T



[
d
dt

uN (t) –
d
dt

U(t)
]

dt

= λ

m–∑
j=

∥∥∥∥ d
dt

uNj
j –

d
dt

Uj

∥∥∥∥


τj

+ λ

∥∥∥∥ d
dt

uNm
m –

d
dt

Um

∥∥∥∥


τm

≤ λ

∥∥∥∥ d
dt

uNm
m –

d
dt

Um

∥∥∥∥


τm

+ cτ̂ r–N–r|U|r,Tm .

Due to (),

∥∥GNm
τm ,

∥∥
τm ,Nm

≤ ( + δ)( + δ̃)( + δ̂)λr


∥∥∥∥ d
dt

ENm
m

∥∥∥∥


τm

+ cτ̂ r–N–r|U|r,Tm +
∥∥G̃Nm

τm ,
∥∥

τm ,Nm
.
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By (), we have

∥∥∥∥ d
dt

ENm
m

∥∥∥∥


τm ,Nm

≤ ( + δ)
ĉ

∥∥G̃Nm
τm ,

∥∥
τm ,Nm

+ cτ̂ r–N–r|U|r,Tm ,

where ĉ =  – ( + δ)( + δ̃)( + δ̂)λr
 . Applying Lemma  and ()-(), we deduce that

∥∥G̃Nm
τm ,

∥∥
τm ,Nm

≤ (
 + δ–)( + δ)r


∥∥ENm

m
∥∥

τm

+
(
 + δ–)( + δ–


)
r

‖wm – Iτm ,Nm Wm‖
τm ,

where

‖wm – Iτm ,Nm Wm‖
τm

≤ ( + ε)‖wm – Wm‖
τm +

(
 + ε–)‖Wm – Iτm ,Nm Wm‖

τm

≤ ( + ε)λ–∥∥uNm
m – Um

∥∥
τm

+ cε–τ̂ rN–r|U|r,Tm .

It can be found that

∥∥∥∥ d
dt

ENm
m

∥∥∥∥


τm ,Nm

≤ ( + δ)( + δ–)( + δ)r


ĉ
∥∥ENm

m
∥∥

τm

+
( + ε)( + δ)( + δ–)( + δ–

 )λ–r


ĉ
∥∥uNm

m – Um
∥∥

τm

+ cε–τ̂ r–N–r|U|r,Tm .

Applying Lemma , we deduce that



∥∥t–(ENm

m – ENm
m ()

)∥∥
τm

+ τ–
m

∣∣ENm
m (τm) – ENm

m ()
∣∣

≤ ( + δ)( + δ–)( + δ)r


ĉ
∥∥ENm

m
∥∥

τm

+
( + ε)( + δ)( + δ–)( + δ–

 )λ–r


ĉ
∥∥uNm

m – Um
∥∥

τm

+ cε–τ̂ r–N–r|U|r,Tm .

Thus, we have

(



–
( + δ)( + δ–)( + δ)τmr


ĉ

–
( + ε)( + δ)( + δ–)( + δ–

 )τmλ–r


ĉ

)∥∥uNm
m – Um

∥∥
τm

+ ( + ε)τm
∣∣ENm

m (τm) – ENm
m ()

∣∣

≤ cε–τ̂ rN–r|U|r,Tm + cε–τm
(
ENm

m ()
).

Similar to the proof of Case ., we complete the proof. �
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Case . Consider () with the delay function θ (t) satisfying (). The primary discon-
tinuity points ti = iτ ∈ [, T] are contained in the set of {Tk}, then τm ≤ τ . Moreover,
f (t, x, y, z) satisfies the Lipschitz condition (), but r satisfies  ≤ r < .

Theorem  Consider the NDDE (), where f (t, x, y, z) is Cr-continuous in [, T] × Rd ×
Rd × Rd , and the initial function V (t) is Cr-continuous. If the conditions ()-() and ()
hold, U ∈ Hr(, T) with  ≤ r ≤ N + , ( + δ)τ 

mr
 ≤ β < 

 , and

( + δ)( + δ–)τ 
m(( + δ)r

 + ( + δ–
 )r

)
 – ( + δ)( + δ)( + δ̂)( + δ̃)r


≤ β <




, ()

for certain δ, δ, δ, δ̂, δ̃ > , then, for any  ≤ m ≤ M, we have

∥∥U – uN∥∥
L

(Tm–,Tm)
≤ cβ,β τ̂

rN–r|U|r,Tm ,

∣∣U(τm) – uN (τm)
∣∣ ≤ cβ,β τ̂

r–N–r|U|r,Tm .
()

In particular, maxt∈[Tm–,Tm] |U(t) – uN (t)| ≤ cβ,β τ̂
r–N–r|U|r,Tm , where cβ,β is a pos-

itive constant depending only on β, β.

Proof (I) If τ ≥ Tm, then θ (Tm– + t) < , t ∈ [, τm]. In this case, 	
j
N ,m = ∅ ( ≤ j ≤ m).

Thus, ‖GNm
τm ,‖

τm ,Nm ≤ r
 ‖ENm

m ‖
τm ,Nm . Therefore, we have

(



– ( + ε)( + δ)τ 
mr



)∥∥ENm
m

∥∥
τm

+ ( + ε)τm
∣∣ENm

m (τm) – ENm
m ()

∣∣

≤ cε–τ̂ rN–r|U|r,Tm + cε–τm
(
ENm

m ()
).

Let ε = /β, then ( + ε)( + δ)τ 
mr

 ≤ β < /. We deduce that

∥∥uNm
m – Um

∥∥
τm

≤ cβ τ̂
rN–r|U|r,Tm ,∣∣Um(τm) – uN

m(τm)
∣∣ ≤ cβ τ̂

r–N–r|U|r,Tm ,

max
t∈[,τm]

∣∣Um(t) – uN
m(t)

∣∣ ≤ cβ τ̂
r–N–r|U|r,Tm ,

where cβ = cε–

 –(+ε)(+δ)τ

mr


.
(II) If τ ≤ Tm–, then θ (Tm– + t) = Tm– – τ + t ≥ , t ∈ [, τm]. For τm ≤ τ , θ (Tm– + t) ≤

Tm–. In this case, 	
N ,m = ∅ and 	m

N ,m = ∅. The proof is similar to Theorem ; we can
deduce that ‖wm – Wm‖

τm ≤ ‖uNm
m – Um‖

τm + cτ̂ rN–r|U|r,Tm and

∥∥∥∥ d
dt

wm –
d
dt

Wm

∥∥∥∥


τm

=
∫ Tm

Tm–

[
d
dt

uN(
θ (t)

)
–

d
dt

U
(
θ (t)

)]

dt

=
∫ Tm–τ

Tm––τ

[
d
dt

uN (t) –
d
dt

U(t)
]

dt

≤
∫ Tm–



[
d
dt

uN (t) –
d
dt

U(t)
]

dt ≤ cτ̂ r–N–r|U|r,Tm .
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Then we can obtain

∥∥uNm
m – Um

∥∥
τm

≤ cβ τ̂
rN–r|U|r,Tm ,∣∣Um(τm) – uN

m(τm)
∣∣ ≤ cβ τ̂

r–N–r|U|r,Tm ,

max
t∈[,τm]

∣∣Um(t) – uN
m(t)

∣∣ ≤ cβ τ̂
r–N–r|U|r,Tm . �

Case . Assume that the delay function θ (t) satisfies () and the function f (t, x, y, z)
satisfies the Lipschitz conditions ()-(), but r satisfies  ≤ r < √c

, where c =
maxt∈[,T]


[θ–(t)]′ .

Theorem  Consider the NDDE (), where f (t, x, y, z) is Cr-continuous in [, T] × Rd ×
Rd × Rd , and the initial function V (t) is Cr-continuous. If the conditions ()-() and ()
hold, U ∈ Hr(, T) with integer  ≤ r ≤ N + , c = mint∈[,T]


[θ–(t)]′ , ( + δ)τ 

mr
 ≤ β < 

 ,
and, for certain δ, δ, δ, δ̂, δ̃ > ,

( + δ)( + δ–)( + δ)τ 
mr

 + ( + δ)( + δ–)( + δ–
 )τ 

mcr


 – ( + δ)( + δ)( + δ̂)( + δ̃)cr


≤ β <



, ()

then we have (). In particular, maxt∈[Tm–,Tm] |U(t) – uN (t)| ≤ cβ,β τ̂
r–N–r|U|r,Tm ,

where cβ,β is a positive constant depending only on β, β.

Proof Due to (), we can find t >  which satisfies θ (t) = .
(I) If t ≥ Tm, then θ (Tm– + t) < . Obviously, 	

j
N ,m = ∅ ( ≤ j ≤ m), the proof is similar

to τ ≥ Tm in Case .. Therefore, we can obtain

∥∥uNm
m – Um

∥∥
τm

≤ cβ τ̂
rN–r|U|r,Tm ,∣∣Um(τm) – uN

m(τm)
∣∣ ≤ cβ τ̂

r–N–r|U|r,Tm ,

max
t∈[,τm]

∣∣Um(t) – uN
m(t)

∣∣ ≤ cβ τ̂
r–N–r|U|r,Tm .

(II) If t ≤ Tm–, then θ (Tm– + t) ≥  for t ∈ [, τm]. In this case, 	
N ,m = ∅. The proof is

similar to τ ≤ Tm– in Case ., where ‖wm – Wm‖
τm ≤ c‖uNm

m – Um‖
τm + cτ̂ rN–r|U|r,Tm

and
∥∥∥∥ d

dt
wm –

d
dt

Wm

∥∥∥∥


τm

=
∫ τm



[
d
dt

uN(
θ (Tm– + t)

)
–

d
dt

U(Tm– + t)
]

dt

≤ c

∥∥∥∥ d
dt

uNm
m –

d
dt

Um

∥∥∥∥


τm

+ cτ̂ r–N–r|U|r,Tm .

Thus, we have
∥∥uNm

m – Um
∥∥

τm
≤ cβ τ̂

rN–r|U|r,Tm ,∣∣Um(τm) – uN
m(τm)

∣∣ ≤ cβ τ̂
r–N–r|U|r,Tm ,

max
t∈[,τm]

∣∣Um(t) – uN
m(t)

∣∣ ≤ cβ τ̂
r–N–r|U|r,Tm .
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(III) If Tm– < t ≤ Tm, then we decompose the interval [, τm] into [, t – Tm–] and
[t – Tm–, τm]. Denote τm, = t – Tm– and τm, = τm – (t – Tm–), we shall use uNm

m, ∈
PNm+(, τm,) and uNm

m, ∈ PNm+(, τm,) to approximate the solution U in the subinterval
[, τm,] and [τm,, τm], respectively.

The global numerical solution of () is given by

uN (Tm– + t) = uNm
m (t) = uNm

m,(t),  ≤ t ≤ τm,,

uN (Tm– + τm, + t) = uNm
m (τm, + t) = uNm

m,(t),  ≤ t ≤ τm,.

Let Um,(t) = Um(t) = U(Tm– + t) for t ∈ [, τm,] and Um,(t) = Um(τm, + t) = U(Tm– +
τm, + t) for t ∈ [, τm,].

Firstly, we seek uNm
m, ∈PN+(, τm,). Obviously, 	j

N ,m = ∅ ( ≤ j ≤ m). The proof is similar
to the case of t > Tm, and we can obtain the results that

∥∥uNm
m, – Um,

∥∥
τm

≤ cβ τ̂
rN–r|U|r,Tm ,∣∣Um,(τm,) – uN

m,(τm,)
∣∣ ≤ cβ τ̂

r–N–r|U|r,Tm ,

max
t∈[,τm,]

∣∣Um,(t) – uN
m,(t)

∣∣ ≤ cβ τ̂
r–N–r|U|r,Tm .

Then we evaluate uNm
m, ∈PNm+(, τm,). Obviously, 	

N ,m = ∅, the proof is similar to t <
Tm–. Therefore, we can obtain

∥∥uNm
m, – Um,

∥∥
τm,

≤ cβ τ̂
rN–r|U|r,Tm ,∣∣Um,(τm,) – uN

m,(τm,)
∣∣ ≤ cβ τ̂

r–N–r|U|r,Tm ,

max
t∈[,τm,]

∣∣Um,(t) – uN
m,(t)

∣∣ ≤ cβ τ̂
r–N–r|U|r,Tm .

Thus, we can obtain the results of Theorem . �

3.3 Numerical results
In this subsection, we give some numerical results to illustrate the efficiency of our
multiple-domain algorithm.

Example  Consider () by multiple-domain algorithm. Firstly, we decompose the inter-
val [, T] with T = . into two intervals with uniform τm = . and Nm = N , m = , . We
plot the numerical errors at t = . in Figure , which indicates that the numerical errors
decay exponentially as N increases. Then we consider () with T =  and decompose
equally the interval [, T] into M = ,  and  subintervals, respectively. The inequality
() is satisfied for M = , but for M =  and M = , the inequality () is no longer valid.
Figure  indicates that the numerical errors decay exponentially as Nm = N increases and
τm decreases, m = , . . . , M. In particular, it can be observed from Figure  that even if the
condition () is not satisfied, our multiple-domain algorithm is still valid (see the cases
of M = , ).

Example  Consider () by multiple-domain algorithm. In Figure , we plot the numer-
ical errors at t = T = . using the multiple-domain scheme () with uniform τm = .
and Nm = N , m = , . It indicates that the numerical errors decay exponentially as N in-
creases.
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Figure 3 The numerical errors of (25) at t = T = 0.5 with uniform τm = 0.25, m = 1, 2.

Figure 4 The numerical errors of (25) for different M.
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Figure 5 The numerical errors of (26) or (27) at t = T = 0.5 with uniform τm = 0.25, m = 1, 2.

Example  Consider () by multiple-domain algorithm. To consider (), we use
multiple-domain method at t = T = . with uniform τm = . and Nm = N , m = , .
The multiple-domain discrete scheme of () is the same as (). So, we can also see the
convergence of the numerical solution of this equation in Figure .

Example  Consider the following equation:

⎧⎪⎨
⎪⎩

d
dt u(t) = –u′(t – ),  ≤ t ≤ ,
u(t) = t, – ≤ t ≤ ,
u() = .

()

The exact solution is

u(t) =

⎧⎪⎨
⎪⎩

–t,  ≤ t ≤ ,
t – ,  ≤ t ≤ ,
 – t,  ≤ t ≤ ,

()

where , , ,  are primary discontinuity points. To consider the equation (), we use
multiple-domain method at T =  with uniform τm ≡  and Nm = N (m = , , ). For the
linear property of (), the approximate solution is equal to () on each subinterval.
Therefore, we find that the values of the numerical error function are all zero at point
t = , ,  with Nm = , . . . ,  (m = , , ). So, the multiple-domain method is efficient and
accurate.

4 Conclusions
The single-step and multiple-domain Legendre-Gauss collocation methods are proposed
for nonlinear NDDEs in this article. These approaches have two attractive features.
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(I) We can use moderate N to evaluate the numerical solutions more effectively by using
the multiple-domain Legendre-Gauss collocation method. We benefit from the orthogo-
nality of Legendre polynomials, while in the derivation of algorithm of the implicit Runge-
Kutta method, one used the Lagrange interpolation on the Legendre-Gauss interpolation
nodes, which is not stable for large N . In particular, our methods are much easier to be
implemented than the implicit Runge-Kutta method for NDDEs, since we only need to
save the coefficients of numerical solutions in each step.

(II) The numerical errors of our methods are characterized by the semi-norms of exact
solutions in certain Sobolev spaces. These sharp norms are in particular necessary for the
problems with degenerate initial data.

The numerical results demonstrate the spectral accuracy of proposed algorithms and
coincide with the theoretical analysis very well.
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