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Abstract
This paper considers a stochastic SIS model with saturated incidence rate. We
investigate the existence and uniqueness of the positive solution to the system, and
we show the condition for the infectious individuals to be extinct. Moreover, we
prove that the system has the ergodic property and derive the expression for its
invariant density. The simulation results are illustrated finally.
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1 Introduction
Epidemic models have been studied by many researchers due to their great influence on
human life. Most of the researchers are interested in the incidence rate, some employ the
bilinear incidence rate βSI [, ]; the classical SIS model with a bilinear incidence rate for
a constant population is

{
dS(t) = [μN – βS(t)I(t) + γ I(t) – μS(t)] dt,
dI(t) = [βS(t)I(t) – (μ + γ )I(t)] dt,

(.)

where S(t), I(t) denote the number of susceptible individuals and infective individuals at
time t respectively, N is the total size of the population, μ is the natural death rate, and γ

is the rate at which infected individuals become cured, β is the disease transmission rate.
According to the theory in [], the dynamical behavior of model (.) is as follows:

(i) The disease-free equilibrium E = (N , ) is globally asymptotically stable if
R := βN

μ+γ
< .

(ii) The endemic equilibrium E∗ = ( N
R

, N( – 
R

)) is globally asymptotically stable if
R > .

After studying the cholera epidemic spread in Bari in , Capasso and Serio [] intro-
duced a saturated incidence rate βIS

+αI into epidemic models, where α is a positive constant,
βI measures the infection force of the disease, and 

+αI measures the inhibition effect due
to the crowding of the infective. Also, the models are inevitably affected by the environ-
mental white noise [, ]. Then the stochastic SIS model with a saturated incidence rate
can be written as

{
dS(t) = [μN – βS(t)I(t)

+αI(t) + γ I(t) – μS(t)] dt – σS(t)I(t)
+αI(t) dB(t),

dI(t) = [ βS(t)I(t)
+αI(t) – (μ + γ )I(t)] dt + σS(t)I(t)

+αI(t) dB(t),
(.)
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where B(t) is for the Brownian motion, σ  represents the intensities of the white noise.
Since S(t) + I(t) = N , studying the following equation is enough:

dI(t) =
[

β(N – I(t))I(t)
 + αI(t)

– (μ + γ )I(t)
]

dt +
σ (N – I(t))I(t)

 + αI(t)
dB(t), (.)

with initial value I() = I ∈ (, N). In this paper, we will discuss the dynamical behavior
of (.).

Throughout this paper, let (�,F , P) be a complete probability space with a filtration
{Ft}t≥ satisfying the usual conditions (i.e. it is increasing and right continuous while F

contains all P-null sets) and B(t) be a scalar Brownian motion defined on the probability
space.

2 Existence and uniqueness of the global positive solution
In the following, we will show there is a unique global positive solution to (.).

Theorem . For any given initial value I() = I ∈ (, N), there exists a unique solution
I(t) ∈ (, N) for all t ≥  with probability .

Proof By Itô’s formula, it is easy to see that

I(t) = eu(t)

is the solution of (.) with initial value I ∈ (, N), where u(t) satisfies the following equa-
tion:

{
du(t) = [ β(N–eu(t))

+αeu(t) – (μ + γ ) – σ(N–eu(t))

(+αeu(t)) ] dt + σ (N–eu(t))
+αeu(t) dB(t),

u() = ln I, I ∈ (, N).
(.)

Since the coefficients of (.) are locally Lipschitz continuous, there exists a unique maxi-
mal local solution u(t) on t ∈ [, τe), where τe is the explosion time [, ]. This implies that
I(t) = eu(t) is the unique positive local solution to (.) with initial value I ∈ (, N).

In order to show that the solution of (.) is global, it is sufficient to show τe = ∞ a.s.
Let m >  be sufficient large so that I lies within the interval [ 

m
, N – 

m
]. For each

integer m ≥ m, we define the stopping time

τm = inf

{
t ∈ [, τe) : I(t) /∈

(

m

, N –

m

)}
,

where, throughout this paper, we set inf∅ = ∞ (as usual ∅ denotes the empty set). It is clear
that τm is increasing as m → ∞. Denote by τ∞ = limm→∞ τm, whence τ∞ ≤ τe. It is easy
to show that τ∞ = ∞ a.s. implies τe = ∞ a.s. and I(t) ∈ (, N) a.s. for all t ≥ . Therefore,
to complete this proof, it is enough to show that τ∞ = ∞ a.s. If this statement is not true,
there will exist a pair of constants T >  and ε ∈ (, ) such that

P{τ∞ ≤ T} > ε.
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Then there exists an integer m ≥ m such that

P{τm ≤ T} ≥ ε for all m ≥ m. (.)

Define a function V : (, N) → R+ as follows:

V (x) =

x

+


N – x
.

By Itô’s formula, we get

dV
(
x(t)

)
=

{
x
(

–


x +


(N – x)

)[
β(N – x)

 + αx
– μ – γ

]

+
σ x(N – x)

( + αx)

(

x +


(N – x)

)}
dt

+
{[

–


x +


(N – x)

]
σx(N – x)

( + αx)

}
dB(t)

:= LV (x)dt +
{[

–

x +


(N – x)

]
σx(N – x)

( + αx)

}
dB(t), (.)

where

LV (x) = x
(

–


x +


(N – x)

)[
β(N – x)

 + αx
– μ – γ

]

+
σ x(N – x)

( + αx)

(

x +


(N – x)

)

≤ μ + γ

x
+

βN
N – x

+ σ N
(


x

+


N – x

)

≤ CV (x)

and C = (μ + γ ) ∨ (βN) + σ N.
The proof is then complete by using a similar method to Theorem . in []. But for the

completeness of Theorem . we will still show the rest of the proof.
For any  ≤ t ≤ T , we have

∫ τm∧t


dV

(
x(t)

) ≤
∫ τm∧t


CV (x) dt +

∫ τm∧t



{[
–


x +


(N – x)

]
σx(N – x)

( + αx)

}
dB(t).

Taking the expectation of both sides yields

E
[
V

(
I(τm ∧ t)

)] ≤ V
(
I()

)
+ CE

∫ τm∧t


V

(
I(t)

)
dt

≤ V
(
I()

)
+ C

∫ t


EV

(
I(t ∧ τm)

)
dt.

Gronwall’s inequality yields

E
[
V

(
I(τm ∧ T)

)] ≤ M, (.)
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where M = V (I())eCT . Set �m = {τm ≤ T} for m ≥ m, due to (.), we have P(�m) ≥ ε.
Note that for every ω ∈ �m, I(τm,ω) equals 

m or N – 
m . Clearly,

V
(
I(τm,ω)

) ≥ m.

It follows from (.) that

M ≥ E
[
I�m V

(
I(τm,ω)

)]
≥ εm,

here I�m is the indicator function of �m. Letting m → ∞ yields the contradiction ∞ >
M = ∞. Therefore we obtain τ∞ = ∞ a.s. This completes the proof of Theorem .. �

3 Extinction
In this section, we will discuss the extinction for I(t). First, we have a lemma which is a
result in [].

Considering the following stochastic equation:

dX(t) = b
(
X(t)

)
dt + σ

(
X(t)

)
dB(t), (.)

assume that the coefficients σ : J → R, b : J → R satisfy the following conditions:
() σ (x) > , ∀x ∈ J ,
() ∀x ∈ I , ∃ε >  such that

∫ x+ε

x–ε

+|b(y)|
σ(y) dy < ∞,

where J = (l, r); –∞ ≤ l < r ≤ ∞.

Lemma . (See []) Assume that (), () hold, and let X(t) be a weak solution of (.) in
J , with nonrandom initial condition X = x ∈ J . Let p be given by

p(x) =
∫ x

c
e

–
∫ v

c
b(y)
σ(y)

dy
dv, c ∈ J .

If p(l+) > –∞, p(r–) = ∞, then P(limt→∞ X(t) = l) = P(supt≥ X(t) < r) = .

Theorem . If Rs
 := N(β– 

 σN)
μ+γ

< , then for any initial value I() = I ∈ (, N), the solu-
tion of (.) obeys

P
(

lim
t→∞ I(t) = 

)
= ,

that is, the disease will be extinct with probability .

Proof Note b(x) = β(N–x)x
+αx – (μ + γ )x, σ (x) = σ (N–x)x

+αx , c ∈ (, N), we have

∫ x

c

b(y)
σ (y)

dy =

σ 

{
βN – (μ + γ )

N ln x –
[

βN – (μ + γ )
N + α

(
β + α(μ + γ )

)]
ln(N – x)

–
(μ+γ )

N (Nα + )

N – x

}
+ C.
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Clearly, conditions () and () are satisfied. Therefore, the scale function

p(x) = e–c

∫ x

c
s– (βN–(μ+γ ))

σN (N – s)
[ βN–(μ+γ )

N +α(β+α(μ+γ ))]

σ e
(μ+γ )(Nα+)

Nσ(N–s) ds.

Let 
N–s = t, then we have

p(N–) = e–c

∫ ∞


N–c

(Nt – )– (βN–(μ+γ ))
σN t

(βN–(μ+γ ))
σN t–

[ βN–(μ+γ )
N +α(β+α(μ+γ ))]

σ e
(μ+γ )(Nα+)t

Nσ t– dt

= e–c

∫ ∞


N–c

(Nt – )– (βN–(μ+γ ))
σN t– α(βN+(μ+γ )+α(μ+γ )N)

σ –e
(μ+γ )(Nα+)t

Nσ dt

= ∞. (.)

When Rs
 < , it follows that

–p(+) = e–c

∫ c


s– (βN–(μ+γ ))

σN (N – s)
[ βN–(μ+γ )

N +α(β+α(μ+γ ))]

σ e
(μ+γ )(Nα+)

Nσ(N–s) ds < ∞,

that is,

p(+) > –∞.

It can be derived from Lemma . that

P
(

lim
t→∞ I(t) = 

)
= .

The proof is completed. �

In Theorem ., we derive that the disease will die out under the condition Rs
 < . In the

following, we discuss the case when Rs
 = .

In (.), if σ (X(t)) ≡ , then

dX(t) = b
(
X(t)

)
dt + dB(t). (.)

Assume that (.) has a non-explosive solution which is unique in the sense of a probability
law.

Lemma . (See []) Assume X(t) is the solution of (.), let

γ (x) =
∫ x


e

∫ u
 b(v) dv du, λ(x) =

∫ x


e–

∫ u
 b(v) dv du.

If

γ (–∞) = –∞, γ (∞) < ∞ and λ(–∞) = –∞, λ(∞) = ∞,

then for any z ∈ R, limt↑∞(Xt < z) = . This means that Xt → –∞ in the distributional sense.
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Theorem . Suppose I(t) is the solution of (.) with initial value I() = I ∈ (, N), then
I(t) →  in probability as t → ∞ if Rs

 = .

Proof Let X(t) = 
σN log I(t)

(N–I(t))Nα+ , then

dX(t) =
[

Nβ – μ

Nσ
–

(Nα + )μ
Nσ

I(t)
N – I(t)

+
σ [(Nα + )I(t) – (N – I(t))]

N( + αI(t))

]
dt

+ dB(t), (.)

where I = φ(X), and X = φ–(I) = 
Nσ

log I
(N–I)Nα+ , I ∈ (, N).

In connection with (.), we have

b(x) =
Nβ – μ

Nσ
–

(Nα + )μ
Nσ

I
N – I

+
σ [(Nα + )I – (N – I)]

N( + αI) .

When Rs
 = , we have

e
∫ u

 b(x) dx = Cφ(u)( Nβ–μ

Nσ – 
 )(N – φ(u)

)–[ (Nβ–μ)(Nα+)
Nσ + (Nα+)αμ

Nσ + 
 ]( + αφ(u)

) 


× e– (Nα+)μ

Nσ


N–φ(u)

= C
(
N – φ(u)

)–[ Nα+
 + (Nα+)αμ

Nσ ]( + αφ(u)
) 

 e– (Nα+)μ

Nσ


N–φ(u) ,

where

C = exp –
{(

Nβ – μ

Nσ  –



)
lnφ() –

[
(Nβ – μ)(Nα + )

Nσ  +
(Nα + )αμ

Nσ  +



]

× ln
(
N – φ()

)
+




ln
(
 + αφ()

)
–

(Nα + )μ

Nσ 


N – φ()

}
.

Then

λ(x) =
∫ x


e–

∫ u
 b(v) dv du =

C

σ

∫ φ(x)

φ()
(N – I)Nα++ (Nα+)αμ

Nσ I–e
(Nα+)μ

Nσ


N–I dI.

Note that φ(–∞) = , φ(∞) = N , thus

λ(∞) =
C

σ

∫ N

φ()
(N – I)Nα++ (Nα+)αμ

Nσ I–e
(Nα+)μ

Nσ


N–I dI = ∞

and

λ(–∞) =
C

σ

∫ 

φ()
(N – I)Nα++ (Nα+)αμ

Nσ I–e
(Nα+)μ

Nσ


N–I dI = –∞.

Next we compute γ (x), which is given by

γ (x) =
∫ x


e

∫ u
 b(v) dv du =

C

σ

∫ φ(x)

φ()
(N – I)–Nα–– (Nα+)αμ

Nσ ( + αI)I–e– (Nα+)μ

Nσ


N–I dI.
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As φ(–∞) =  and φ(∞) = N , we have

γ (∞) =
C

σ

∫ N

φ()
(N – I)–Nα–– (Nα+)αμ

Nσ ( + αI)I–e– (Nα+)μ

Nσ


N–I dI.

Let t = 
N–I , then

γ (∞) =
C

σ

∫ ∞


N–φ()

tNα+ (Nα+)αμ

Nσ
[
( + αN)t – α

](Nt – )–e– (Nα+)μt
Nσ dt < ∞.

Moreover,

γ (–∞) =
C

σ

∫ 

φ()
(N – I)–Nα–– (Nα+)αμ

Nσ ( + αI)I–e– (Nα+)μ

Nσ


N–I dI = –∞.

Summing up the reasoning above, we have, when Rs
 = ,

γ (–∞) = –∞, γ (∞) < ∞ and λ(–∞) = –∞, λ(∞) = ∞.

By Lemma ., limt↑∞(Xt < z) =  for any z ∈ R, which says that X(t) → –∞ in the distri-
butional sense. Therefore, I(t) →  in probability as t → ∞. The proof is therefore com-
pleted. �

4 Ergodic property
Theorem . Let I(t) be the solution of (.). If Rs

 > , then the SIS model has the ergodic
property.

Proof Noting b(x) = β(N–x)x
+αx – (μ + γ )x, σ (x) = σ (N–x)x

+αx , c ∈ (, N), we compute

∫ c


exp

{
–

∫ s

c

b(τ )
σ (τ )

dτ

}
ds

= e–c

∫ c


s– (βN–(μ+γ ))

σN (N – s)
[ βN–(μ+γ )

N +α(β+α(μ+γ ))]

σ e
(μ+γ )(Nα+)

Nσ(N–s) ds.

Let t = N
N–s – , then

∫ N




σ (s)

exp

{∫ s

c

b(τ )
σ (τ )

dτ

}
ds

= ec

∫ N


( + αs)s

(βN–(μ+γ ))
σN –(N – s)–

[ βN–(μ+γ )
N +α(β+α(μ+γ ))]

σ –

× e– (μ+γ )(Nα+)
Nσ(N–s) ds

= ec N– α(βα(μ+γ ))
σ –e– (μ+γ )(Nα+)

Nσ

∫ ∞



[
 + (α + N)t

]t
(βN–(μ+γ ))

σN –

× (t + )
α(β+α(μ+γ ))

σ e– (μ+γ )(Nα+)t
Nσ dt.
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Clearly, under the condition Rs
 > , we have

∫ c


exp

{
–

∫ s

c

b(τ )
σ (τ )

dτ

}
ds = ∞,

∫ N




σ (s)

exp

{∫ s

c

b(τ )
σ (τ )

dτ

}
ds < ∞.

(.)

The conditions of Theorem . in [] follow clearly from (.) and (.). Therefore the
SIS model has the ergodic property, and the invariant density is given by

π (x) = C( + αx)x
(βN–(μ+γ ))

σN –(N – x)–
[ βN–(μ+γ )

N +α(βN+α(μ+γ ))]

σ

× e– (μ+γ )(Nα+)
Nσ(N–x) , x ∈ (, N),

where C is a constant such that
∫ N

 π (x) dx = . �

Remark . If α = , then

π (x) = Cx
[βN–(μ+γ )]

σN –(N – x)
–[βN–(μ+γ )]

σN –e
–(μ+γ )

Nσ(N–x) , x ∈ (, N).

It can be seen easily that

E(X) =
β[(βN – μ – γ ) – σ N]

β – (μ + γ + βN)σ  ,

Var(X) =
(βN – μ – γ )E(X)

β
–

[
E(X)

].
(.)

So if α =  the mean and the variance of the stationary distribution of model (.) are the
same as the results of Theorem . in [].

5 Simulations
We illustrate our results by using the method from []. Consider the corresponding dis-
cretization equation:

Ik+ = Ik + Ik

[
β(N – Ik)

 + αIk
– (μ + γ )Ik

]
t + σ Ik

N – Ik

 + αIk
εk

√
t,

where εk , k = , , . . . , n, are the Gaussian random variables N(, ).
By setting parameters β = ., N = , μ = ., γ = ., α = ., we do simulation studies

on the platform of Matlab.
In Figure , for the left sub-figure we choose σ = ., then the condition Rs

 := (βN–μ–γ )
σN <

 is satisfied. As the result in Theorem ., the solution of system (.) tends to zero. In
the right sub-figure, we choose σ = . so that condition Rs

 =  is satisfied. The solution
of system (.) tends to zero as well, which agrees with the result of Theorem ..

In Figure , we choose the parameters as they are in Theorem ., that is, Rs
 > . In the

left sub-figure, the solution of system (.) fluctuates in a small neighborhood, that is, the
disease becomes epidemic, and I(t) in average of time conforms the ergodicity. Moreover,
there is a stationary distribution (see the histogram on the right in Figure ).
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Figure 1 Solution of system (1.3) with differing value of σ = 0.8, 0.5 and initial value I(0) = 1.5.

Figure 2 Solution of system (1.3) with initial value I(0) = 1.5 and σ = 0.1. In the left figure, the blue line
represents the solution of system (1.3) and the black line represents I(t) in average of time. The right figure is a
histogram of solution I(t).

6 Conclusion
In this paper, we have considered the features of a SIS epidemic system with the effect
of environmental white noise. Firstly, we show that the solution of system (.) is glob-
ally positive. An important parameter is the stochastic basic reproduction number Rs

,
which is less than the corresponding deterministic version R. We also see that Rs

 → R

as σ → . Theorems ., ., and . show that the disease will be extinct if Rs
 ≤ , and

the disease will be epidemic if Rs
 > . Thus we consider that Rs

 is the threshold of extinc-
tion and we have prevalence of the disease. Theorem . also shows that system (.) has
the ergodic property if Rs

 > , and we can derive the expression for its invariant density.
Finally, numerical simulations are carried out to support our results.
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