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Abstract
In this paper, we present a time-delayed echinococcosis transmission model to
explore effective control and prevention strategies. We first give the basic
reproduction number R0. It is shown that if R0 < 1, the disease-free equilibrium is
globally asymptotically stable, and if R0 > 1, the disease persists. We further show that
the endemic equilibrium is globally asymptotically stable for a special case. Numerical
simulations are performed to illustrate our analytic results. We give some sensitivity
analysis of some parameters and give some useful comments on controlling the
transmission of echinococcosis.
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1 Introduction
Echinococcosis, also called hydatid disease, hydatidosis, or echinococcal disease, is a par-
asitic disease of tapeworms of the Echinococcus type. The disease occurs in most areas of
the world and currently affects about one million people. In some areas of South America,
Africa, and Asia up to % of certain populations are affected []. In , it caused about
, deaths down from , in  []. The economic cost of the disease is estimated
to be around  ×  USD a year. It can affect both humans and other animals such as
pigs, cows, and horses []. The most common form found is cystic echinococcosis (also
known as unilocular echinococcosis), which is caused by Echinococcus granulosus. The
second most common form is alveolar echinococcosis, which is caused by Echinococcus
multilocularis.

Like many other parasite infections, the course of Echinococcus infection is complex.
The worm has a life cycle that requires definitive hosts and intermediate hosts. Definitive
hosts are normally carnivores such as dogs, while intermediate hosts are usually herbivores
such as sheep and cattle. Humans function as accidental hosts, because they are usually a
dead-end for the parasitic infection cycle.

There are three development stages in the life cycle of Echinococcus, including egg,
larva, and adult. An adult worm resides in the small intestine of a definitive host. After-
wards, gravid proglottids release eggs that are passed in the feces of the definitive host.
The egg is then ingested by an intermediate host. The egg then hatches in the small in-
testine of the intermediate host and releases an oncosphere that penetrates the intestinal
wall and moves through the circulatory system into different organs, in particular the liver
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and lungs. Once it has invaded these organs, the oncosphere develops into a cyst. The cyst
then slowly enlarges, creating protoscolices and daughter cysts within the cyst. The defini-
tive host then becomes infected after ingesting the cyst-containing organs of the infected
intermediate host. After ingestion, the protoscolices attach to the intestine. They then de-
velop into adult worms and the cycle starts all over again.

In China, there are  provinces, autonomous regions, and municipalities reported with
cystic echinococcosis (CE) which was caused by Echinococcus granulosus and Echinococ-
cus multilocularis [, ]. The main endemic areas are in the western and northwestern
provinces and autonomous regions: Xinjiang, Gansu, Ningxia, Inner Mongolia, Qinghai,
Tibet [], and Sichuan [, ], where extensively developed livestock husbandry maintains
stable transmission cycles of Echinococcus granulosus. The number of domestic animals
being faced with the infection of echinococcosis is more than , in which the amount of
dogs is at least  ×  [].

Much has been done in terms of modeling and analysis of disease transmission of
Echinococcus (see [–]). In [], in order to explore effective control and prevention
measures the authors proposed a deterministic model to study the transmission dynam-
ics of echinococcosis in Xinjiang. The results showed that the dynamics of the model was
completely determined by the basic reproductive number R. Du et al. [] proposed an
echinococcosis transmission model with saturation incidence, and they also established a
threshold type result, which states that when R < , the disease will die out; when R > 
and the recovery rate of dogs is very small, the disease will persist.

In this paper, we focus on the Echinococcus granulosus, which is the most common
cause of human hydatid disease. The egg needs  to  months to develop into a larva in
the intermediate hosts, and protoscoleces may develop into adult worms in about . to
 months [] in the definitive hosts. In view of realistic considerations, we take two time
delays into account, to describe the time needed from egg to larva and from larva to adult,
respectively. In fact, from the expression of R in Section , we can see those delays reduce
the values of R. Therefore, the neglect of the delays overestimated the infection risk.

The purpose of this paper is to study the global dynamics of a time-delayed Echinococ-
cus transmission model. In Section , we present the model and prove its wellposedness,
also we introduce the basic reproduction number R. In Section , we show the global sta-
bility of the disease-free equilibrium when R < . In Section , we show that the disease
is uniformly persistent when R > . In Section , by constructing Lyapunov functionals,
we show that the endemic equilibrium is globally asymptotically stable. In Section , we
perform some sensitivity analysis of several model parameters and give some useful com-
ments on controlling the transmission of echinococcosis.

2 Model formulation
We divide the definitive hosts population (mainly the dogs) into three subclasses: the
susceptible population, the exposed population, and the infected population, denoted
by S(t), E(t), and I(t), respectively, and N(t) = S(t) + E(t) + I(t) is the total number
of definitive hosts. The definitive hosts are infected by means of eating infected, cyst-
containing organs.

We divide the intermediate hosts population into three subclasses: the susceptible pop-
ulation (S(t)), the exposed population (E(t)) and the infected population (I(t)), and
N(t) = S(t) + E(t) + I(t) is the total number of intermediate hosts. The intermediate
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hosts are infected via the ingestion of eggs. Since eggs are released by the infected defini-
tive hosts, we assume that the amount of eggs is proportional to the amount of infected
definitive hosts. It follows from [] that the parameters of the humans do not affect the
dynamical behaviors of the echinococcosis model. Hence in the paper we only consider
definitive hosts and intermediate hosts in our model.

An infectious individual can contact a finite number of individuals in one time unit in
a large population. The standard incidence rate seems more reasonable than the bilinear
incidence rate in []. Therefore, in our model, we discuss the dynamic behavior for an
echinococcosis model with standard incidence rate. Then we take the following model:

dS(t)
dt

= A –
βS(t)I(t)

N(t)
– dS(t) + σ I(t),

dE(t)
dt

=
βS(t)I(t)

N(t)
– dE(t) – βe–dτ

S(t – τ)I(t – τ)
N(t – τ)

,

dI(t)
dt

= βe–dτ
S(t – τ)I(t – τ)

N(t – τ)
– (d + σ )I(t),

dS(t)
dt

= A –
βS(t)I(t)

N(t)
– dS(t),

dE(t)
dt

=
βS(t)I(t)

N(t)
– dE(t) – βe–dτ

S(t – τ)I(t – τ)
N(t – τ)

,

dI(t)
dt

= βe–dτ
S(t – τ)I(t – τ)

N(t – τ)
– (d + ε)I(t).

()

All parameters are assumed nonnegative. For the definitive hosts population, A describes
the annual recruitment rate; d is the natural death rate; σ denotes the recovery rate of
transition from infected to susceptible definitive hosts, including the natural recovery
rate and recovery due to anthelmintic treatment; βS(t)I(t)

N(t) describes the transmission of
echinococcosis between susceptible definitive hosts and infectious intermediate hosts af-
ter the ingestion of cyst-containing organs of the infected intermediate hosts. For the in-
termediate hosts, A is the annual recruitment rate; d is the death rate; βS(t)I(t)

N(t) describes
the transmission of echinococcosis to intermediate hosts by the ingestion of Echinococ-
cus eggs in the environment, ε is the death-induced death rate. τ is the time needed
for eggs to develop into larvae in the intermediate hosts, and τ is the time needed for
protoscoleces to develop into adult worms in the definitive hosts.

It is easy to see that the equations for E(t) and E(t) can be rewritten as two integral
equations:

E(t) =
∫ t

t–τ

e–d(t–θ ) βS(θ )I(θ )
N(θ )

dθ , ()

E(t) =
∫ t

t–τ

e–d(t–θ ) βS(θ )I(θ )
N(θ )

dθ . ()

Let τ = max{τ, τ}, in view of () and (), the initial conditions for system () take the
form of

S(θ ) = φ(θ ) ≥ , E(θ ) = φ(θ ) ≥ , I(θ ) = φ(θ ) ≥ ,

S(θ ) = φ(θ ) ≥ , E(θ ) = φ(θ ) ≥ , I(θ ) = φ(θ ) ≥ , θ ∈ [–τ , ],
()
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and

∑
i=

φi(θ ) > ,
∑

i=

φi(θ ) > , ∀θ ∈ [–τ , ],

φ() =
∫ 

–τ

edθ
βφ(θ )φ(θ )∑

i= φi(θ )
dθ ,

φ() =
∫ 

–τ

edθ βφ(θ )φ(θ )∑
i= φi(θ )

dθ ,

()

where � = (φ,φ,φ,φ,φ,φ) ∈ C+([–τ , ],R
+), the space of continuous functions map-

ping [–τ , ] into R

+.

By a similar proof to Theorem  of [], we can show the following.

Lemma . The solutions of system () with initial conditions () and () satisfy S(t) > ,
E(t) ≥ , I(t) ≥ , S(t) > , E(t) ≥ , I(t) ≥  for all t > .

For any ε > , we define 	ε as

	ε =
{

(S, E, I, S, E, I) ∈R

+ : S + E + I ≤ A

d
+ ε, S + E + I ≤ A

d
+ ε

}
.

Lemma . All solutions of system () with initial conditions () and () ultimately turn
into region 	ε as t → ∞.

Proof From system (), we have

dN(t)
dt

= A – dN(t),

dN(t)
dt

= A – dN(t) – εI(t) ≤ A – dN(t).

For the system

dx(t)
dt

= Ai – dix(t), i = , ,

the equilibrium x∗ = Ai
di

is globally asymptotically stable. By the comparison principle, it
follows that

lim sup
t→∞

(
N(t), N(t)

) ≤
(

A

d
,

A

d

)
.

Hence, for any ε > , there is a t >  such that

S(t) + E(t) + I(t) = N(t) ≤ A

d
+ ε,

S(t) + E(t) + I(t) = N(t) ≤ A

d
+ ε for all t ≥ t.

This completes the proof. �
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Remark . Lemma . tells us that all feasible solutions of model () enter or remain
in the region 	ε as t becomes large enough. Hence, the dynamics of model () can be
considered only in 	ε .

It is easy to check that E = ( A
d

, , , A
d

, , ) is the disease-free equilibrium of (), and it
exists for all nonnegative values of the parameters. According to the idea in [], we obtain
the basic reproduction number

R =

√
ββe–dτ e–dτ

(d + σ )(d + ε)
.

Remark . Near the disease-free equilibrium E, each infected intermediate host pro-
duces βe–dτ

d+ε
new infected definitive hosts over its expected infectious period, and each

definitive host produces βe–dτ
d+σ

new infected intermediate hosts over its expected infec-
tious period. The square root arises from the two ‘generations’ required for an infected
definitive host or intermediate host to ‘reproduce’ itself.

3 Global stability of E0

For the disease-free equilibrium E, we will show that the disease dies out if R < .

Theorem . The disease-free equilibrium E = ( A
d

, , , A
d

, , ) is unstable if R > , and
it is globally asymptotically stable if R < .

Proof The characteristic equation of system () at E is

(λ + d)(λ + d)f (λ) = , ()

where

f (λ) = λ + (d + σ + d + ε)λ + (d + σ )(d + ε) – ββe–dτ e–dτ e–λ(τ+τ).

Clearly, () has four negative roots λ = λ = –d, λ = λ = –d. Therefore, the stability of
E is determined by the distribution of roots of f (λ) = .

Note that if R =
√

ββe–dτ e–dτ
(d+σ )(d+ε) > , then f () = (d + σ )(d + ε) – ββe–dτ e–dτ < ,

and f (+∞) = ∞. Hence, f (λ) =  has at least one positive root and E is unstable.
If R < , we define m = d +σ + d +ε, m = (d +σ )(d +ε). Let λ = u + iv with u, v ∈R

be a root of f (λ) = . Then we have

u – v + mu + m = R
me–u(τ+τ) cos

(
(τ + τ)v

)
,

uv + mv = –R
me–u(τ+τ) sin

(
(τ + τ)v

)
,

thus,

(
u + v) + u(mu + m) + (mu + m) + muv +

[
(d + σ ) + (d + ε)]v

= R
m

e–u(τ+τ). ()
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If u ≥ , then each term in the left hand side of () is nonnegative, furthermore, (mu +
m) ≥ m

, while for the right hand side of (), R
m

e–u(τ+τ) ≤ R
m

 < m
, a contradic-

tion. This shows that all roots of f (λ) =  must have negative real parts. Therefore, E is
locally asymptotically stable.

To complete the proof of Theorem ., we only need to show that E is globally attractive
under the condition R < . From system (), we obtain

dI(t)
dt

≤ βe–dτ I(t – τ) – (d + σ )I(t),

dI(t)
dt

≤ βe–dτ I(t – τ) – (d + ε)I(t).

Consider the following linear system:

dx(t)
dt

= βe–dτ x(t – τ) – (d + σ )x(t),

dx(t)
dt

= βe–dτ x(t – τ) – (d + ε)x(t),
()

this is a cooperative and irreducible system of delay differential equations with a unique
equilibrium (, ); the characteristic equation at (, ) is

f (λ) = .

Since all roots of f (λ) =  have negative real parts, E is locally asymptotically stable.
Therefore,

lim
t→∞

(
x(t), x(t)

)
= (, ).

An application of the standard comparison argument yields

lim
t→∞

(
I(t), I(t)

)
= (, ).

Hence, we have the following limiting system:

dS(t)
dt

= A – dS(t),

dE(t)
dt

= –dE(t),

dS(t)
dt

= A – dS(t),

dE(t)
dt

= –dE(t),

which implies that

lim
t→∞

(
S(t), E(t), S(t), E(t)

)
=

(
A

d
, ,

A

d
, 

)
.
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Thus, according to the theory of asymptotically autonomous semiflows [], we find that
the disease-free equilibrium E is globally asymptotically stable if R < . This completes
the proof. �

4 Uniform persistence
Using the method in [], we now consider the issue of disease persistence.

Theorem . If R > , then there exists an η >  such that every solution (S(t), E(t), I(t),
S(t), E(t), I(t)) of system () with initial conditions () and (), φ() 	= , φ() 	=  satis-
fies

lim inf
t→∞

(
I(t), I(t)

) ≥ (η,η).

Proof Let

X =
{
φ = (φ,φ,φ,φ,φ,φ) ∈ C+(

[–τ , ],R
+
)|φ satisfies condition ()

}
,

X =
{
φ ∈ X|φ() 	= ,φ() 	= 

}
.

It follows that

∂X = X \ X =
{
φ ∈ X|φ() =  or φ() = 

}
.

We also define

M∂ =
{
φ ∈ X|�(t)φ ∈ ∂X,∀t ≥ 

}
.

Let ut be the solution of (), let �(t) : X → X be the solution semiflow associated with ();
that is, �(t)φ = ut(φ), φ ∈ X, t ≥ . By Lemmas . and ., the solutions of () are ulti-
mately bounded, thus the semiflow �(t) is point dissipative on X, and �(t) : X → X is
compact for all t > τ . By [], it then follows that �(t) admits a global attractor, which
attracts every bounded set in X.

Claim : There is a δ > , such that, for any φ ∈ X,

lim sup
t→∞

∥∥�(t)φ – E
∥∥ ≥ δ. ()

First we consider the following system:

dy(t)
dt

= βe–dτ ( – ε)y(t – τ) – (d + σ )y(t),

dy(t)
dt

= βe–dτ ( – ε)y(t – τ) – (d + ε)y(t).
()

For sufficiently small ε > , let λ(ε) be the principal eigenvalue of system (). Since R > ,
by Corollary .. in [] we have λ() > . We then can restrict ε to be small enough such
that λ(ε) > . For this ε, there is a δ >  such that

x

x + x + x
>  – ε > ,
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and

x

x + x + x
>  – ε > , ∀∣∣(x, x, x, x, x, x) – E

∣∣ < δ.

Suppose () does not hold, then there is a φ ∈ X, such that

lim sup
t→∞

∥∥�(t)φ – E
∥∥ < δ. ()

Then there exists a t > t, such that for all t ≥ t, we have

∥∥�(t)φ – E
∥∥ < δ.

For any ε > , we can choose t > t, such that for all t ≥ t,

S(t)
N(t)

>  – ε,
S(t)
N(t)

>  – ε.

From system (), when t ≥ t, we have

dI(t)
dt

≥ βe–dτ ( – ε)I(t – τ) – (d + σ )I(t),

dI(t)
dt

≥ βe–dτ ( – ε)I(t – τ) – (d + ε)I(t).
()

Let (v, v)T be the positive right eigenvector associated with λ(ε) for system (), we
can choose r >  small enough such that

rveλ(ε)t ≤ I(t), rveλ(ε)t ≤ I(t), ∀t ∈ [t, t + τ ].

It is easy to see that reλ(ε)t(v, v)T satisfies () for t ≥ t. Then by the comparison prin-
ciple, we get

(
I(t), I(t)

) ≥ reλ(ε)t(v, v) for all t ≥ t.

Since λ(ε) > , we have limt→∞(I(t), I(t)) = (∞,∞), a contradiction to (). Thus ()
holds.

Denote the ω-limit set of the solution of system () starting in φ ∈ X by ω(φ).
Claim :

⋃
φ∈M∂

ω(φ) = E.
For any φ ∈ M∂ , we have I(t,φ) ≡  or I(t,φ) ≡ . If I(t,φ) ≡ , then from sys-

tem (), we get limt→∞ S(t,φ) = A
d

, limt→∞ E(t,φ) = , limt→∞ I(t,φ) = . By the the-
ory of asymptotically autonomous semiflows [], it follows that limt→∞ S(t,φ) = A

d
,

limt→∞ E(t,φ) = . If I(t,φ) ≡ , again from system (), we get limt→∞ E(t,φ) = ,
limt→∞ I(t,φ) = ; furthermore, we obtain limt→∞ S(t,φ) = A

d
, limt→∞ S(t,φ) = A

d
,

limt→∞ E(t,φ) = . Therefore, we have
⋃

φ∈M∂
ω(φ) = E.
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Define p : X →R+ by

p(�) = min
{
φ(),φ()

}
, ∀� ∈ X.

It is easy to see that p–(,∞) ⊂ X. By (),

I(t) = e–(d+σ )t
[

I() +
∫ t


βe–dτ e(d+σ )ρ S(ρ – τ)I(ρ – τ)

N(ρ – τ)
dρ

]

and

I(t) = e–(d+ε)t
[

I() +
∫ t


βe–dτ e(d+ε)ρ S(ρ – τ)I(ρ – τ)

N(ρ – τ)
dρ

]
.

Then Ii(t) >  for all t > , i = , , φ() 	= , φ() 	= . It follows that p has the property
that if either p(φ) =  and φ ∈ ∂X, or p(φ) > , then p(�(t)(φ)) >  for all t > . Hence, p
is a generalized distance function for the semiflow �(t) : X → X (see []). By Claim , we
see that any forward orbit of �(t) in M∂ converges to E. By Claim , we see that E is an
isolated invariant set in X, and that W s(E) ∩ X = ∅, where W s(E) is the stable manifold
of E. By [], it then follows that there exists an η >  such that lim inft→∞ p(�(t)φ) ≥ η

for any φ ∈ X. This implies that lim inft→∞ Ii(t) ≥ η, i = , . This completes the proof.
�

5 Global stability of endemic equilibrium
In this section, we will study the global stability of endemic equilibrium of system (). For
simplicity, we assume that ε = , we find that when R > , system () has one endemic
equilibrium; when R ≤ , there is no endemic equilibrium, system () has only the disease-
free equilibrium E.

Theorem . Assume that ε = . If R > , system () has a unique endemic (positive)
equilibrium E∗ = (S∗

 , E∗
 , I∗

 , S∗
, E∗

, I∗
 ). More specifically,

(i) If σ > , E∗ = (S∗
 , E∗

 , I∗
 , S∗

, E∗
, I∗

 ) is given by

S∗
 =

A(A + σ I∗
 )

d(A + βI∗
 )

,

S∗
 =

A


d(A + βI∗
 )

,

E∗
 =

β( – e–dτ )S∗
 I∗


A

,

E∗
 =

β( – e–dτ )S∗
I∗


A

,

I∗
 =

–a +
√

a
 – aa

a
,

I∗
 =

σ [R
A(d + σ – σ e–dτ ) + βAe–dτ ]I∗


ββAe–dτ + βA(d + σ – σ e–dτ )

+
(d + σ – σ e–dτ )(R

 – )AA

ββAe–dτ + βA(d + σ – σ e–dτ )
,
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where

a = βAσR

(
d + σ – σ e–dτ

)
+ ββAσ e–dτ ,

a = βAA
[
σ e–dτ

(
 – R


)

+ R

(
d + σ – σ e–dτ

)]
+ ββA

 e–dτ ,

a = A
 Aβe–dτ

(
 – R


)
.

(ii) If σ = , E∗ = (S∗
 , E∗

 , I∗
 , S∗

, E∗
, I∗

 ) is given by

S∗
 =

Ad(Aβ + Adedτ )
dβ(Ad + Aβe–dτ )

,

S∗
 =

Ad(Aβ + Adedτ )
dβ(Ad + Aβe–dτ )

,

E∗
 =

AAd(edτ – )(R
 – )

β(Ad + Aβe–dτ )
,

E∗
 =

AAd(edτ – )(R
 – )

β(Ad + Aβe–dτ )
,

I∗
 =

AAd(R
 – )

ββAe–dτ + βAd
,

I∗
 =

AAd(R
 – )

ββAe–dτ + βAd
.

()

For the special case ε = σ = , that is, the disease-induced death rate of infected live-
stock population is zero (ε = ), we also assume that the infected dogs will not recover
(σ = ). In this case, as regards the stability of the endemic equilibrium, we have the fol-
lowing theorems.

Theorem . Assume that ε = σ = . If R > , the endemic equilibrium E∗ = (S∗
 , E∗

 , I∗
 , S∗

,
E∗

, I∗
 ) of system () is locally asymptotically stable, where E∗ is denoted by ().

Proof The linearization of system () at E∗ is

(λ + d)(λ + d)g(λ) = , ()

where

g(λ) = λ +
(

βI∗


N∗


+ d +
βI∗


N∗


+ d

)
λ +

(
βI∗


N∗


+ d

)(
βI∗


N∗


+ d

)
– dde–λ(τ+τ).

It is easy to see that () has four negative roots λ = λ = –d, λ = λ = –d. Therefore,
the stability of E∗ is determined by the distribution of roots of g(λ) = .

We define n = βI∗
N∗


+ d, n = βI∗

N∗


+ d. Let λ = a + ib with a, b ∈R be a root of g(λ) = .
Then we have

a – b + (n + n)a + nn = dde–a(τ+τ) cos
(
(τ + τ)b

)
,

ab + (n + n)b = –dde–a(τ+τ) sin
(
(τ + τ)b

)
,
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it follows that

(
a + b) +

(
(n + n)a + nn

) + ab(n + n) + b(n
 + n


)

+ a((n + n)a + nn
)

–
(
dde–a(τ+τ)) = . ()

If a ≥ , then the left hand side of () is greater than or equal to (nn) –(dde–a(τ+τ)) >
, a contradiction. This shows that all roots of g(λ) =  have negative real parts. Therefore,
E∗ is locally asymptotically stable. This completes the proof of Theorem .. �

We can further give the global stability of the endemic equilibrium E∗.

Theorem . Assume that ε = σ = . If R > , the endemic equilibrium E∗ = (S∗
 , E∗

 , I∗
 , S∗

,
E∗

, I∗
 ) of system () is globally asymptotically stable, where E∗ is denoted by ().

Proof In Theorem ., we have given the local stability of E∗. We now prove the global
attractivity of E∗.

The numbers of the total populations N(t) and N(t) satisfy

dN(t)
dt

= A – dN(t),

dN(t)
dt

= A – dN(t),

it follows that

lim
t→∞

(
N(t), N(t)

)
=

(
A

d
,

A

d

)
.

Therefore, S(t), I(t), S(t), I(t) satisfy the following limit system:

dS(t)
dt

= A – β̃S(t)I(t) – dS(t),

dI(t)
dt

= β̃e–dτ S(t – τ)I(t – τ) – dI(t),

dS(t)
dt

= A – β̃S(t)I(t) – dS(t),

dI(t)
dt

= β̃e–dτ S(t – τ)I(t – τ) – dI(t),

()

where β̃ = dβ
A

, β̃ = dβ
A

.
Consider the following Lyapunov functional:

L(t) = e–dτ

[
S – S∗

 – S∗
 ln

(
S

S∗


)]
+ I – I∗

 – I∗
 ln

(
I

I∗


)

+ β̃e–dτ

∫ τ



[
S(t – r)I(t – r) – S∗

 I∗
 – S∗

 I∗
 ln

(
S(t – r)I(t – r)

S∗
 I∗



)]
dr.
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Figure 1 The influence of τ1 and τ2 on the number of infected intermediate hosts I2.

Figure 2 Long-term behavior of the population of each class when R0 > 1. In the left figure, we take
ε2 = σ = 0. In the right figure, we take ε2 = 0.01, σ = 2.

Note that  – x ≤ ln( 
x ), x ∈ R+, with equality only if x = , then the derivative of L along

the solution of () satisfies

dL

dt
= –de–dτ

(S – S∗
 )

S
+ β̃e–dτ S∗

 I∗


(
 –

S∗


S
+

I

I∗


–
I

I∗


)

+ β̃e–dτ S∗
 I∗



(
 –

S(t – τ)I(t – τ)I∗


S∗
 I∗

 I

+ ln
(
S(t – τ)I(t – τ)

)
– ln

(
S(t)I(t)

))

≤ β̃e–dτ S∗
 I∗



(
ln

(
S

S∗


)
+

I

I∗


–
I

I∗


+ ln

(
S∗

 I∗
 I

S(t – τ)I(t – τ)I∗


)

+ ln
(
S(t – τ)I(t – τ)

)
– ln

(
S(t)I(t)

))

= β̃e–dτ S∗
 I∗



(
ln

(
I∗

 I

I∗
 I

)
+

I

I∗


–
I

I∗


)
.
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Figure 3 The influence of the initial conditions on the number of infected intermediate hosts, I2.

If we construct another Lyapunov functional,

L(t) = e–dτ

[
S – S∗

 – S∗
 ln

(
S

S∗


)]
+ I – I∗

 – I∗
 ln

(
I

I∗


)

+ β̃e–dτ

∫ τ



[
S(t – r)I(t – r) – S∗

I∗
 – S∗

I∗
 ln

(
S(t – r)I(t – r)

S∗
I∗



)]
dr,

by a similar computation to dL
dt , we obtain

dL

dt
≤ β̃e–dτ S∗

I∗


(
ln

(
I∗

 I

I∗
 I

)
+

I

I∗


–
I

I∗


)
.

Finally we choose the Lyapunov functional

L(t) = β̃e–dτ S∗
I∗

 L(t) + β̃e–dτ S∗
 I∗

 L(t),
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Figure 4 The influence of parameters A1, β1, σ , and d1 on the number of infected intermediate
hosts, I2.

then we get

dL
dt

≤ .

Let M ⊂ E = {(S, I, S, I) : dL
dt = } be the largest invariant set with respect to system (),

we can show that M = {(S∗
 , I∗

 , S∗
, I∗

 )}. By the Lasalle invariance principle, (S∗
 , I∗

 , S∗
, I∗

 ) is
globally attractive. From () and (), we have E(t) → E∗

 , E(t) → E∗
 as t → ∞. Now we

see that E∗ = (S∗
 , E∗

 , I∗
 , S∗

, E∗
, I∗

 ) is globally attractive. This completes the proof. �

6 Numerical simulations
In this section, we carry out numerical simulations to illustrate our analytic results. Since
all the parameters are not easy to find, we will assume some parameters.

In view of [], we fix β = . year–, d = . year–, d = . year–, we first choose
σ =  year–, ε =  year– (see []), τ = 

 ∼ 
 year, τ = 

 ∼ 
 year (see []).

First we take A =  ×  year–, A = . ×  year–, β = . year–. Fixing τ =
/ year, we vary τ from 

 year to 
 year, and from Figure  we see the disease of the in-

termediate hosts population I persists; as τ increases, the infection level becomes lower.
If we fix τ = / year and vary τ from 

 year to 
 year, also Figure  shows that as τ

increases, I decreases. This figure implies that large time delays are beneficial to disease
control. Also we see that τ has a bigger impact than τ on the infection level of I.

Then we take ε = σ = ; we get R = ., and by Theorem ., we find that E∗ is
globally asymptotically stable (see the left figure of Figure ). But if we choose ε = .,
σ = , then we get R = ., and from the right figure of Figure , we see that there is
still an endemic equilibrium E∗ which is globally asymptotically stable.
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Figure 5 Surface plots of R0 as a function of β1, d1, and σ .

We now investigate the impact of the initial conditions on the number of infected inter-
mediate hosts, I(t). From Figure , we can see that φ, φ, φ have a stronger impact than
the other initial values, φ has almost no influence on I(t). These figures show that it is
very important to control the amount of susceptible and infected definitive hosts.

Next we want to see the influence of different parameters on the amount of infected
intermediate hosts I(t). The influence of A, β, σ , d on I(t) is shown in Figure . From
the expression of R, we can see that R decreases if β decreases, or σ increases, or d

increases. Figure  also verifies this.
Figure  depicts the relationship of R as a function of β, d, and σ , we can see that R

is not always less than .

Remark . Although A does not affect the number of R, reducing A can decrease the
infection level of I (see Figure ).

Based on the above analysis, we now give some control strategies by adjusting the pa-
rameters A, β, σ , and d. () Decrease A by reducing the birth rate of newborn puppies.
() β can be reduced by the following measures. Livestock slaughtering regulations and
health education should be implemented in endemic areas. Infected offal should be treated
harmlessly. Definitive hosts should be barred from slaughter houses. () σ can be increased
through increasing the frequency of anticestodal drugs (e.g., praziquantel). () In order to
increase d, we can kill the infected definitive hosts and the stray dog populations.
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