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Abstract
We study the extremal solutions of a class of fractional integro-differential equation
with integral conditions on infinite intervals involving the p-Laplacian operator. By
means of the monotone iterative technique and combining with suitable conditions,
the existence of the maximal and minimal solutions to the fractional differential
equation is obtained. In addition, we establish iterative schemes for approximating
the solutions, which start from the known simple linear functions. Finally, an example
is given to confirm our main results.
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1 Introduction
In this paper, we study the existence of extremal solutions to the following fractional
integro-differential equation with p-Laplacian operator on infinite intervals:

⎧
⎪⎨

⎪⎩

Dβ

+ (ϕp(Dα
+ x(t))) + a(t)f (t, x(t), (Tx)(t), (Sx)(t)) = , t ∈ J ′,

x() = x′() = · · · = x(n–)() = ,
Dα

+ x() = , limt→+∞ Dα–
+ x(t) =

∫ ∞
 h(t)x(t) dt,

(.)

where  < β ≤ , n –  < α ≤ n, n ≥ , Dα
+ and Dβ

+ are standard Riemann-Liouville deriva-
tives, ϕp is the p-Laplacian operator defined by ϕp(s) = |s|p–s, (ϕp)– = ϕq, 

p + 
q = , p > ,

and

(Tx)(t) =
∫ t


K(t, s)x(s) ds, (Sx)(t) =

∫ ∞


H(t, s)x(s) ds,

in which K ∈ C(D, J), D = {(t, s) ∈ J × J : t ≥ s}, H ∈ C(J × J , J), h ∈ L(J , J) with
∫ ∞

 h(t) ×
tα– dt < �(α), a ∈ L(J , J), f ∈ C(J × J × J × J , J), J = [, +∞), J ′ = (, +∞).

Fractional operators were mentioned by Leibnitz in a letter to L’Hospital in . How-
ever, for a quite long period, the theory of fractional derivatives developed mainly as a pure
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theoretical field of mathematics. The situation has changed recently, fractional calculus
was shown to be an excellent tool for the description of memory and hereditary prop-
erties of various materials and processes. Nowadays, differential equations of fractional
order have recently proved to be valuable tools in the modeling of many physical pro-
cesses, such as non-Markovian diffusion process with memory (see []), charge transport
in amorphous semiconductors (see []), propagation of mechanical waves in viscoelastic
media (see []), etc. Moreover, phenomena in aerodynamics, electrodynamics of a com-
plex medium or polymer rheology, acoustics, and electro chemistry are also described by
differential equations of fractional order (see [, ]). For instance, a viscoelastic fluid with
the fractional derivative Maxwell model and its constitutive equation is given by []

σ + λα dασ

dtα
= Gλβ dβε

dtβ
,

where σ is the shear stress, ε is the shear strain, λ = μ/G is the relaxation time, G is the
shear modulus, μ is the viscosity constant, α and β are fractional calculus parameters and
satisfy  ≤ α ≤ β ≤ .

Motivated by the fractional calculus’ application background, there are a large number
of papers dealing with the solvability of fractional differential equations (see [–]). By
using the Leray-Schauder nonlinear alternative theorem, Zhao and Ge in [] obtained
some results as regards the existence of unbounded solutions by considering the fractional
order differential equation

{
Dα

+ u(t) + f (t, u(t)) = , t ∈ J ′,
u() = , limt→+∞ Dα–

+ u(t) = βu(ξ ),

where  < α ≤ , Dα
+ is the standard Riemann-Liouville fractional derivative and  < ξ <

+∞, β > , βξα– < �(α), f ∈ C(J ×R, J), R = (–∞, +∞).
In [], Liang and Zhang investigated the following m-point fractional boundary value

problem (BVP) on infinite intervals:

{
Dα

+ u(t) + a(t)f (u(t)) = , t ∈ J ′,
u() = u′() = , limt→+∞ Dα–

+ u(t) =
∑m–

i= βiu(ξi),

where  < α ≤ , Dα
+ is the standard Riemann-Liouville fractional derivative and  <

ξ < ξ < · · · < ξm– < +∞, βi >  satisfies  <
∑m–

i= βiu(ξi) < �(α), a ∈ L(J , J), f ∈ C(J , J).
Through the use of the fixed point index theory due to Leggett-Williams, the sufficient
conditions for the existence of three positive solutions are obtained.

Chai in [] studied the fractional boundary value problem with p-Laplacian operator

{
Dβ

+ (ϕp(Dα
+ u(t))) + f (t, u(t)) = ,  < t < ,

u() = , u() + σDγ

+ u() = , Dα–
+ u() = ,

where  < α ≤ ,  < β ,γ ≤ ,  ≤ α – γ – , Dα
+ , Dβ

+ , and Dγ

+ are standard Riemann-
Liouville derivatives, σ is a positive constant, ϕp is the p-Laplacian operator defined by
ϕp(s) = |s|p–s, (ϕp)– = ϕq, 

p + 
q = , p > , f ∈ C([, ] × J , J). By applying the fixed point
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theorem of Leggett-Williams, the author in [] acquired the existence of positive solu-
tions.

Since the existence of positive solutions to fractional boundary value problems with
p-Laplacian operator have been rarely researched, in this paper, we investigate the ex-
istence of solutions for the fractional differential equation with p-Laplacian operator on
infinite intervals as the BVP (.). We should mention here that our work presented in
this paper has various new features. Firstly, the positive solutions on J are obtained, which
expands the domain of definition of t from a finite interval to an infinite interval. Sec-
ondly, the new terms Tu, Su added in the function f of BVP (.) and the more general
boundary conditions make the equation we discuss more complicated than those of two-
point, three-point, multi-point boundary conditions. Finally, through the monotone iter-
ative technique, we not only obtain the maximal and minimal solutions to the fractional
differential equation but also establish iterative schemes for approximating the solutions,
which start from the known simple linear functions.

2 Preliminaries and lemmas
Definition . Let (E,‖ · ‖) be a real Banach space. A nonempty, closed, convex set P ⊂ E
is said to be a cone provided the following are satisfied:

(a) If y ∈ P and λ > , then λy ∈ P.
(b) If y ∈ P and –y ∈ P, then y = .

If P ⊂ E is a cone, we denote the order induced by P on E by ≤, that is, x ≤ y if and only
if y – x ∈ P.

Definition . [, ] Let α >  and let u be piecewise continuous on J ′ and integrable
on any finite subinterval of J . Then for t > , we call

Iα
+ u(t) =


�(α)

∫ t


(t – s)α–u(s) ds,

the Riemann-Liouville fractional integral of u of order α.

Definition . [, ] The Riemann-Liouville fractional derivative of order α > , n –  ≤
α < n, n ∈N, is defined as

Dα
+ u(t) =


�(n – α)

(
d
dt

)n ∫ t


(t – s)n–α–u(s) ds,

where N denotes the natural number set, the function u(t) is n times continuously differ-
entiable on J .

Lemma . [, ] Let α > , if the fractional derivative Dα–
+ u(t) and Dα

+ u(t) are contin-
uous on J , then

Iα
+ Dα

+ u(t) = u(t) + ctα– + ctα– + · · · + cntα–n,

where c, c, . . . , cn ∈ R, n is the smallest integer greater than or equal to α.
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By a similar proof to Lemma . in [], we get Lemma ..

Lemma . Let y ∈ C(, +∞) ∩ L[, +∞), then the fractional BVP

{
Dα

+ x(t) + y(t) = , t ∈ J ′, n –  < α ≤ n, n ≥ ,
x() = x′() = · · · = x(n–) = , limt→+∞ Dα–

+ x(t) =
∫ ∞

 h(t)x(t) dt,

has a unique solution

x(t) =
∫ ∞


G(t, s)y(s) ds,

where

G(t, s) = G(t, s) + G(t, s) (.)

and

G(t, s) =


�(α)

{
tα– – (t – s)α–,  ≤ s ≤ t ≤ +∞,
tα–,  ≤ t ≤ s ≤ +∞,

G(t, s) =
tα–

�(α) –
∫ ∞

 h(t)tα– dt

∫ ∞


h(t)G(t, s) dt.

Lemma . The Green function G(t, s) defined as (.) in Lemma . has the following
properties:

() G(t, s) is continuous and G(t, s) ≥  for (t, s) ∈ J × J .
() G(t,s)

+tα– ≤ 
�(α) , G(t,s)

+tα– ≤ L, for (t, s) ∈ J × J , where L = 
�(α)–

∫ ∞
 h(t)tα– dt .

Now, we consider the associated linear BVP
⎧
⎪⎨

⎪⎩

Dβ

+ (ϕp(Dα
+ x(t))) + y(t) = , t ∈ J ′,  < β ≤ , n –  < α ≤ n, n ≥ ,

x() = x′() = · · · = x(n–) = , Dα
+ x() = ,

limt→+∞ Dα–
+ x(t) =

∫ ∞
 h(t)x(t) dt,

(.)

where y ∈ C(, +∞)∩L[, +∞) with
∫ ∞

 ϕq(
∫ s

 (s – τ )β–y(τ ) dτ ) ds < +∞. For convenience,
let ω = (�(β))–q, then we have Lemma ..

Lemma . The associated linear BVP (.) has the unique positive solution

x(t) = ω

∫ ∞


G(t, s)ϕq

(∫ s


(s – τ )β–y(τ ) dτ

)

ds. (.)

Proof By Lemma ., we have

ϕp
(
Dα

+ x(t)
)

= ctβ– –
∫ t



(t – s)β–y(s)
�(β)

ds.

Together with the fact Dα
+ x() = , we get c = , then

Dα
+ x(t) + ϕq

(∫ t



(t – s)β–y(s)
�(β)

ds
)

= .
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Therefore, BVP (.) is equivalent to the following BVP:

{
Dα

+ x(t) + ϕq(
∫ t


(t–s)β–y(s)

�(β) ds) = , t ∈ J ′,  < β ≤ , n –  < α ≤ n, n ≥ ,
x() = x′() = · · · = x(n–) = , limt→+∞ Dα–

+ x(t) =
∫ ∞

 h(t)x(t) dt.

By Lemma ., BVP (.) is equivalent to the integral equation (.). This completes the
proof of the lemma. �

In this paper, the following space E will be used in the study of BVP (.), where

E =
{

x ∈ C[, +∞) : sup
t∈J

|x(t)|
 + tα– < +∞

}

. (.)

Then E is a Banach space equipped with the norm ‖x‖ = supt∈J
|x(t)|

+tα– . Define the cone
K ⊂ E by

K =
{

x ∈ E : x(t) ≥ , t ∈ J
}

.

Throughout this paper, we assume the following conditions hold:

(H)

sup
t∈J


 + tα–

∫ t


K(t, s)

(
 + sα–)ds < +∞,

sup
t∈J


 + tα–

∫ ∞


H(t, s)

(
 + sα–)ds < +∞,

lim
t′→t

∫ ∞



∣
∣H

(
t′, s

)
– H(t, s)

∣
∣
(
 + sα–)ds = , t, t′ ∈ J .

In this case, let

k∗ = sup
t∈J


 + tα–

∫ t


K(t, s)

(
 + sα–)ds,

h∗ = sup
t∈J


 + tα–

∫ ∞


H(t, s)

(
 + sα–)ds.

(H) f ∈ C(J × J × J × J , J), f (t, , , , ) �≡ , t ∈ J , and f (t, ( + tα–)u, ( + tα–)u, ( +
tα–)u) is bounded, for t ∈ J , ui ∈ D (i = , , ), D ⊂ J is a closed bounded subinterval.

(H) a ∈ L(J , J), a(t) �≡ , t ∈ J , and

 <
∫ ∞


a(s) ds < +∞,  <

∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ ) dτ

)

ds < +∞.

Denote an operator A : K → E by

(Ax)(t) = ω

∫ ∞


G(t, s)ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , x(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds, t ∈ J .

Under the assumptions (H)-(H), x is a positive solutions of BVP (.) if and only if x is a
fixed point of A in K .
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We list the following lemma, which is needed in our study.

Lemma . [, ] Let E be defined as (.) and M be any bounded subset of E. Then M
is relatively compact in E, if { x(t)

+tα– : x ∈ M} is equicontinuous on any finite subinterval of
J and for any given ε > , there exists a N > , such that | x(t)

+tα–


– x(t)
+tα–


| < ε uniformly with

respect to all x ∈ M, and t, t > N .

3 Main results
Theorem . Assume that (H)-(H) hold. Then A : K → K is a completely continuous
operator.

Proof First, by routine discussion, we see that A : K → K is well defined. Now, we prove
that A is compact and continuous, respectively. Let M be any bounded subset of K . Then
there exists R > , such that ‖x‖ ≤ R, for any x ∈ M. So, for any x ∈ M, by Lemma ., we
have

∥
∥(Ax)

∥
∥ = sup

t∈J


 + tα–

∣
∣
∣
∣ω

∫ ∞


G(t, s)

× ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , x(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds
∣
∣
∣
∣

≤ ωLϕq(SR )
∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ ) dτ

)

ds < +∞,

where

SR = sup
{

f
(
t,

(
 + tα–)u,

(
 + tα–)u,

(
 + tα–)u

)
:

(t, u, u, u) ∈ J × [, R] × [
, k∗R

] × [
, h∗R

]}
.

So, AM is bounded in E.
Given b > , for any x ∈ M and t, t ∈ [, b], without loss of generality, we may assume

that t < t. In fact,

∣
∣
∣
∣
(Ax)(t)
 + tα–


–

(Ax)(t)
 + tα–



∣
∣
∣
∣

≤ ω

∫ ∞



(∣
∣
∣
∣
G(t, s)
 + tα–


–

G(t, s)
 + tα–



∣
∣
∣
∣ +

∫ ∞
 h(t)G(t, s) dt

�(α) –
∫ ∞

 h(t)tα– dt

∣
∣
∣
∣

tα–


 + tα–


–
tα–


 + tα–


∣
∣
∣
∣

)

× ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , x(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

≤ ωϕq(SR )
∫ ∞



(∣
∣
∣
∣
G(t, s)
 + tα–


–

G(t, s)
 + tα–



∣
∣
∣
∣ +

∣
∣
∣
∣
G(t, s)
 + tα–


–

G(t, s)
 + tα–



∣
∣
∣
∣

+
∫ ∞

 h(t)G(t, s) dt
�(α) –

∫ ∞
 h(t)tα– dt

∣
∣
∣
∣

tα–


 + tα–


–
tα–


 + tα–


∣
∣
∣
∣

)

× ϕq

(∫ s


(s – τ )β–a(τ ) dτ

)

ds.
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On the other hand, we have

ωϕq(SR )
∫ ∞



∣
∣
∣
∣
G(t, s)
 + tα–


–

G(t, s)
 + tα–



∣
∣
∣
∣ϕq

(∫ s


(s – τ )β–a(τ ) dτ

)

ds

≤ ωϕq(SR )
(∫ t


+

∫ t

t

+
∫ ∞

t

)∣
∣
∣
∣
G(t, s)
 + tα–


–

G(t, s)
 + tα–



∣
∣
∣
∣ϕq

(∫ s


(s – τ )β–a(τ ) dτ

)

ds

≤ ωϕq(SR )
∫ t



∣
∣
∣
∣
tα–
 – tα–

 + (t – s)α– – (t – s)α–

 + tα–


∣
∣
∣
∣ϕq

(∫ s


(s – τ )β–a(τ ) dτ

)

ds

+ ωϕq(SR )
∫ t

t

∣
∣
∣
∣
tα–
 – tα–

 + (t – s)α–

 + tα–


∣
∣
∣
∣ϕq

(∫ s


(s – τ )β–a(τ ) dτ

)

ds

+ ωϕq(SR )
∫ ∞

t

∣
∣
∣
∣
tα–
 – tα–



 + tα–


∣
∣
∣
∣ϕq

(∫ s


(s – τ )β–a(τ ) dτ

)

ds

≤ ωϕq(SR )
∫ b



(∣
∣tα–

 – tα–


∣
∣ +

∣
∣(t – s)α– – (t – s)α–∣∣

)

× ϕq

(∫ s


(s – τ )β–a(τ ) dτ

)

ds

+ ωϕq(SR )
∫ ∞



(

∣
∣tα–

 – tα–


∣
∣ + (t – t)α–)ϕq

(∫ s


(s – τ )β–a(τ ) dτ

)

ds.

So, for any ε > , there exists δ > , such that for any t, t ∈ [, b] and |t – t| < δ, we have

ωϕq(SR )
∫ ∞



∣
∣
∣
∣
G(t, s)
 + tα–


–

G(t, s)
 + tα–



∣
∣
∣
∣ϕq

(∫ s


(s – τ )β–a(τ ) dτ

)

ds <
ε


. (.)

Similar to (.), for the above ε > , there exists δ > , such that for any t, t ∈ [, b] and
|t – t| < δ, we have

ωϕq(SR )
∫ ∞



∣
∣
∣
∣
G(t, s)
 + tα–


–

G(t, s)
 + tα–



∣
∣
∣
∣ϕq

(∫ s


(s – τ )β–a(τ ) dτ

)

ds <
ε


. (.)

Obviously, for the above ε > , there exists δ > , such that for any t, t ∈ [, b] and |t –
t| < δ, we have

ωϕq(SR )
∫ ∞



∫ ∞
 h(t)G(t, s) dt

�(α) –
∫ ∞

 h(t)tα– dt

∣
∣
∣
∣

tα–


 + tα–


–
tα–


 + tα–


∣
∣
∣
∣

× ϕq

(∫ s


(s – τ )β–a(τ ) dτ

)

ds <
ε


. (.)

So, by (.)-(.), for the above ε > , let δ = min{δ, δ, δ}, such that for any t, t ∈ [, b]
with |t – t| < δ and for any x ∈ M, we have

∣
∣
∣
∣
(Ax)(t)
 + tα–


–

(Ax)(t)
 + tα–



∣
∣
∣
∣ < ε.

Hence, { (Ax)(t)
+tα– : x ∈ M} is equicontinuous on [, b]. Since b >  is arbitrary, { (Ax)(t)

+tα– : x ∈ M}
is locally equicontinuous on J .
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Next, we show that A : K → K is equiconvergent at +∞. For any x ∈ M, we have
∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , x(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

≤ ϕq(SR )
∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ ) dτ

)

ds < +∞

and

lim
t→+∞

|(Ax)(t)|
 + tα–

= lim
t→+∞

ω
∫ ∞

 G(t, s)ϕq(
∫ s

 (s – τ )β–a(τ )f (τ , x(τ ), (Tx)(τ ), (Sx)(τ )) dτ ) ds
 + tα–

= lim
t→+∞


 + tα– (

ωtα–

�(α)

∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , x(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

–
ω

�(α)

∫ t


(t – s)α–ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , x(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

+
ωtα–

�(α) –
∫ ∞

 h(t)tα– dt

∫ ∞


h(t)

∫ ∞


G(t, s)

× ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , x(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds dt)

=
ω

�(α)

∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , x(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

+
ω

�(α) –
∫ ∞

 h(t)tα– dt

∫ ∞


h(t)

∫ ∞


G(t, s)

× ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , x(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds dt

.= Q < +∞.

So, for any x ∈ M, we have
∣
∣
∣
∣

(Ax)(t)
 + tα– – Q

∣
∣
∣
∣

≤ ω

( + tα–)�(α)

∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , x(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

+
ω

( + tα–)(�(α) –
∫ ∞

 h(t)tα– dt)

×
∫ ∞


h(t)

∫ ∞


G(t, s)ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , x(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds dt

≤ ωϕq(SR )
( + tα–)�(α)

∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ ) dτ

)

ds

+
ωϕq(SR )

( + tα–)(�(α) –
∫ ∞

 h(t)tα– dt)

×
∫ ∞


h(t)

∫ ∞


G(t, s)ϕq

(∫ s


(s – τ )β–a(τ ) dτ

)

ds dt

→ , t → +∞.
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Thus, for any ε > , there exists N > , for any t > N and for any x ∈ M, such that

∣
∣
∣
∣

(Ax)(t)
 + tα– – Q

∣
∣
∣
∣ <

ε


.

Consequently, for any t, t > N and for any x ∈ M, we have

∣
∣
∣
∣
(Ax)(t)
 + tα–


– Q

∣
∣
∣
∣ <

ε


,

∣
∣
∣
∣
(Ax)(t)
 + tα–


– Q

∣
∣
∣
∣ <

ε


.

Therefore, for any t, t > N and for any x ∈ M, we get

∣
∣
∣
∣
(Ax)(t)
 + tα–


–

(Ax)(t)
 + tα–



∣
∣
∣
∣ ≤

∣
∣
∣
∣
(Ax)(t)
 + tα–


– Q

∣
∣
∣
∣ +

∣
∣
∣
∣
(Ax)(t)
 + tα–


– Q

∣
∣
∣
∣ < ε,

which means that { (Ax)(t)
+tα– : x ∈ M} is equiconvergent at +∞. So, A : K → K is equiconver-

gent at +∞.
Finally, suppose xm → x as m → +∞ in K . Then there exists R > , such that

maxm∈N\{}{‖xm‖,‖x‖} ≤ R, N is a natural number set. Since

∣
∣
∣
∣

∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , xm(τ ), (Txm)(τ ), (Sxm)(τ )

)
dτ

)

ds

–
∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , x(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds
∣
∣
∣
∣

≤ ϕq(SR )
∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ ) dτ

)

ds < +∞,

where

SR = sup
{

f
(
t,

(
 + tα–)u,

(
 + tα–)u,

(
 + tα–)u

)
:

(t, u, u, u) ∈ J × [, R] × [
, k∗R

] × [
, h∗R

]}
.

For

∣
∣
∣
∣ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , xm(τ ), (Txm)(τ ), (Sxm)(τ )

)
dτ

)

– ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , x(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)∣
∣
∣
∣ → , m → +∞.

By the Lebesgue dominated convergence theorem, we have

∣
∣
∣
∣

∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , xm(τ ), (Txm)(τ ), (Sxm)(τ )

)
dτ

)

ds

–
∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , x(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds
∣
∣
∣
∣

→ , m → +∞.
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Therefore, by Lemma ., we have

∥
∥(Axm) – (Ax)

∥
∥

= sup
t∈J


 + tα–

∣
∣
∣
∣ω

∫ ∞


G(t, s)

× ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , xm(τ ), (Tmx)(τ ), (Smx)(τ )

)
dτ

)

ds

– ω

∫ ∞


G(t, s)ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , x(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds
∣
∣
∣
∣

≤ ωL
∣
∣
∣
∣

∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , xm(τ ), (Txm)(τ ), (Sxm)(τ )

)
dτ

)

ds

–
∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , x(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds
∣
∣
∣
∣

→ , m → +∞.

Thus, A : K → K is continuous.
In conclusion, by Lemma ., together with the continuity of A, we see that A : K → K

is a completely continuous operator. The proof is completed. �

Theorem . Assume that (H)-(H) hold, and there exists d >  satisfying the following
conditions:

(H) f (t, u, u, u) ≤ f (t, u, u, u), for any t ∈ J ,  ≤ u ≤ u,  ≤ u ≤ u,  ≤ u ≤ u.
(H) f (t, ( + tα–)u, ( + tα–)u, ( + tα–)u) ≤ ϕp( d

�
), (t, u, u, u) ∈ J × [, d]× [, k∗d]×

[, h∗d], where

� = ωL
∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ ) dτ

)

ds, L is defined by Lemma ..

Then BVP (.) has the maximal and minimal positive solutions w∗, ν∗ on J , such that

 < sup
t∈J

|w∗(t)|
 + tα– ≤ d,  < sup

t∈J

|ν∗(t)|
 + tα– ≤ d.

Moreover, for initial values w(t) = dtα–, ν(t) = , t ∈ J , define the iterative sequences {wn}
and {νn} by

wn = ω

∫ ∞


G(t, s)ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , wn–(τ ), (Twn–)(τ ), (Swn–)(τ )

)
dτ

)

ds,

νn = ω

∫ ∞


G(t, s)ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ ,νn–(τ ), (Tνn–)(τ ), (Sνn–)(τ )

)
dτ

)

ds,

then

lim
n→+∞ sup

t∈J

|wn(t) – w∗(t)|
 + tα– = , lim

n→+∞ sup
t∈J

|νn(t) – ν∗(t)|
 + tα– = .
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Proof By Theorem ., A : K → K is completely continuous. For any x, x ∈ K with x ≤
x, from the definition of A and (H), we know Ax ≤ Ax. Let Kd = {x ∈ K : ‖x‖ ≤ d}. In
what follows, we firstly prove A : Kd → Kd . In fact, for any x ∈ Kd , we have

 ≤ x(t)
 + tα– ≤ d,  ≤ (Tx)(t)

 + tα– ≤ k∗d,  ≤ (Sx)(t)
 + tα– ≤ h∗d, t ∈ J .

By (H), we have

f (t, u, u, u) ≤ ϕp

(
d
�

)

, (t, u, u, u) ∈ J × [, d] × [
, k∗d

] × [
, h∗d

]
.

By Lemma . and (H), we have

∥
∥(Ax)

∥
∥ = sup

t∈J


 + tα– ω

∫ ∞


G(t, s)

× ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , x(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

≤ ωL
∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , x(τ ), (Tx)(τ ), (Sx)(τ )

)
dτ

)

ds

≤ ωL
∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ )ϕp

(
d
�

)

dτ

)

ds = d.

Hence, A : Kd → Kd .
Let w(t) = dtα–, t ∈ J , then w(t) ∈ Kd . Let w = Aw, w = Aw = Aw, by Theorem .,

we have w, w ∈ Kd . Denote wn+ = Awn = Anw, n = , , . . . . Since A : Kd → Kd , we have
wn ∈ A(Kd) ⊂ Kd . It follows from the complete continuity of A that {wn}∞n= is a sequentially
compact set in E. By (.) and (H), we have

w(t) = ω

∫ ∞


G(t, s)ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , w(τ ), (Tw)(τ ), (Sw)(τ )

)
dτ

)

ds

≤ ωtα–

�(α)

∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , w(τ ), (Tw)(τ ), (Sw)(τ )

)
dτ

)

ds

+
ωtα– ∫ ∞

 h(t)tα– dt
�(α)(�(α) –

∫ ∞
 h(t)tα– dt)

×
∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , w(τ ), (Tw)(τ ), (Sw)(τ )

)
dτ

)

ds

≤ ωLtα–
∫ ∞


ϕq

(∫ s


(s – τ )β–a(τ )ϕp

(
d
�

)

dτ

)

ds

= dtα– = w(t). (.)

So, by (.) and (H), we have

w = Aw ≤ Aw = w. (.)

By induction, we get

wn+ ≤ wn, n = , , . . . . (.)
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Thus, there exists w∗ ∈ K such that wn → w∗ as n → +∞. Applying the continuity of A
and wn+ = Awn, we get Aw∗ = w∗.

On the other hand, let ν(t) = , t ∈ J , then ν(t) ∈ Kd . Let ν = Aν, ν = Aν = Aν,
then by Theorem ., we have ν,ν ∈ Kd . Denote νn+ = Aνn = Anν, n = , , . . . . Since
A : Kd → Kd , we have νn ∈ A(Kd) ⊂ Kd . It follows from the complete continuity of A that
{νn}∞n= is a sequentially compact set in E. Since ν = Aν ∈ Kd , we have

ν = Aν ≥ .

By induction, we get

νn+ ≥ νn, n = , , . . . . (.)

Thus, there exists ν∗ ∈ K such that νn → ν∗ as n → +∞. Applying the continuity of A and
νn+ = Aνn, we get Aν∗ = ν∗.

Now, we are in a position to show that w∗ and ν∗ are the maximal and minimal positive
solutions of BVP (.) in (, dtα–]. Let u ∈ (, dtα–] be any solution of BVP (.), that is,
Au = u. Noting that A is nondecreasing and ν(t) =  ≤ u(t) ≤ dtα– = w(t), then we have
ν(t) = (Aν)(t) ≤ u(t) ≤ (Aw)(t) = w(t), for all t ∈ J . By induction, we have

νn ≤ u ≤ wn, n = , , , . . . . (.)

Since w∗ = limn→+∞ wn, ν∗ = limn→+∞ νn, it follows from (.)-(.) that

ν ≤ ν ≤ · · ·νn ≤ · · · ≤ ν∗ ≤ u ≤ w∗ ≤ · · · ≤ wn ≤ · · · ≤ w ≤ w. (.)

Since f (t, , , ) �≡ , t ∈ J , then the zero function is not the solution of BVP (.). There-
fore, by (.), we know that w∗ and ν∗ are the maximal and minimal positive solutions of
BVP (.) in (, dtα–], which can be obtained by the corresponding iterative sequences
wn = Awn–, νn = Aνn–. The proof is completed. �

Remark . The iterative schemes in Theorem . are

w(t) = dtα–,

wn = ω

∫ ∞


G(t, s)ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ , wn–(τ ), (Twn–)(τ ), (Swn–)(τ )

)
dτ

)

ds,

ν(t) = ,

νn = ω

∫ ∞


G(t, s)ϕq

(∫ s


(s – τ )β–a(τ )f

(
τ ,νn–(τ ), (Tνn–)(τ ), (Sνn–)(τ )

)
dτ

)

ds,

they start with a known simple linear function and the zero function, respectively. This is
very convenient in applications. So Theorem . is very interesting and important.

Remark . By Theorem ., we note that w∗ and ν∗ are the maximal and minimal solu-
tions of the BVP (.) in Kd , they may coincide, and then BVP (.) has only one solution
in Kd .
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4 Example
Now we consider the fractional differential equation with a p-Laplacian operator on infi-
nite intervals,

⎧
⎨

⎩

D


+ x(t) + a(t)f (t, x(t), (Tx)(t), (Sx)(t)) = ,  < t < +∞,

x() = x′() = x′′() = , D


+ x() = , D



+ x(∞) = 


∫ ∞

 e–tx(t) dt.
(.)

Obviously, α = 
 , β = , p = , h(t) = 

 e–t . By calculation, we have

�

(



)

= .,
∫ ∞


h(t)tα– dt = . < �

(



)

.

Choose

f (t, u, u, u)

= –
(

u

 + t 


)

+
–

( + t 
 )

(∫ t



u

( + t + s)( + s 
 )

ds +
∫ ∞



cos(t – s)u

( + s)( + s 
 )

ds
)

.

So

K(t, s) =


( + t + s)( + s 
 )

, H(t, s) =
cos(t – s)

( + s)( + s 
 )

,

∫ ∞



∣
∣H

(
t′, s

)
– H(t, s)

∣
∣
(
 + s



)

ds

=
∫ ∞



| cos(t′ – s) – cos(t – s)|
( + s)

ds =
π


∣
∣t′ – t

∣
∣ → , t′ → t,

k∗ = sup
t∈J


 + t 



∫ t



 + s 


( + t + s)( + s 
 )

ds = sup
t∈J

(


( + t) –


( + t)( + t)

)

≤ ,

h∗ = sup
t∈J


 + t 



∫ ∞



cos(t – s)( + s 
 )

( + s)( + s 
 )

ds ≤ sup
t∈J


 + t 



∫ ∞




 + s ds =

π


.

Take
∫ ∞

 ϕq(
∫ s

 a(τ ) dτ ) ds = . Considering that

ω =
(
�(β)

)–q = , L =


�(α) –
∫ ∞

 h(t)tα– dt
=




,

we get � = 
 . Take d =

√
, then for (t, u, u, u) ∈ J × [, d] × [, k∗d] × [, h∗d],

f
(
t,

(
+t



)
u,

(
+t



)
u,

(
+t



)
u

) ≤ – ·+
√




(

+
π



)

≈ . < ϕp

(
d
�

)

≈ ..

Thus the conditions in Theorem . are all satisfied. Therefore, the conclusion of Theo-
rem . holds.
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