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Abstract
The purpose of this study is to investigate a new class of boundary value transmission
problems (BVTPs) for a Sturm-Liouville equation on two separate intervals. We
introduce a modified inner product in the direct sum space L2[a, c)⊕ L2(c,b]⊕ C2 and
define a symmetric linear operator in it in such a way that the considered problem
can be interpreted as an eigenvalue problem of this operator. Then, by suggesting
own approaches, we construct the Green’s function for the BVTP under consideration
and find the resolvent function for the corresponding inhomogeneous problem.
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1 Introduction
Many interesting applications of Sturm-Liouville theory arise in quantum mechanics. For
instance, for a single quantum-mechanical particle of mass m moving in one space dimen-
sion in a potential V (x), the time-dependent Schrödinger equation is

i�ψt = –
�



m
ψxx + V (x)ψ .

Looking for separable solutions ψ(x, t) = ϕ(x)e–iEt/�, we find that ϕ(x) satisfies the differ-
ential equation

–
�



m
ϕ′′ + V (x)ϕ = Eϕ.

That is a Sturm-Liouville equation of the form

–y′′ + qy = λy.

The coefficient q is proportional to the potential V , and the eigenvalue parameter λ is pro-
portional to the energy E. Physical problems such as this and those involving sound, sur-
face waves, heat conduction, electromagnetic waves, and gravitational waves, for example,
can be solved using the mathematical theory of boundary value problems. Boundary value
problems can be investigated also through the methods of Green’s function and eigenfunc-
tion expansion. The main tool for solvability analysis of such problems is the concept of
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Green’s function. The concept of Green’s function is very close to physical intuition (see
[]). If one knows the Green’s function of a problem, one can write down its solution in
a closed form as linear combinations of integrals involving the Green’s function and the
functions appearing in the inhomogeneities. Green’s functions can often be found in an
explicit way, and in these cases it is very efficient to solve the problem in this way. Deter-
mination of Green’s functions is also possible using Sturm-Liouville theory. This leads to
a series representation of Green’s functions (see []).

2 Statement of the problem
In this study we shall investigate a new class of BVPs which consist of the Sturm-Liouville
equation

�(y) := –p(x)y′′(x) + q(x)y(x) = λy(x) ()

to hold in a finite interval [a, b] except at one inner point c ∈ (a, b), where discontinuities
in y and y′ are prescribed by the transmission conditions at the interior point x = c,

Vj(y) := β–
jy′(c–) + β–

jy(c–) + β+
jy′(c+) + β+

jy(c+) = , j = , , ()

together with eigenparameter-dependent boundary conditions at end points x = a, b,

U(y) := αy(a) – αy′(a) – λ
(
α′

y(a) – α′
y′(a)

)
= , ()

U(y) := αy(b) – αy′(b) + λ
(
α′

y(b) – α′
y′(b)

)
= , ()

where p(x) = p– >  for x ∈ [a, c), p(x) = p+ >  for x ∈ (c, b], the potential q(x) is a real-
valued function continuous in each of the intervals [a, c) and (c, b], and it has a finite limit
q(c ∓ ); λ is a complex spectral parameter, αij, β±

ij , α′
ij (i = ,  and j = , ) are real num-

bers. We want to emphasize that the boundary value problem studied here differs from
standard boundary value problems in that it contains transmission conditions and the
eigenvalue parameter appears not only in the differential equation, but also in the bound-
ary conditions. Moreover, the coefficient functions may have discontinuity at one inte-
rior point. Naturally, eigenfunctions of this problem may have discontinuity at the one
inner point of the considered interval. The problems with transmission conditions have
become an important area of research in recent years because of the needs of modern
technology, engineering and physics. Many of the mathematical problems encountered
in the study of boundary-value-transmission problem cannot be treated with the usual
techniques within the standard framework of a boundary value problem (see []). Note
that some special cases of this problem arise after an application of the method of separa-
tion of variables to a varied assortment of physical problems. For example, some boundary
value problems with transmission conditions arise in heat and mass transfer problems [],
in vibrating string problems when the string is loaded additionally with point masses [],
in diffraction problems []. Such properties as isomorphism, coerciveness with respect
to the spectral parameter, completeness and Abel bases of a system of root functions of
similar boundary value problems with transmission conditions and its applications to the
corresponding initial boundary value problems for parabolic equations were investigated
in [–]. Also some problems with transmission conditions which arise in mechanics
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(thermal conduction problems for a thin laminated plate) were studied in []. Boundary
value problems with transmission conditions were investigated extensively in the recent
years (see, for example, [, –, –]).

3 The ‘basic’ solutions and a characteristic function
With a view to constructing the characteristic function ω(λ), we shall define two basic
solutions ϕ–(x,λ) and ψ–(x,λ) on the left interval [a, c) and two basic solutions ϕ+(x,λ) and
ψ+(x,λ) on the right interval (c, b] by the following procedure. Let ϕ–(x,λ) and ψ+(x,λ) be
the solutions of equation () on [a, c) and (c, b] satisfying the initial conditions

ϕ–(a,λ) = α – λα′
,

∂ϕ–(a,λ)
∂x

= α – λα′
, ()

ψ+(b,λ) = α + λα′
,

∂ψ+(b,λ)
∂x

= α + λα′
, ()

respectively. In terms of these solutions, we shall define the other solutions ϕ+(x,λ) and
ψ–(x,λ) by the initial conditions

ϕ+(c+,λ) =





(

ϕ

–(c–,λ) + 

∂ϕ–(c–,λ)

∂x

)
, ()

∂ϕ+(c+,λ)
∂x

=
–



(

ϕ

–(c–,λ) + 

∂ϕ–(c–,λ)

∂x

)
()

and

ψ–(c–,λ) =
–



(

ψ

+(c+,λ) + 

∂ψ+(c+,λ)

∂x

)
, ()

∂ψ–(c–,λ)
∂x

=





(

ψ

+(c+,λ) + 

∂ψ+(c+,λ)

∂x

)
, ()

respectively, where 
ij ( ≤ i < j ≤ ) denotes the determinant of the ith and jth columns
of the matrix

T =

[
β+

 β+
 β–

 β–


β+
 β+

 β–
 β–



]

.

The existence and uniqueness of these solutions follow from the well-known existence
and uniqueness theorem of ordinary differential equation theory. Moreover, by applying
the method of [], we can prove that each of these solutions is an entire function of the
parameter λ ∈C for each fixed x. Taking into account ()-() and the fact that the Wron-
skians ω±(λ) := W [ϕ±(x,λ),ψ±(x,λ)] are independent of variable x, we have

ω+(λ) = ϕ+(c+,λ)
∂ψ+(c+,λ)

∂x
–

∂ϕ+(c+,λ)
∂x

ψ+(c+,λ)

=






(
ϕ–(c–,λ)

∂ψ–(c–,λ)
∂x

–
∂ϕ–(c–,λ)

∂x
ψ–(c–,λ)

)

=





ω–(λ).
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It is convenient to define the characteristic function ω(λ) as

ω(λ) := 
ω
–(λ) = 
ω

+(λ).

Obviously, ω(λ) is an entire function. By applying the technique of [], we can prove that
there are infinitely many eigenvalues λn, n = , , . . . , of problem ()-() which coincide
with zeros of the characteristic function ω(λ).

4 Operator treatment in a modified Hilbert space
To analyze the spectrum of BVTP ()-(), we shall construct an adequate Hilbert space
and define a symmetric linear operator in it in such a way that the considered problem
can be interpreted as the eigenvalue problem of this operator. For this we assume that


 > , 
 > ,

θ =

[
α α

α′
 α′



]

> , θ =

[
α α

α′
 α′



]

> 

and introduce modified inner products on the direct sum spaces H = L[a, c) ⊕ L(c, b]
and H = H ⊕ C by

[f , g]H :=



p–

∫ c–

a
f (x)g(x) dx +




p+

∫ b

c+
f (x)g(x) dx ()

and

[F , G]H := [f , g]H +



θ
fg +




θ
fg ()

for F = (f (x), f, f), G = (g(x), g, g) ∈H, respectively. Obviously, each of these inner prod-
ucts is equivalent to the standard inner products of the Hilbert spaces L[a, c) ⊕ L(c, b]
and L[a, c) ⊕ L(c, b] ⊕ C, respectively, so (H, [·, ·]H) and (H, [·, ·]H ) are also Hilbert
spaces. Let us now define the boundary functionals

Ba[f ] := αf (a) – αf ′(a), B′
a[f ] := α′

f (a) – α′
f ′(a),

Bb[f ] := αf (b) – αf ′(b), B′
b[f ] := α′

f (b) – α′
f ′(b)

and construct the operator L : H →H with the domain

dom(L) :=
{

F =
(
f (x), f, f

)
: f (x), f ′(x) ∈ ACloc(a, c) ∩ ACloc(c, b),

and has a finite limits f (c ∓ ) and f ′(c ∓ ),�(f ) ∈ L[a, b],

V(f ) = V(f ) = , f = B′
a[f ], f = –B′

b[f ]
}

and action low

L
(
f (x), B′

a[f ], –B′
b[f ]

)
=

(
�(f ), Ba[f ], Bb[f ]

)
.
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Then problem ()-() can be written in the operator equation form as follows:

LF = λF , F =
(
f (x), B′

a[f ], –B′
b[f ]

) ∈ dom(L)

in the Hilbert space H.

Theorem  The linear operator L is symmetric.

Proof By applying the method of [] it is not difficult to show that dom(L) is dense in
the Hilbert space H. Now, let F = (f (x), B′

a[f ], –B′
b[f ]), G = (g(x), B′

a[g], –B′
b[g]) ∈ dom(L).

By partial integration we have

[LF , G]H – [F ,LG]H = 
W (f , g; c–) – 
W (f , g; a)

+ 
W (f , g; b) – 
W (f , g; c+)

+



θ

(
Ba[f ]B′

a[g] – B′
a[f ]Ba[g]

)

+



θ

(
B′

b[f ]Bb[g] – Bb[f ]B′
b[g]

)
, ()

where, as usual, W (f , g; x) denotes the Wronskians of the functions f and g . From the
definitions of the boundary functionals Ba and Bb we get that

Ba[f ]B′
a[g] – B′

a[f ]Ba[g] = θW (f , g; a), ()

B′
b[f ]Bb[g] – Bb[f ]B′

b[g] = –θW (f , g; b). ()

Further, taking in view the definition of L and applying the initial conditions ()-(), we
derive that

W (f , g; c–) =





W (f , g; c+). ()

Finally, substituting (), () and () in (), we have

[LF , G]H = [F ,LG]H for every F , G ∈ dom(L),

so the operator L is symmetric in H. The proof is complete. �

Corollary 
(i) All the eigenvalues of problem ()-() are real.

(ii) If f (x) and g(x) are eigenfunctions corresponding to distinct eigenvalues, then they are
‘orthogonal’ in the sense of the equality

[f , g]H +



θ
B′

a[f ]B′
a[g] +




θ
B′

b[f ]B′
b[g] = , ()

where F = (f (x), B′
a[f ], –B′

b[f ]), G = (g(x), B′
a[g], –B′

b[g]) ∈ dom(L).
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5 Solvability of the corresponding inhomogeneous problem
Now, let λ ∈ C not be an eigenvalue of L. Consider the operator equation

(λI – L)Y = U ()

for arbitrary U = (u(x), u, u) ∈ H. This operator equation is equivalent to the following
inhomogeneous BVTP:

(λ – �)y(x) = u(x), x ∈ [a, c) ∪ (c, b], ()

V(y) = V(y) = , λB′
a[y] – Ba[y] = u, –λB′

b[y] – Bb[y] = u. ()

We shall search the resolvent function of this BVTP in the form

Y (x,λ) =

{
d(x,λ)ϕ–(x,λ) + d(x,λ)ψ–(x,λ) for x ∈ [a, c),
d(x,λ)ϕ+(x,λ) + d(x,λ)ψ+(x,λ) for x ∈ (c, b],

()

where the functions d(x,λ), d(x,λ) are the solutions of the system of equations

{
∂d(x,λ)

∂x ϕ–(x,λ) + ∂d(x,λ)
∂x ψ–(x,λ) = ,

∂d(x,λ)
∂x

∂ϕ–(x,λ)
∂x + ∂d(x,λ)

∂x
∂ψ–(x,λ)

∂x = u(x)
p–

()

for x ∈ [a, c), and d(x,λ), d(x,λ) are the solutions of the system of equations

{
∂d(x,λ)

∂x ϕ+(x,λ) + ∂d(x,λ)
∂x ψ+(x,λ) = ,

∂d(x,λ)
∂x

∂ϕ+(x,λ)
∂x + ∂d(x,λ)

∂x
∂ψ+(x,λ)

∂x = u(x)
p+

()

for x ∈ (c, b]. Since λ is not an eigenvalue, we have ω±(λ) 
= . Hence, from () and () it
follows that

d(x,λ) =



p–ω(λ)

∫ c–

x
u(y)ψ–(y,λ) dy + h(λ), x ∈ [a, c),

d(x,λ) =



p–ω(λ)

∫ x

a
u(y)ϕ–(y,λ) dy + h(λ), x ∈ [a, c),

d(x,λ) =



p+ω(λ)

∫ b

x
u(y)ψ+(y,λ) dy + h(λ), x ∈ (c, b],

d(x,λ) =



p+ω(λ)

∫ x

c+
u(y)ϕ+(y,λ) dy + h(λ), x ∈ (c, b],

where hij(λ) (i, j = , ) are arbitrary functions of the parameter λ. Substituting this into
() gives

Y (x,λ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩


ψ–(x,λ)
p–ω(λ)

∫ x
a ϕ–(y,λ)u(y) dy + 
ϕ–(x,λ)

p–ω(λ)
∫ c–

x ψ–(y,λ)u(y) dy
+ h(λ)ϕ–(x,λ) + h(λ)ψ–(x,λ) for x ∈ [a, c),


ψ+(x,λ)
p+ω(λ)

∫ x
c+ ϕ(y,λ)u(y) dy + 
ϕ+(x,λ)

p+ω(λ)
∫ b

x ψ+(y,λ)u(y) dy
+ h(λ)ϕ+(x,λ) + h(λ)ψ+(x,λ) for x ∈ (c, b].

()
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By differentiating we have

∂Y (x,λ)
∂x

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩



p–ω(λ)

∂ψ–(x,λ)
∂x

∫ x
a ϕ–(y,λ)u(y) dy + 


p–ω(λ)
∂ϕ–(x,λ)

∂x
∫ c–

x ψ–(y,λ)u(y) dy
+ h(λ) ∂ϕ–(x,λ)

∂x + h(λ) ∂ψ–(x,λ)
∂x for x ∈ [a, c),



p+ω(λ)

∂ψ+(x,λ)
∂x

∫ x
c+ ϕ+(y,λ)u(y) dy + 


p+ω(λ)
∂ϕ+(x,λ)

∂x
∫ b

x ψ+(y,λ)u(y) dy
+ h(λ) ∂ϕ+(x,λ)

∂x + h(λ) ∂ψ+(x,λ)
∂x for x ∈ (c, b].

()

By using equalities (), () and boundary conditions (), we can derive that

h(λ) =
u

ω–(λ)
, h(λ) =

u

ω+(λ)
,

h(λ) =


p+ω+(λ)

∫ b

c+
ψ+(y,λ)u(y) dy +

u

ω+(λ)

and

h(λ) =


p–ω–(λ)

∫ c–

a
ϕ–(y,λ)u(y) dy +

u

ω–(λ)
.

Putting in () gives

Y (x,λ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


ψ–(x,λ)
p–ω(λ)

∫ x
a ϕ–(y,λ)u(y) dy + 
ϕ–(x,λ)

p–ω(λ)
∫ c–

x ψ–(y,λ)u(y) dy
+ 
ϕ–(x,λ)

ω(λ) ( 
p+

∫ b
c+ ψ+(y,λ)u(y) dy + u)

+ 
uψ–(x,λ)
ω(λ) for x ∈ [a, c),


ψ+(x,λ)
p+ω(λ)

∫ x
c+ ϕ+(y,λ)u(y) dy + 
ϕ+(x,λ)

p+ω(λ)
∫ b

x ψ+(y,λ)u(y) dy
+ 
ψ+(x,λ)

ω(λ) ( 
p–

∫ c–
a ϕ–(y,λ)u(y) dy + u)

+ 
uϕ+(x,λ)
ω(λ) for x ∈ (c, b].

()

Let us introduce the Green’s function as

G(x, y;λ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ–(x,λ)ψ–(y,λ)

p–ω–(λ) if x ∈ [a, c), y ∈ [a, x),

ψ–(x,λ)ϕ–(y,λ)

p–ω–(λ) if x ∈ [a, c), y ∈ [x, c),

ψ–(x,λ)ϕ+(y,λ)

p–ω–(λ) if x ∈ [a, c), y ∈ (c, b],

ϕ+(x,λ)ψ–(y,λ)

p+ω+(λ) if x ∈ (c, b], y ∈ [a, c),

ϕ+(x,λ)ψ+(y,λ)

p+ω+(λ) if x ∈ (c, b], y ∈ (c, x],

ψ+(x,λ)ϕ+(y,λ)

p+ω+(λ) if x ∈ (c, b], y ∈ [x, b].

()

Then from () and () it follows that the considered problem (), () has a unique
solution given by

Y (x,λ) =



p–

∫ c–

a
G(x, y;λ)u(y) dy +




p+

∫ b

c+
G(x, y;λ)u(y) dy

+ 
u
ψ(x,λ)
ω(λ)

+ 
u
ϕ(x,λ)
ω(λ)

. ()

In fact, we have proved the following theorem.
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Theorem  The resolvent operator can be represented as

(λI – L)–U(x) =

⎛

⎜
⎝

∫ b
a G(x, y;λ)u(y) dy + 
u

ψ(x,λ)
ω(λ) + 
u

ϕ(x,λ)
ω(λ)

B′
a[u]

–B′
b[u]

⎞

⎟
⎠ ,

where

G(x, y;λ) =

{


p– G(x, y;λ) if a < y < c,



p+ G(x, y;λ) if c < y < b.

()

Remark  Although the Green’s function looks as simple as that of standard Sturm-
Liouville problems, it is rather complicated because of the transmission conditions. To
illustrate this situation, let us give the following example.

Example Consider the following simple case of BVTP’s ()-() on [–, ] with c = :

–y′′(x) = λy(x), ()

y(–) + λy′(–) = , ()

λy() + y′() = , ()

y′(–) = y(+),

y′(–) = y′(+),
()

where λ is a complex spectral parameter. Putting λ = μ we find easily that

ϕ–(x,μ) = μ cos
[
μ(x + )

]
–


μ

sin
[
μ(x + )

]
,

ϕ+(x,μ) =
(

μ cosμ –

μ

sinμ

)
cos(μx)

–



(
μ sinμ +


μ

cosμ

)
sin(μx),

ψ–(x,μ) = (cosμ – μ sinμ) cos(μx)

+ (sinμ + μ cosμ) sin(μx),

ψ+(x,μ) = cos
[
μ( – x)

]
– μ sin

[
μ( – x)

]
.

Using these formulas, we have

w(μ) =
(
μ + 

)
cos μ –

(
μ + 

)
sin μ

+ 
(
μ – μ

)
sinμ cosμ.

Consequently, the Green’s function has the following form:

G(x, y,μ) =
{(

μ + 
)

cos μ –
(
μ + 

)
sin μ + 

(
μ – μ

)
sinμ cosμ

}
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×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{μ cos[μ(x + )] – 
μ

sin[μ(x + )]} × {(cosμ – μ sinμ) cos(μy)
+ (sinμ + μ cosμ) sin(μy)}, – ≤ x ≤ y < ,

{(cosμ – μ sinμ) cos(μx) + (sinμ + μ cosμ) sin(μx)}
× {μ cos[μ(y + )] – 

μ
sin[μ(y + )]}, – ≤ y ≤ x < ,

{(cosμ – μ sinμ) cos(μx) + (sinμ + μ cosμ) sin(μx)}
× {(μ cosμ – 

μ
sinμ) cos(μy) – 

 (μ sinμ + 
μ

cosμ) sin(μy)},
– ≤ y < ,  < x ≤ ,

{(μ cosμ – 
μ

sinμ) cos(μx) – 
 (μ sinμ + 

μ
cosμ) sin(μx)}

× {(cosμ – μ sinμ) cos(μy) + (sinμ + μ cosμ) sin(μy)},
– ≤ x < ,  < y ≤ ,

{(μ cosμ – 
μ

sinμ) cos(μx) – 
 (μ sinμ + 

μ
cosμ) sin(μx)}

× {cos[μ( – y)] – μ sin[μ( – y)]},  < y ≤ x ≤ ,
{cos[μ( – x)] – μ sin[μ( – x)]} × {(μ cosμ – 

μ
sinμ) cos(μy)

– 
 (μ sinμ + 

μ
cosμ) sin(μy)},  < x ≤ y ≤ .

6 Figures
The graph of the Green’s function is displayed in Figure  and Figure  for two different
values of the spectral parameter.

Figure 1 The graph of the Green’s function G(x, t,μ) for μ = 3.

Figure 2 The graph of the Green’s function G(x, t,μ) for μ = 15.
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