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Abstract
In this paper, using the fixed point theorem, we investigate the boundedness and
asymptotic stability of the zero solution of the discrete Volterra equation

x(n + 1) = a(n) + b(n)x(n) +
n∑

i=n0

K (n, i)x(i).

Necessary conditions for the existence of a periodic solution of the above equation
are also obtained.
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1 Introduction
Let N, Z, R denote the set of nonnegative integers, the set of all integers and the set of real
numbers, respectively, and N = {n, n + , . . . }, where n ∈N.

In this paper we consider the linear discrete Volterra equation of non-convolution type
of the form

x(n + ) = a(n) + b(n)x(n) +
n∑

i=n

K(n, i)x(i), n ≥ n, ()

where a, b : N → R, b(n) �=  for n ≥ n, K : N × N → R. By a solution of equation ()
we mean a sequence x : N → R satisfying equation () for all n ≥ n.

We introduce some notation and definitions that will be used in the paper. Hereafter, we
denote the solution of equation () with the initial condition x(n) = x by x(n, n, x).

Definition  Solutions of equation () are equi-bounded if for each constant M > , there
is M >  such that |x| ≤ M and n ≥ n implies that |x(n, n, x)| ≤ M.

If a(n) ≡  in equation (), then () takes the following form:

x(n + ) = b(n)x(n) +
n∑

i=n

K(n, i)x(i), n ≥ n. ()
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Definition  The zero solution of equation () is stable if for every ε >  there exists δ > 
such that |x| ≤ δ implies |x(n, n, x)| ≤ ε for n ≥ n.

Definition  The zero solution of equation () is asymptotically stable if there exists μ > 
such that |x| ≤ μ implies limn→∞ x(n) = .

Denote the Banach space of all bounded real sequences x : N → R equipped with the
supremum norm ‖x‖ = supn≥n |x(n)| by BS.

We will also adopt the customary notations

k∑

i=k+s

u(i) = ,
k∏

i=k+s

u(i) = ,

where k is an integer, s is a positive integer and u is a sequence of real numbers.
Volterra difference equations are widely used in modeling of processes in many branches

of natural sciences, economics and engineering. Some important properties of their so-
lutions are boundedness, stability and periodicity. Boundedness of solutions of linear dis-
crete Volterra equations has been studied by many authors. For example, Kolmanovskii
and Shaikhet [] have established a necessary and sufficient condition for boundedness of
all solutions of the linear Volterra equation

�x(n) =
n∑

i=

A(n, i)x(i), n ≥ ,

where A(j, i) ≥ , j ≥ i ≥ .
Appleby et al. [] found sufficient conditions in terms of the kernel H under which every

solution of the system of linear Volterra equations

x(n + ) = h(n) +
n∑

i=

H(n, i)x(i), n ≥ ,

is convergent. The necessary and sufficient conditions for boundedness of all solutions of
the above equation are given by Győri and Reynolds in [].

In [], Khandaker and Raffoul studied the stability properties of the zero solution of the
nonlinear Volterra discrete system

x(n + ) = A(n)x(n) +
n∑

s=

B(n, s)x(s) + g
(
n, x(n)

)

by expressing the solution in terms of the resolvent matrix. Here, the authors assumed that
|g(n, x(n))| ≤ λ(n)|x(n)|, where λ(n) is such that  ≤ λ(n) ≤ N < ∞ for some constant N .
A scalar case of the above equation is also considered in Section  of Raffoul [].

Yankson, in [], studied the asymptotic stability of the zero solution of the Volterra dif-
ference delay equation

x(n + ) = a(n)x(n) + c(n)�x
(
n – g(n)

)
+

n–∑

s=n–g(n)

k(n, s)h
(
x(s)

)
.
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Since the condition  ≤ g(n) ≤ g is assumed, then equation () cannot be obtained as a
special case of this equation.

Boundedness of solutions of linear and nonlinear discrete Volterra equations was also
studied by Crisci et al. [], Diblík and Schmeidel [], Gronek and Schmeidel [], Győri and
Awwad [], Győri and Horváth [], Kolmanovskii and Shaikhet [], Medina [], Migda
and Migda [] or Migda and Morchało []. A survey of the fundamental results on the
stability of linear Volterra difference equations, of both convolution and non-convolution
type, can be found in Elaydi [], see also Crisci et al. [] and []. The problem of finding
periodic and asymptotically periodic solutions of linear discrete Volterra equations of type
() was investigated, for example, by Diblik et al. [, –], Elaydi [], Gajda et al. [],
Győri and Reynolds [], Migda and Migda [] or Song and Baker [].

Motivated by the results obtained in the papers by Islam and Yankson [] and Raffoul
[], in this paper, we derive explicit sufficient conditions for the equi-boundedness of
solutions of equation () and the asymptotic stability of the zero solution of equation ().

We prove our main results using the variation of constants formula and the contraction
mapping principle. We study necessary conditions for the existence of periodic solutions.
Our results generalize certain results obtained in [] and []. Moreover, they can be applied
to equations for which the results obtained in some of the above mentioned papers could
not be used (see Examples -).

2 Boundedness and stability
Let us note that by the variation of constants formula, the solution of equation () satisfies
the following equation:

x(n) = x

n–∏

j=n

b(j) +
n–∑

k=n

( n–∏

j=k+

b(j)

) k∑

i=n

K(k, i)x(i)

+
n–∑

k=n

( n–∏

j=k+

b(j)

)
a(k) for n ≥ n, ()

where x(n) = x. Using this fact we prove the following theorems.

Theorem  Suppose that

∞∑

n=n

∣∣a(n)
∣∣ < ∞ ()

and there exists a nonnegative real constant B such that

n–∏

i=n

∣∣b(i)
∣∣ ≤ B, n ≥ n. ()

Assume also that there exists α ∈ (, ) such that

n–∑

k=n

n–∏

j=k+

∣∣b(j)
∣∣

k∑

i=n

∣∣K(k, i)
∣∣ ≤ α for n ≥ n. ()

Then the solutions of equation () are equi-bounded.
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Proof By (), there exists a nonnegative real constant A such that
∑∞

n=n
|a(n)| = A. Let

M >  be given. Choose a real number M such that (A+M)B
–α

≤ M. Let u be a real number
such that |u| ≤ M. We define a subset S of BS by

S =
{

x ∈ BS : x = u and ‖x‖ ≤ M
}

.

Then S is a closed subset of BS. Now, we define the mapping T : S → BS as follows:

(Tx)(n) = u

n–∏

j=n

b(j) +
n–∑

k=n

( n–∏

j=k+

b(j)

) k∑

i=n

K(k, i)x(i)

+
n–∑

k=n

( n–∏

j=k+

b(j)

)
a(k) for n ≥ n. ()

We will prove that T has a fixed point in S.
Firstly, we show that T(S) ⊂ S. Indeed, if x ∈ S, then by (), (), () and (), we get

∣∣(Tx)(n)
∣∣ ≤ M

n–∏

j=n

∣∣b(j)
∣∣

+ M

n–∑

k=n

n–∏

j=k+

∣∣b(j)
∣∣

k∑

i=n

∣∣K(k, i)
∣∣ +

n–∏

j=n

∣∣b(j)
∣∣

n–∑

k=n

∣∣a(k)
∣∣

≤ BM + αM + BA ≤ M for n ≥ n.

Moreover, we have (Tx)(n) = u. Hence, T(x) ∈ S and T(S) ⊂ S.
Next, we prove that T is a contraction. Let y, z ∈ S. Then, using () and (), we get

∣∣(Ty)(n) – (Tz)(n)
∣∣ ≤

n–∑

k=n

n–∏

j=k+

∣∣b(j)
∣∣

k∑

i=n

∣∣K(k, i)
∣∣∣∣y(i) – z(i)

∣∣

≤ sup
n≥n

∣∣y(n) – z(n)
∣∣
( n–∑

k=n

n–∏

j=k+

∣∣b(j)
∣∣

k∑

i=n

∣∣K(k, i)
∣∣
)

≤ α sup
n≥n

∣∣y(n) – z(n)
∣∣ for n ≥ n.

Thus

‖Ty – Tz‖ = sup
n≥n

∣∣(Ty)(n) – (Tz)(n)
∣∣ ≤ α‖y – z‖.

Hence, T is a contraction. By the contraction mapping principle, T has a unique fixed
point x∗ in S. It means that (Tx∗)(n) = x∗(n). So, from () we have

x∗(n) = u

n–∏

j=n

b(j) +
n–∑

k=n

( n–∏

j=k+

b(j)

) k∑

i=n

K(k, i)x∗(i) +
n–∑

k=n

( n–∏

j=k+

b(j)

)
a(k).
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By comparing the above equation and (), we see that the unique fixed point x∗ is also a
solution of equation (). Hence, by the definition of the set S, the solutions of equation ()
are equi-bounded. This completes the proof. �

Theorem  extends Theorem . in [] and Theorem  in [].
The following example illustrates the result presented in Theorem .

Example  Let us consider the linear Volterra difference equation

x(n + ) =


n(n + )
+ x(n) +

n∑

i=

i
n(n + ) x(i), n ≥ . ()

Here

a(n) =


n(n + )
, b(n) ≡  and K(n, i) =

i
n(n + ) .

Hence A =
∑∞

n=


n(n+) = , B =
∏∞

j= b(j) = ,

n–∑

k=

n–∏

j=k+

∣∣b(j)
∣∣

k∑

i=

∣∣K(k, i)
∣∣ =

n–∑

k=


k(k + )

k∑

i=

i =



n–∑

k=


k(k + )

≤ 


= α.

So, by Theorem  the solutions of () are equi-bounded. For example, for M =  we have
M ≥ (A+M)B

–α
= . Hence, all solutions with the initial condition |x()| ≤  have the prop-

erty ‖x‖ ≤ .

Note that for equation (), Theorem  in [] cannot be applied since the assumption
given below of this theorem

∣∣b(n)
∣∣ +

∣∣K(n, n)
∣∣ + ϕ() ≤  – α,

where α ∈ (, ), ϕ(n) ≥ , n ≥ , is not satisfied.
In the next example we present a Volterra difference equation for which condition ()

from [] does not hold. Hence, Theorem . [] is not applicable for this example whereas
our Theorem  is.

Example  Let us consider the linear Volterra difference equation

x(n + ) =
⌊

n + 


⌋(–)n

x(n) +
n∑

i=


k+i x(i), n ≥ . ()

Here

b(n) =
⌊

n + 


⌋(–)n

=
(

, ,



, ,



, ,



, , . . .
)

and K(n, i) =


n+i .

It is easy to verify that conditions () and () are satisfied. So, by Theorem  the solutions
of () are equi-bounded.
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Remark  From Theorem . in [] it follows that the boundedness of equation () is
equivalent to the stability of its zero solution. Hence, and by Theorem , conditions ()
and () ensure the stability of the zero solution of equation ().

Now, we provide conditions for the asymptotic stability of the zero solution of equa-
tion ().

Theorem  If condition () holds and

lim
n→∞

n–∏

i=n

b(i) = , ()

then the zero solution of equation () is asymptotically stable.

Proof By () there exists a constant B such that |∏n–
i=n

b(i)| ≤ B for n ≥ n. Let M > 
be given. Choose μ >  such that

μ ≤ ( – α)M
B

. ()

Let u be a real number such that |u| ≤ μ. We define a subset S of BS by

S =
{

x ∈ BS : x = u,‖x‖ ≤ M and lim
n→∞ x(n) = 

}
.

Then S is a closed subset of BS. We define the mapping T for x ∈ S as follows:

(Tx)(n) = u

n–∏

j=n

b(j) +
n–∑

k=n

( n–∏

j=k+

b(j)

) k∑

i=n

K(k, i)x(i) for n ≥ n. ()

We show that T(S) ⊂ S. Indeed, if x ∈ S, then by () and () we have

∣∣(Tx)(n)
∣∣ ≤ μ

n–∏

j=n

∣∣b(j)
∣∣ + M

n–∑

k=n

n–∏

j=k+

∣∣b(j)
∣∣

k∑

i=n

∣∣K(k, i)
∣∣

≤ μB + Mα ≤ M for n ≥ n.

Moreover, from () we immediately get that the first term on the right-hand side of ()
tends to zero. We show that

∣∣∣∣∣

n–∑

k=n

( n–∏

j=k+

b(j)

) k∑

i=n

K(k, i)x(i)

∣∣∣∣∣ →  as n → ∞.

Let ε > . Since limn→∞ x(n) = , there exists n ≥ n such that

sup
n≥n

∣∣x(n)
∣∣ ≤ ε

α
. ()
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By () there exists n ≥ n ≥ n such that

n–∏

j=n

∣∣b(j)
∣∣ ≤ ε

αM
for n ≥ n. ()

Then, for n ≥ n, we have

∣∣∣∣∣

n–∑

k=n

( n–∏

j=k+

b(j)

) k∑

i=n

K(k, i)x(i)

∣∣∣∣∣

≤
n–∑

k=n

n–∏

j=k+

∣∣b(j)
∣∣

k∑

i=n

∣∣K(k, i)
∣∣∣∣x(i)

∣∣

≤
n–∑

k=n

n–∏

j=k+

∣∣b(j)
∣∣

k∑

i=n

∣∣K(k, i)
∣∣∣∣x(i)

∣∣

+
n–∑

k=n

n–∏

j=k+

∣∣b(j)
∣∣

k∑

i=n

∣∣K(k, i)
∣∣∣∣x(i)

∣∣

≤ sup
n≥n

∣∣x(n)
∣∣

n–∑

k=n

n–∏

j=k+

∣∣b(j)
∣∣

n–∏

j=n

∣∣b(j)
∣∣

k∑

i=n

∣∣K(k, i)
∣∣

+ sup
n≥n

∣∣x(n)
∣∣

n–∑

k=n

n–∏

j=k+

∣∣b(j)
∣∣

k∑

i=n

∣∣K(k, i)
∣∣.

From the above, the definition of the set S, (), () and (), we obtain

∣∣∣∣∣

n–∑

k=n

( n–∏

j=k+

b(j)

) k∑

i=n

K(k, i)x(i)

∣∣∣∣∣ ≤ M
n–∏

j=n

∣∣b(j)
∣∣α +

ε

α
α ≤ ε


+

ε


= ε.

Thus, the second term of formula () tends to zero, too. So, we have limn→∞(Tx)(n) = .
Hence, T(x) ∈ S and T(S) ⊂ S.

Similarly as in the proof of Theorem , we get that T has a fixed point. This fixed point
solves equation () and tends to zero. Hence, the zero solution of equation () is asymp-
totically stable. �

Example  Let us consider the linear Volterra difference equation

x(n + ) =

n

x(n) +
n∑

i=


n

x(i), n ≥ . ()

Here

b(n) =

n

and K(n, i) =


n
.

It is easy to verify that conditions () and () are satisfied. So, by Theorem  the solutions
of () are equi-bounded. Moreover, since condition () is also satisfied, by Theorem 
the zero solution of equation () is asymptotically stable.
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Note that the result about asymptotic stability of the zero solution obtained in the sec-
tion Scalar Equation (see Example .) of [] is not applicable here because assumption vi)
∑∞

n= |K(n, i)| ≤ C, where C is a positive constant, for () is not satisfied. Similarly, The-
orem . of [] could not be applied for () since the kernel K(n, i) = 

n does not satisfy
condition (.).

In Proposition . of [], the necessary and sufficient conditions for boundedness of all
solutions of equations of type () are given. It is easy to see that for (), assumption ()
of [] does not hold. But, as it was shown above, each solution of this equation is bounded.
Corollary . of [] is not applicable here, too.

3 Existence of periodic solutions
In this section we give necessary conditions for the existence of periodic solutions of equa-
tion () assuming the periodicity conditions

a(n + q) = a(n), b(n + q) = b(n), n ∈ N, ()

and

K(n + q, i) = K(n, i) = K(n, i + q), n, i ∈N, ()

for some integer q ≥ . If condition () is satisfied, then the sequence K is said to be doubly
q-periodic sequence.

Denote Pq = {x ∈ BS : x(n + q) = x(n)}. Let us consider the system of linear equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ax(n) + ax(n + ) + · · · + aqx(n + q – ) = ,

ax(n) + ax(n + ) + · · · + aqx(n + q – ) = ,
...

aqx(n) + aqx(n + ) + · · · + aqqx(n + q – ) = ,

()

where

aij = K(n + i – , n + j – ) for i, j ∈ {, , . . . , q}

and x(n), x(n + ), . . . , x(n + q – ) are the unknowns. Denote the fundamental matrix of
system () by Aq, i.e.,

Aq =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

K(n, n) K(n, n + ) . . . K(n, n + q – )
K(n + , n) K(n + , n + ) . . . K(n + , n + q – )

...
...

. . .
...

K(n + q – , n) K(n + q – , n + ) . . . K(n + q – , n + q – )
K(n + q – , n) K(n + q – , n + ) . . . K(n + q – , n + q – )

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. ()

In the next theorem we give necessary conditions for the existence of a periodic solution
of equation ().
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Theorem  Let conditions () and () hold, and let Aq be the matrix defined by (). If
there exists a q-periodic solution of equation (), then det Aq = .

Proof Let x ∈ Pq be a nontrivial solution of equation (). Then, by (), we have

x(n + ) = x(n + q + ) = a(n + q) + b(n + q)x(n + q) +
n+q∑

i=n

K(n + q, i)x(i).

Hence, using () and (), we get

x(n + ) = a(n) + b(n)x(n) +
n∑

i=n

K(n, i)x(i) +
n+q∑

i=n+

K(n, i)x(i)

= x(n + ) +
n+q∑

i=n+

K(n, i)x(i).

Thus, by the q-periodicity of x and K , we get

r+q∑

i=r+

K(r, i)x(i) = , for r = n, n + , . . . , n + q – . ()

This means that the above system has a nontrivial solution for any n ≥ n. By the period-
icity of the sequences x and K , system () is equivalent to system (). Hence, system ()
has a nontrivial solution, too. Thus det Aq = . This completes the proof. �

Remark  From the proof of Theorem  it follows that if x is a q-periodic solution of (),
then x has the following form

x(n) = (c, c, . . . , cq, c, c, . . . , cq, . . . ),

where (c, c, . . . , cq) is a certain solution of system ().

Example  Let us consider the linear Volterra difference equation of the form (), where
sequences a, b, K are -periodic, n =  and

a(k + ) = , a(k + ) = –, a(k + ) = , k = , , . . . ,

b(k + ) = –, b(k + ) = , b(k + ) = , k = , , . . . ,

and

A =

⎛

⎜⎝
  
  
  

⎞

⎟⎠ .

The considered equation has a -periodic solution x of the form

x(k + ) = , x(k + ) = , x(k + ) = –.

It is easy to check that det A =  and the triple (, , –) is a solution of system ().
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The next example shows that the condition det Aq =  is not sufficient for the existence
of a q-periodic solution of ().

Example  Let us consider the linear Volterra difference equation of the form (), where
sequences a, b, K are -periodic, n =  and

a(k + ) = –, a(k + ) = , k = , , . . . ,

b(k + ) = , b(k + ) = , k = , , . . . ,

A =

(
 
 

)
.

Then det A = , but it is easy to check that the considered equation does not have a -
periodic solution.

For some periodic difference equations and systems, see also, for example, [, ] or
[].
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