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Abstract
Poly-Bernoulli polynomials of the second kind were introduced in Kim et al. (Adv.
Differ. Equ. 2014:219, 2014) as a generalization of the Bernoulli polynomial of the
second kind. Here we investigate those polynomials and derive further results about
them by using umbral calculus.
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1 Introduction
Following Kaneko [], the poly-Bernoulli polynomials have been studied by many re-
searchers in recent decades. Poly-Bernoulli polynomials B(k)

n (x) were defined as
Lik (–e–t )

–e–t ext =
∑

n≥ B(k)
n (x) tn

n! , where Lik(x) =
∑

r≥
xr

rk is the classical polylogarithm func-
tion, which satisfies d

dx Lik(x) = 
x Lik–(x). The poly-Bernoulli polynomials have wide-

ranging applications in mathematics and applied mathematics (see [–]). For k ∈ Z, the
poly-Bernoulli polynomials b(k)

n (x) of the second kind are given by the generating function

Lik( – e–t)
log( + t)

( + t)x =
∑

n≥

b(k)
n (x)

tn

n!
. (.)

When x = , b(k)
n = b(k)

n () are called the poly-Bernoulli numbers of the second kind. When
k = , bn(x) = b()

n (x) are called the Bernoulli polynomial of the second kind (see [–]).
Poly-Bernoulli polynomials of the second kind were introduced as a generalization of the
Bernoulli polynomial of the second kind (see []). The aim of this paper is to use um-
bral calculus to obtain several new and interesting explicit formulas, recurrence relations
and identities of poly-Bernoulli polynomials of the second kind. Umbral calculus has been
used in numerous problems of mathematics. Umbral techniques have been of use in dif-
ferent areas of physics; for example it is used in group theory and quantum mechanics by
Biedenharn et al. (see [–]).

Let � be the algebra of polynomials in a single variable x over C and let �∗ be the vector
space of all linear functionals on �. We denote the action of a linear functional L on a
polynomial p(x) by 〈L|p(x)〉. Define the vector space structure on �∗ by 〈cL + c′L′|p(x)〉 =
c〈L|p(x)〉+c′〈L′|p(x)〉, where c, c′ ∈C (see [–]). We define the algebra of a formal power
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series in a single variable t to be

H =
{

f (t) =
∑

k≥

ak
tk

k!

∣
∣
∣ak ∈C

}

. (.)

The formal power series in the variable t defines a linear functional on � by setting
〈f (t)|xn〉 = an, for all n ≥  (see [–]). Thus

〈
tk|xn〉 = n!δn,k , for all n, k ≥  (see [–]), (.)

where δn,k is the Kronecker symbol. Let fL(t) =
∑

n≥〈L|xn〉 tn

n! . By (.), we have 〈fL(t)|xn〉 =
〈L|xn〉. Thus, the map L �→ fL(t) is a vector space isomorphism from �∗ ontoH. Therefore,
H is thought of as a set of both formal power series and linear functionals. We call H the
umbral algebra. The umbral calculus is the study of the umbral algebra.

Let f (t) be a non-zero power series, the order O(f (t)) is the smallest integer k for which
the coefficient of tk does not vanish. If O(f (t)) =  (respectively, O(f (t)) = ), then f (t) is
called a delta (respectively, an invertable) series. Suppose that f (t) is a delta series and g(t)
is an invertable series, then there exists a unique sequence sn(x) of polynomials such that
〈g(t)(f (t))k|sn(x)〉 = n!δn,k , where n, k ≥ . The sequence sn(x) is called the Sheffer sequence
for (g(t), f (t)) which is denoted by sn(x) ∼ (g(t), f (t)) (see [, ]). For f (t) ∈ H and p(x) ∈
�, we have 〈eyt|p(x)〉 = p(y), 〈f (t)g(t)|p(x)〉 = 〈g(t)|f (t)p(x)〉, and f (t) =

∑
n≥〈f (t)|xn〉 tn

n! and
p(x) =

∑
n≥〈tn|p(x)〉 xn

n! (see [, ]). Thus, we obtain 〈tk|p(x)〉 = p(k)() and 〈|p(k)(x)〉 =
p(k)(), where p(k)() denotes the kth derivative of p(x) with respect to x at x = . Therefore,
we get tkp(x) = p(k)(x) = dk

dxk p(x), for all k ≥  (see [, ]). Thus, for sn(x) ∼ (g(t), f (t)), we
have


g(f̄ (t))

eyf̄ (t) =
∑

n≥

sn(y)
tn

n!
, (.)

for all y ∈ C, where f̄ (t) is the compositional inverse of f (t) (see [, ]). For sn(x) ∼
(g(t), f (t)) and rn(x) ∼ (h(t),�(t)), let sn(x) =

∑n
k= cn,krk(x), then we have

cn,k =

k!

〈
h(f̄ (t))
g(f̄ (t))

(
�
(
f̄ (t)

))k
∣
∣
∣xn

〉

(.)

(see [, ]).
It is immediate from (.) and (.) to see that b(k)

n (x) is the Sheffer polynomial for the
pair g(x) = t

Lik (–e–et )
and f (t) = et – , that is,

b(k)
n (x) ∼

(
t

Lik( – e–et )
, et – 

)

. (.)

The aim of the present paper is to present several new identities for the poly-Bernoulli
polynomials by the use of umbral calculus.
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2 Explicit expressions
Before proceeding, we observe that

Lik
(
 – e–t) =

∑

r≥


rk

(
 – e–t)r =

∑

r≥

(–)r

rk

(
e–t – 

)r

=
∑

r≥

(–)rr!
rk

∑

�≥r

S(�, r)
(–t)�

�!
=

∑

r≥

∑

�≥r

(–)r+�r!
rk S(�, r)

t�

�!

=
∑

�≥

�∑

r=

(–)r+�r!
rk S(�, r)

t�

�!
, (.)

where S(n, k) is the Stirling number of the second kind, which is defined by the identity
xn =

∑n
k= S(n, k)(x)k with (x) =  and (x)k = x(x – ) · · · (x – k + ). This shows


t

Lik
(
 – e–t) =

∑

�≥

�+∑

r=

(–)r+�+r!
rk

S(� + , r)
� + 

t�

�!
. (.)

Thus,

Lik
(
 – e–et )

=
∑

r≥

∑

�≥r

(–)r+�r!
rk S(�, r)

(et – )�

�!

=
∑

r≥

∑

�≥r

∑

m≥�

(–)r+�r!
rk S(�, r)S(m,�)

tm

m!

=
∑

m≥

m∑

r=

m∑

�=r

(–)r+�r!
rk S(�, r)S(m,�)

tm

m!
,

which implies that


t

Lik
(
 – e–et )

=
∑

m≥

m+∑

r=

m+∑

�=r

(–)r+�r!
rk S(�, r)S(m + ,�)

tm

(m + )!
. (.)

Now, we are ready to present several formulas for the nth poly-Bernoulli polynomials
of the second kind.

Theorem . For all n ≥ ,

b(k)
n (x) =

n∑

m=

n∑

j=m

j–m+∑

r=

j–m+∑

�=r

(–)r+�

j – m + 
r!
rk

(
n – 
j – 

)(
j

m

)

S(�, r)S(j – m + ,�)B(n)
n–jx

m.

Proof Since xn ∼ (, t) and t
Lik (–e–et )

b(k)
n (x) ∼ (, et – ) (see (.)), we obtain

t
Lik( – e–et )

b(k)
n (x) = x

(
t

et – 

)n

xn– = x
(∑

j≥

B(n)
j

tj

j!

)

xn–

= x
n–∑

j=

(
n – 

j

)

B(n)
j xn––j =

n∑

j=

(
n – 
j – 

)

B(n)
n–jx

j.
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Thus, by (.) we have

b(k)
n (x) =

n∑

j=

(
n – 
j – 

)

B(n)
n–j

Lik( – e–et )
t

xj

=
n∑

j=

(
n – 
j – 

)

B(n)
n–j

( j∑

m=

m+∑

r=

m+∑

�=r

(–)r+�r!
rk S(�, r)S(m + ,�)

tm

(m + )!

)

xj

=
n∑

j=

j∑

m=

m+∑

r=

m+∑

�=r

(–)r+�

m + 
r!
rk

(
n – 
j – 

)(
j

m

)

S(�, r)S(m + ,�)B(n)
n–jx

j–m

=
n∑

j=

j∑

m=

j–m+∑

r=

j–m+∑

�=r

(–)r+�

j – m + 
r!
rk

(
n – 
j – 

)(
j

m

)

S(�, r)S(j – m + ,�)B(n)
n–jx

m,

which completes the proof. �

Let S(n, k) be the Stirling number of the first kind, which is defined by the identity (x)n =
∑n

j= S(n, k)xk . Now, we are ready to present our second explicit formula.

Theorem . For all n ≥ ,

b(k)
n (x) =

n∑

m=

n∑

j=m

j–m+∑

r=

j–m+∑

�=r

(–)r+�

j – m + 
r!
rk

(
j

m

)

S(n, j)S(�, r)S(j – m + ,�)xm.

Proof Note that (x)n =
∑n

j= S(n, j)xj ∼ (, et – ). So, by (.) we have t
Lik (–e–et )

b(k)
n (x) ∼

(, et – ), which implies that

b(k)
n (x) =

n∑

j=

S(n, j)
Lik( – e–et )

t
xj. (.)

Thus, by (.) and using the arguments in the proof of Theorem ., we obtain the required
formula. �

For the next explicit formula, we use the conjugation representation, namely (.).

Theorem . For all n ≥ ,

b(k)
n (x) = b(k)

n +
n∑

j=


j

( n–∑

m=j–

n–m∑

r=

(–)r+n–mr!
rk

(
n
m

)

S(m, j – )S(n – m, r)

)

xj.

Proof By (.) and (.), we have b(k)
n (x) =

∑n
j= cn,jxj, where

j!cn,j =
〈(

g
(
f̄ (t)

))– f̄ j(t)|xn〉 =
〈

Lik( – e–t)
log( + t)

(
log( + t)

)j
∣
∣
∣xn

〉

.
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If j = , then cn, = b(k)
n . Thus, assume now that  ≤ j ≤ n. So

j!cn,j =
〈
Lik

(
 – e–t)(log( + t)

)j–|xn〉

=
〈

Lik
(
 – e–t)

∣
∣
∣(j – )!

∑

m≥j–

S(m, j – )
tm

m!
xn

〉

= (j – )!
n∑

m=j–

(
n
m

)

S(m, j – )
〈
Lik

(
 – e–t)|xn–m〉

,

which, by (.), implies that

j!cn,j = (j – )!
n∑

m=j–

(
n
m

)

S(m, j – )

〈
∑

�≥

�∑

r=

(–)r+�r!
rk S(�, r)

t�

�!

∣
∣
∣
∣x

n–m

〉

= (j – )!
n∑

m=j–

(
n
m

)

S(m, j – )

(n–m∑

r=

(–)r+n–mr!
rk S(n – m, r)

)

,

which completes the proof. �

In order to state our next formula, we recall that bn(x) = b()
n (x) is the Bernoulli poly-

nomial of the second kind, which is given by the generating function t
log(+t) ( + t)x =

∑
n≥ bn(x) tn

n! .

Theorem . For all n ≥ ,

b(k)
n (x) =


n + 

n∑

j=

(
n + 

j

)
(
B(k)

n+–j – B(k)
n+–j(–)

)
b�(x),

where B(k)
n (x) is the nth poly-Bernoulli polynomial.

Proof From the definitions, we have

b(k)
n (y) =

〈∑

�≥

b(k)
� (y)

t�

�!

∣
∣
∣xn

〉

=
〈

Lik( – e–t)
log( + t)

( + t)y
∣
∣
∣xn

〉

=
〈

e–t – 
–t

Lik( – e–t)
 – e–t

t
log( + t)

( + t)y
∣
∣
∣xn

〉

=
〈

e–t – 
–t

Lik( – e–t)
 – e–t

∣
∣
∣

t
log( + t)

( + t)yxn
〉

=
〈

e–t – 
–t

Lik( – e–t)
 – e–t

∣
∣
∣
∑

�≥

b�(y)
t�

�!
xn

〉

.

Since B(k)
n (x) is the poly-Bernoulli polynomial given by the generating function Lik (–e–t )

–e–t ×
ext =

∑
n≥ B(k)

n (x) tn

n! , we have Lik (–e–t )
–e–t xn = B(k)

n (x) and d
dx B(k)

n (x) = nB(k)
n–(x). Thus b(k)

n (y) =
∑n

�=
(n
�

)
b�(y)〈 e–t–

–t |B(k)
n–�(x)〉. By the fact that 〈f (at)|p(x)〉 = 〈f (t)|p(ax)〉 for constant a (see
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Proposition .. in []), we obtain

b(k)
n (y) =

n∑

�=

(
n
�

)

b�(y)
〈

et – 
t

∣
∣
∣B(k)

n–�(–x)
〉

.

Note that 〈 et–
t |B(k)

n–�(–x)〉 =
∫ 

 B(k)
n–�(–u) du = 

n+–�
(B(k)

n+–� – B(k)
n+–�(–)), which leads to

b(k)
n (y) =

n∑

�=

(
n
�

)

b�(y)


n +  – �

(
B(k)

n+–� – B(k)
n+–�(–)

)

=


n + 

n∑

j=

(
n + 

j

)
(
B(k)

n+–j – B(k)
n+–j(–)

)
b�(y),

which completes the proof. �

Theorem . For all n ≥ ,

b(k)
n (x) =

n∑

m=

(
n
m

)[m+∑

r=

(–)r+m+ r!S(m + , r)
rk(m + )

]

bn–m(x).

Proof By using a similar argument as in the proof of Theorem ., we obtain

b(k)
n (y) =

〈
Lik( – e–t)

t
t

log( + t)
( + t)y

∣
∣
∣xn

〉

=
〈

Lik( – e–t)
t

∣
∣
∣
∑

m≥

bm(y)
tm

m!
xn

〉

=
n∑

m=

(
n
m

)

bm(y)
〈

Lik( – e–t)
t

∣
∣
∣xn–m

〉

,

which, by (.), gives

b(k)
n (y) =

n∑

m=

(
n
m

)

bm(y)

〈
∑

�≥

�+∑

r=

(–)r+�+r!
rk

S(� + , r)
� + 

t�

�!

∣
∣
∣
∣x

n–m

〉

=
n∑

m=

(
n
m

)

bm(y)

(n–m+∑

r=

(–)r+n–m+r!
rk

S(n – m + , r)
n – m + 

)

=
n∑

m=

(
n
m

)[m+∑

r=

(–)r+m+ r!S(m + , r)
rk(m + )

]

bn–m(y),

as required. �

Note that the statement of Theorem . has been obtained in Theorem . of [].

3 Recurrence relations
By (.) we have b(k)

n (x) ∼ ( t
Lik (–e–et )

, et – ) with Pn(x) = t
Lik (–e–et )

b(k)
n (x) = (x)n = x(x –

) · · · (x – n + ) ∼ (, et – ). Thus,

b(k)
n (x + y) =

n∑

j=

(
n
j

)

b(k)
j (x)(y)n–j.
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The aim of this section is to derive recurrence relations for the poly-Bernoulli polynomials
of the second kind. As first trivial recurrence, by using the fact that if Sn(x) ∼ (g(t), f (t))
then f (t)Sn(x) = nSn–(x), we derive that (et – )b(k)

n (x) = nb(k)
n–(x), and hence b(k)

n (x + ) =
b(k)

n (x) + nb(k)
n–(x). Our next results establish other types of recurrence relations.

Theorem . For all n ≥ ,

b(k)
n+(x) = xb(k)

n (x – )

+
n∑

j=

j+∑

�=

j+–�∑

m=


m

(
j

m – 

)

S(n, j)S(j +  – m,�)
(
B(k–)

� (–)xm – b(k)
� (x – )m)

.

Proof It is well known that if Sn(x) ∼ (g(t), f (t)) then Sn+(x) = (x – g′(t)
g(t) ) 

f ′(t) Sn(x). Hence,
by (.), we have

b(k)
n+(x) = xb(k)

n (x – ) – e–t g ′(t)
g(t)

b(k)
n (x)

with

g ′(t)
g(t)

=
(
log

(
g(t)

))′ =
(
log t – log Lik

(
 – e–et ))′ =


t

(

 –
tete–et Lik–( – e–et )
( – e–et )Lik( – e–et )

)

,

where  – tete–et
Lik–(–e–et

)
(–e–et )Lik (–e–et )

has order at least one. Thus, by (.), we get

–e–t g ′(t)
g(t)

b(k)
n (x) =

–e–t

t

(

 –
tete–et Lik–( – e–et )
( – e–et )Lik( – e–et )

) n∑

j=

S(n, j)
Lik( – e–et )

t
xj

= –
n∑

j=

S(n, j)
j + 

(
e–tLik( – e–et )
log( + et – )

–
e–et Lik–( – e–et )

( – e–et )

)

xj+

= –
n∑

j=

S(n, j)
j + 

(

e–t
∑

�≥

b(k)
�

(et – )�

�!
–

∑

�≥

B(k–)
� (–)

(et – )�

�!

)

xj+,

where

e–t
∑

�≥

b(k)
�

(et – )�

�!
xj+

= e–t
j+∑

�=

b(k)
�

j+∑

m=�

S(m,�)
tm

m!
xj+ = e–t

j+∑

�=

j+∑

m=�

(
j + 
m

)

b(k)
� S(m,�)xj+–m

= e–t
j+∑

�=

j+–�∑

m=

(
j + 
m

)

b(k)
� S(j +  – m,�)xm

=
j+∑

�=

j+–�∑

m=

(
j + 
m

)

b(k)
� S(j +  – m,�)(x – )m
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and

∑

�≥

B(k–)
� (–)

(et – )�

�!
xj+ =

j+∑

�=

B(k–)
� (–)

j+∑

m=�

S(m,�)
tm

m!
xj+

=
j+∑

�=

j+∑

m=�

(
j + 
m

)

S(m,�)B(k–)
� (–)xj+–m

=
j+∑

�=

j+–�∑

m=

(
j + 
m

)

S(j +  – m,�)B(k–)
� (–)xm.

Thus,

b(k)
n+(x) = xb(k)

n (x – )

+
n∑

j=

S(n, j)
j + 

j+∑

�=

j+–�∑

m=

(
j + 
m

)

S(j +  – m,�)
(
B(k–)

� (–)xm – b(k)
� (x – )m)

= xb(k)
n (x – )

+
n∑

j=

j+∑

�=

j+–�∑

m=


m

(
j

m – 

)

S(n, j)S(j +  – m,�)
(
B(k–)

� (–)xm – b(k)
� (x – )m)

,

which completes the proof. �

Theorem . For all n ≥ , d
dx b(k)

n (x) = n!
∑n–

�=
(–)n––�

�!(n–�) b(k)
� (x).

Proof We proceed in the proof by using the fact that if Sn(x) ∼ (g(t), f (t)) then

d
dx

Sn(x) =
n–∑

�=

(
n
�

)
〈
f̄ (t)|xn–�

〉
S�(x).

By (.), we have 〈f̄ (t)|xn–�〉 = 〈log( + t)|xn–�〉, which leads to

〈
f̄ (t)|xn–�

〉
=

〈∑

m≥

(–)m–(m – )!
tm

m!

∣
∣
∣xn–�

〉

= (–)n––�(n –  – �)!.

Thus d
dx b(k)

n (x) = n!
∑n–

�=
(–)n––�

�!(n–�) b(k)
� (x), as required. �

Theorem . For all n ≥ ,

b(k)
n (x) = xb(k)

n–(x – ) +

n

n∑

�=

(
n
�

)
(
B(k–)

� (–)bn–�(x) – b(k)
� bn–�(x – )

)
.

Proof Let n ≥ . Then (.), we have

b(k)
n (y) =

〈
Lik( – e–t)
log( + t)

( + t)y
∣
∣
∣xn

〉

=
〈

d
dt

[
Lik( – e–t)
log( + t)

( + t)y
]∣
∣
∣xn–

〉

=
〈

Lik( – e–t)
log( + t)

d
dt

[
( + t)y]

∣
∣
∣xn–

〉

+
〈

d
dt

[
Lik( – e–t)
log( + t)

]

( + t)y
∣
∣
∣xn–

〉

. (.)
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The first term in (.) is given by

〈
Lik( – e–t)
log( + t)

d
dt

[
( + t)y]

∣
∣
∣xn–

〉

= y
〈

Lik( – e–t)
log( + t)

( + t)y–
∣
∣
∣xn–

〉

= yb(k)
n–(y – ). (.)

For the second term in (.), we note that

d
dt

[
Lik( – e–t)
log( + t)

]

( + t)y =

t

t
log( + t)

(
Lik–( – e–t)

 – e–t e–t –
Lik( – e–t)
log( + t)


 + t

)

( + t)y

=

t

(
t( + t)y

log( + t)
Lik–( – e–t)

 – e–t e–t –
t( + t)y–

log( + t)
Lik( – e–t)
log( + t)

)

,

which has order at least zero. So, the second term in (.) is given by

〈
d
dt

[
Lik( – e–t)
log( + t)

]

( + t)y
∣
∣
∣xn–

〉

=

n

(〈
t

log( + t)
( + t)y

∣
∣
∣
Lik–( – e–t)

 – e–t e–txn
〉

–
〈

t
log( + t)

( + t)y–
∣
∣
∣
Lik( – e–t)
log( + t)

xn
〉)

=

n

(〈
t

log( + t)
( + t)y

∣
∣
∣
∑

�≥

B(k–)
� (–)

t�

�!
xn

〉

–
〈

t
log( + t)

( + t)y–
∣
∣
∣
∑

�≥

b(k)
�

t�

�!
xn

〉)

=

n

( n∑

�=

(
n
�

)

B(k–)
� (–)

〈
t

log( + t)
( + t)y

∣
∣
∣xn–�

〉

–
n∑

�=

(
n
�

)

b(k)
�

〈
t

log( + t)
( + t)y–

∣
∣
∣xn–�

〉)

=

n

( n∑

�=

(
n
�

)

B(k–)
� (–)bn–�(y) –

n∑

�=

(
n
�

)

b(k)
� bn–�(y – )

)

=

n

n∑

�=

(
n
�

)
(
B(k–)

� (–)bn–�(y) – b(k)
� bn–�(y – )

)
. (.)

By substituting (.) and (.) into (.), we complete the proof. �

4 Identities
In this section we present some identities related to poly-Bernoulli numbers of the second
kind.

Theorem . For all n ≥ ,

n∑

�=

(–)n–�(n – �)!
(

n + 
�

)

b(k)
� =

n∑

m=

(–)n–m
(

n
m

)

B(k–)
m .
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Proof We compute A = 〈Lik( – e–t)|xn+〉 in two different ways. On the one hand, by (.),
it is

A =
〈

Lik( – e–t)
log( + t)

∣
∣
∣ log( + t)xn+

〉

=
〈

Lik( – e–t)
log( + t)

∣
∣
∣
∑

�≥

(–)�–t�

�
xn+

〉

=
n∑

�=

(–)n–�(n – �)!
(

n + 
�

)〈
Lik( – e–t)
log( + t)

∣
∣
∣x�

〉

=
n∑

�=

(–)n–�(n – �)!
(

n + 
�

)

b(k)
� . (.)

On the other hand, by (.), it is

A =
〈
Lik

(
 – e–t)|xn+〉 =

〈∫ t



d
ds

Lik
(
 – e–s)ds

∣
∣
∣xn+

〉

=
〈∫ t


e–s Lik–( – e–s)

 – e–s ds
∣
∣
∣xn+

〉

=
〈∫ t



∑

a≥

(–s)a

a!
∑

m≥

B(k–)
m

sm

m!
ds

∣
∣
∣xn+

〉

=

〈
∑

�≥

�∑

m=

(–)�–m
(

�

m

)

B(k–)
m

t�+

(� + )!

∣
∣
∣xn+

〉

=
n∑

m=

(–)n–m
(

n
m

)

B(k–)
m . (.)

By comparing (.) and (.), we obtain the required identity. �

By using similar techniques as in the proof of Theorem . with computing

〈
Lik( – e–t)
log( + t)

(
log( + t)

)m
∣
∣
∣xn

〉

in two different ways, we obtain the following result (we leave the proof as an exercise to
the interested reader).

Theorem . For all n –  ≥ m ≥ ,

n–m∑

�=

(
n
�

)

S(n – �, m)b(k)
�

=
n–m∑

�=

(
n – 

�

)

S(n –  – �, m – )b(k)
� (–)

+

n

n––m∑

�=

�+∑

j=

(
n

� + 

)(
� + 

j

)

S(n –  – �, m)
(
b�+–jB(k–)

j (–) – b�+–j(–)b(k)
j

)
.

Let b(k)
n (x) =

∑n
m= cn,m(x)m. By (.), (.) and the fact that (x)m ∼ (, et – ), we obtain

cn,m =


m!

〈
Lik( – e–t)
log( + t)

∣
∣
∣tmxn

〉

=
(

n
m

)〈
Lik( – e–t)
log( + t)

∣
∣
∣xn–m

〉

=
(

n
m

)

b(k)
n–m,

which leads to the following identity.
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Theorem . For all n ≥ ,

b(k)
n (x) =

n∑

m=

(
n
m

)

b(k)
n–m(x)m.

LetB(s)
n (x) be the nth Bernoulli polynomial of order s. ThenB

(s)
n (x) ∼ (((et –)/t)s, t). Also,

the Bernoulli numbers of the second kind of order s are given by ts

logs(+t) =
∑

j≥ b(s)
j

tj

j! and
let b(k)

n (x) =
∑n

m= cn,mB
(s)
m (x). By (.) and (.), we obtain

cn,m =


m!

〈 ts

logs(+t)
log(+t)

Lik (–e–t )

logm( + t)
∣
∣
∣xn

〉

=


m!

〈
Lik( – e–t)
log( + t)

ts

logs( + t)

∣
∣
∣ logm( + t)xn

〉

=


m!

〈
Lik( – e–t)
log( + t)

ts

logs( + t)

∣
∣
∣m!

∑

�≥m

S(�, m)
t�

�!
xn

〉

=
n∑

�=m

(
n
�

)

S(�, m)
〈

Lik( – e–t)
log( + t)

ts

logs( + t)

∣
∣
∣xn–�

〉

=
n–m∑

�=

(
n
�

)

S(n – �, m)
〈

Lik( – e–t)
log( + t)

∣
∣
∣

ts

logs( + t)
x�

〉

=
n–m∑

�=

(
n
�

)

S(n – �, m)
〈

Lik( – e–t)
log( + t)

∣
∣
∣
∑

j≥

b(s)
j

tj

j!
x�

〉

=
n–m∑

�=

�∑

j=

(
n
�

)(
�

j

)

S(n – �, m)b(s)
j

〈
Lik( – e–t)
log( + t)

∣
∣
∣x�–j

〉

=
n–m∑

�=

�∑

j=

(
n
�

)(
�

j

)

S(n – �, m)b(s)
j b(k)

�–j,

which gives the following identity.

Theorem . For all n ≥ ,

b(k)
n (x) =

n∑

m=

(n–m∑

�=

�∑

j=

(
n
�

)(
�

j

)

S(n – �, m)b(s)
j b(k)

�–j

)

B
(s)
m (x).

Define H (s)
n (λ, x) to be the nth Frobenius-Euler polynomials of order s. Note that these

polynomial satisfy H (s)
n (λ, x) ∼ (((et – λ)/( – λ))s, t). Let b(k)

n (x) =
∑n

m= cn,mH (s)
m (λ, x). By

(.) and (.), we obtain

cn,m =


m!

〈 (+t–λ)s

(–λ)s

log(+t)
Lik (–e–t )

logm( + t)
∣
∣
∣xn

〉

=


m!( – λ)s

〈
Lik( – e–t)
log( + t)

logm( + t)
∣
∣
∣( – λ + t)sxn

〉

=


m!( – λ)s

n–m∑

j=

(
s
j

)

( – λ)s–j(n)j

〈
Lik( – e–t)
log( + t)

∣
∣
∣ logm( + t)xn–j

〉

=


m!( – λ)s

n–m∑

j=

(
s
j

)

( – λ)s–j(n)j

〈
Lik( – e–t)
log( + t)

∣
∣
∣m!

∑

�≥m

S(�, m)
t�

�!
xn–j

〉
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=
n–m∑

j=

n–j∑

�=m

(
s
j

)(
n – j

�

)

S(�, m)( – λ)–j(n)j

〈
Lik( – e–t)
log( + t)

∣
∣
∣xn–j–�

〉

=
n–m∑

j=

n–j∑

�=m

(
s
j

)(
n – j

�

)

S(�, m)( – λ)–j(n)jb(k)
n–j–�

=
n–m∑

j=

n–m–j∑

�=

(
s
j

)(
n – j

�

)

S(n – j – �, m)( – λ)–j(n)jb(k)
� ,

which gives the following identity.

Theorem . For all n ≥ ,

b(k)
n (x) =

n∑

m=

(n–m∑

j=

n–m–j∑

�=

(
s
j

)(
n – j

�

)

S(n – j – �, m)( – λ)–j(n)jb(k)
�

)

H (s)
m (λ, x).
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