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Abstract
In the present paper, a discrete optimization problem with rather general input data
(without assumptions of convexity and smoothness) is considered. Taking into
account the specific character of the discrete system, a necessary optimality condition
which is not formulated in terms of the Hamilton-Pontryagin function is obtained.

Keywords: optimality conditions; discrete systems; maximum principle

1 Introduction
A problem of optimal control of discrete systems arises in planning economics, optimiza-
tion of complex technological systems in different issues of organization of production and
investigation of operations, and also in controlling continuous processes are using up-to-
date computer technologies. The Bellman dynamic programming method [] is universal
for optimal processes in discrete systems. But its application to concrete problems may be
less effective [] than the use of necessary optimality condition as Pontryagin’s maximum
principle []. Historically, the theory of discrete processes has followed the Pontryagin
maximum principle for continuous optimal control problems that is reduced to attempts
for formulating the discrete analog of the maximum principle. Butkovskii [] first showed
that unlike the continuous case, a direct extension of Pontryagin’s maximum principle to
discrete systems is impossible in general. Naturally such characteristics of these systems is
of theoretical interest for researchers. In this connection, some researchers ([, –] and
others) imposing extra conditions (for example, condition of convexity of the set of admis-
sible velocities of the system, convexity in direction and so on) established that, subject to
these conditions, the maximum principle is valid for discrete control systems. Following
[], many researchers [, –] tried to prove the maximum principle in the weakened
form (local maximum, stationary) and obtained the higher order optimality conditions.

In spite of the fact that in the problems of optimization of discrete systems, there are
many various and important results ([, , –] and others) the issue of necessary opti-
mality conditions is still far from being completed. To begin with this concerns the gener-
ality of the conditions of input data of the problem under investigation. Therefore, there is
necessity to study thoroughly the issues of the optimization of discrete optimal problems.

In the present paper, we consider a discrete optimization problem with rather general
input data (without assumptions of convexity and smoothness) and taking into account
the specific character (see Lemma ) of the discrete system, we get a necessary optimality
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condition that is not formulated by the Hamilton-Pontryagin function. It should be noted
that this optimality condition is characterized by the three peculiarities.

Firstly, this optimality condition permits to replace the many-dimensional minimization
problem by the sequence of problems of less dimensions, i.e. the optimization problem
under investigation, for each discrete time is reduced to minimization of the function of
r variables, where r is the dimension of the control vector.

Secondly, considering some special optimization problems (including the problems with
quadratic and special non-smooth quality criteria), it is proved that this condition contains
the known and also new effective necessary optimality conditions, and some of them are
different strengthenings of the discrete maximum principle.

Thirdly, this condition has a wide scope, it is stronger than the discrete maximum prin-
ciple, the linearized maximum principle, the optimality condition of Euler type and local
optimality conditions formulated in terms of different types of star neighborhoods (see
Examples -) and it is very useful when applying the contraction of the control sets sus-
picious for optimality that are highlighted with the help of more constructive local con-
ditions. In conclusion, we give examples illustrating the richness of the content of the
obtained results.

2 Problem statement
It is required to minimize the functional

S(u) = �
(
x(t)

)
()

on the solutions of the discrete system

x(t + ) = f
(
x(t), u(t), t

)
, t ∈ T , x(t) = x∗, ()

under the constraint

u(t) ∈ U(t), t ∈ T . ()

Here x = (x, . . . , xn)′ is a state vector (′ (the prime) is the transposition operation),
u = (u, . . . , ur)′ is a control vector, t is time (discrete), x∗ is the given vector, T = {t, t +
, . . . , t –}; U(t), t ∈ T are sets of r-dimensional Euclidean space Er ; �(x), x ∈ En, f (x, u, t),
(x, u, t) ∈ En × Er × [t, t], are continuous functions.

The control u(t), t ∈ T , responding to constraint (), will be said to be admissible; the
admissible control u(t), t ∈ T , and the corresponding solution x(t), t ∈ T ∪ {t}, of the
system (), for which the functional () takes the least value, will be called optimal. In this
case each pair (u(t), x(t)) is called an optimal process.

Note that if in problem ()-(), U(t), t ∈ T , are bounded, closed, and non-empty sets,
then the optimal control u(t) exists for any initial state x∗ [, p.].

2.1 Formula of increment in quality functional
Let u(t), ũ(t), t ∈ T , be admissible controls; call the vector �u(t) = ũ(t) – u(t), t ∈ T ,
be an admissible increment of the control u(t), t ∈ T . Call the increment �u(t), t ∈ T ,
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special and denote it by the symbol �∗u(t), t ∈ T , if

�∗u(t) =

⎧
⎪⎨

⎪⎩

v – u(θ ), t = θ ∈ T\{t – },
ṽ – u(θk), t = θk = θ + k ∈ {θ, θ, . . .} ∩ T ,
, t ∈ T\{θ , θk},

()

where v ∈ U(θ ), ṽ ∈ U(θk).
By (), the solutions x(t), x̃(t), t ∈ T ∪ {t}, correspond to the controls u(t), ũ(t), t ∈ T .

The vector �x(t) = x̃(t) – x(t), t ∈ T ∪ {t}, is called an increment of the solution x(t),
which corresponds to the increment �u(t). To the special increment () there corresponds
the special increment �∗x(t), t ∈ T ∪ {t}, which satisfies the discrete system of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�∗x(t + ) = f (x(t) + �∗x(t), u(t) + �∗u(t), t) – f (x(t), u(t), t),
t ∈ {θ, θ, . . .} ∩ T ,

�∗x(θ) = �vf (x(θ ), u(θ ), θ ), �∗x(t) = ,
t ∈ {t, . . . , θ}, θi = θ + i, i = , , . . . ,

()

where �vf (x(θ ), u(θ ), θ ) = f (x(θ ), v, θ ) – f (x(θ ), u(θ ), θ ).
Along with the system () consider the discrete system corresponding to the process

(u(t), x(t)) of the following form:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z(t + ; u, x,α,αk) = f (x(t) + z(t; u, x,α,αk), u(t), t) – f (x(t), u(t), t),
t ∈ {θk+, θk+, . . .} ∩ T ,

z(θk+; u, x,α,αk) = f (x(θk) + z(θk ; u, x,α), ṽ, θk) – f (x(θk), u(θk), θk),
if t = θ k ∈ T ,

z(t + ; u, x,α) = f (x(t) + z(t; u, x,α), u(t), t) – f (x(t), u(t), t),
t ∈ {θ, θ, . . . , θk–} ∩ T ,

z(θ; u, x,α) = �vf (x(θ ), u(θ ), θ ), θ ∈ T ,

()

where α = (θ , v) ∈ T × U(θ ), αk = (θk , ṽ) ∈ {θ, θ, . . .} ∩ T × U(θk).
As is seen, the solution z(t; u, x,α,αk), t ∈ {θ, θ, . . . , t} of the system (), at the points

θ, θ, . . . , θk ∈ T depends only on the parameter α, and therefore in a part of the system
() the denotation of the form z(t; u, x,α) is used. Since the system () is recurrent, it is
not difficult to find its solution for concrete θ , θk , v, ṽ. It should be noted that the system
() plays an important role in the investigation of problem ()-().

Lemma  If z(t; u, x,α,αk) is the solution of the system (), which corresponds to the pro-
cess (u(t), x(t)), then for the solution �∗x(t), T ∪ {t} of the system () corresponding to
the increment () the following representations hold:

(a) �∗x(t) = z(t; u, x,α), if t ∈ {θ, . . . , θk},
(b) �∗x(t) = z(t; u, x,α,αk), if t ∈ {θk+, θk+, . . .} ∩ {t, . . . , t}.

For proving Lemma  it suffices to solve the system () by the steps method taking into
account () and ().

Let x(t), t ∈ T ∪ {t} be the solution of the system () corresponding to the admissible
control u(t), t ∈ T . Following [], we introduce the set

U
[
x(·)](t) =

{
û ∈ U(t) : f

(
x(t), û, t

)
= f

(
x(t), u(t), t

)}
, t ∈ T . ()
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Note that the sets U[x(·)](t), t ∈ T , are non-empty and even if one set U[x(·)](θ ) con-
sists of at least two elements, then it permits one to acquire additional information on the
optimality of the control u(t), t ∈ T (see Example ). We also underline that in most cases
it is not difficult to find the elements of the set U[x(·)](θ ), θ ∈ T . For example in problem
()-(), if f (x(t), u(t), t) = g(x(t)) + A(x(t), t)u(t), t ∈ T , finding of the elements of the set
U[x(·)](θ ) is reduced to the solution of the linear algebraic system of equations.

Lemma  If the control u(t), t ∈ T , is optimal, then any control û(t) ∈ U[x(·)](t), t ∈ T ,
is optimal, and the pair (û(t), x(t)) is an optimal process.

The proof of Lemma  easily follows from the definition of the set ().
Now let us consider the special increment �∗S(u) = S(ũ(t)) – S(u(t)) of the functional

(), corresponding to two admissible controls u(t), ũ(t) = u(t) + �∗u(t), t ∈ T , where
�∗u(t), t ∈ T , is defined by (). Taking into account Lemma , we get a formula for the
increment �∗S(u), caused by the increment ():

�∗S
(
u) = �

(
x(t) + z

(
t; u, x,α,αk

))
– �

(
x(t)

)
. ()

3 Optimality conditions
Theorem  Let u(t), t ∈ T , be an admissible control, x(t), t ∈ T , be the corresponding
solution of the system (). Then:

(a) For the optimality of the control u(t), t ∈ T it is necessary that for any
û(t) ∈ U[x(·)](t), t ∈ T , and for all α = (θ , v) ∈ T\{t – } × U(θ ),
αk = (θk , ṽ) ∈ {θ, θ, . . .} ∩ T × U(θk), the following inequality be fulfilled:

�
(
x(t) + z

(
t; û, x,α,αk

))
– �

(
x(t)

) ≥ , ()

where z(t; û, x,α,αk) is the solution of the system (), corresponding to the process
(û(t), x(t)).

(b) If: () in addition to the conjectures of (a) the set T consists of at most two points
(T = {t, t + }, t = t + ) and () even if along one control û(t) ∈ U[x(·)](t), t ∈ T ,
for instance along the control u(t), t ∈ T , the inequality () is fulfilled for all
α = (t, v), v ∈ U(t), α = (t + , ṽ), ṽ ∈ U(t + ), then the control u(t), t ∈ T , is an
optimal control.

Proof Taking into account the optimality condition �∗S(u) ≥  and Lemma , from ()
we get the proof of the statement (a) of the theorem. Now let us prove statement (b). Since
the set T consists of at most two points, the increment () is arbitrary. Therefore by ()
and () we have

�S
(
u) = S

(
u(t)

)
– S

(
u(t)

) ≥  for all u(t) = u(t) + �u(t) ∈ U(t).

Hence it follows that the admissible control u(t), t ∈ T , is an optimal control. Statement
(b) and consequently the theorem is proved. �

Remark  Introducing the function λ(t; û, x,α,αk) = x(t) + z(t; û, x,α,αk), t ∈ T , we can
write the condition () in the form

�
(
λ
(
t; û, x,α,αk

))
– �

(
x(t)

) ≥ ,
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where by (), (), λ(·) is the solution of the system:

λ
(
t + ; û, x,α,αk

)
= f

(
λ
(
t; û, x,α,αk

)
, û(t), t

)
, t ∈ {θk+, θk+, . . .} ∩ T ,

λ
(
θk+; û, x,α,αk

)
= f

(
λ
(
θk ; û, x,α

)
, ṽ, θk

)
, θk = θ + k ∈ T ,

λ
(
t + ; û, x,α

)
= f

(
λ
(
t; û, x,α

)
, û(t), t

)
, t ∈ {θ, θ, . . . , θk–},

λ
(
θ; û, x,α

)
= f

(
x(θ ), v, θ

)
, θ ∈ T\{t – }.

Below we show the proved theorem has as a particular case a number of known and also
new efficient (both in verification and computational aspects) optimality conditions.

Corollary  For the optimality of the admissible control u(t), t ∈ T , it is necessary that
for any û(t) ∈ U[x(·)](t), t ∈ T , and for all α = (θ , v) ∈ T\{t – } × U(θ ), ∀ṽ ∈ U(t – ),
the following inequalities be fulfilled:

�
(
f
(
x(t – ), ṽ, t – 

))
– �

(
f
(
x(t – ), u(t – ), t – 

)) ≥ , ()

�
(
f
(
x(t – ) + z

(
t – ; û, x,α

)
, û(t – ), t – 

))

– �
(
f
(
x(t – ), û(t – ), t – 

)) ≥ , ()

where z(t; û, x,α) is the solution of the system

⎧
⎪⎨

⎪⎩

z(t + ; û, x,α) = f (x(t) + z(t; û, x,α), û(t), t) – f (x(t), u(t), t),
t ∈ {θ, θ, . . .} ∩ T ,

z(θ; û, x,α) = �vf (x(θ ), u(θ ), θ ), θ ∈ T , v ∈ U(θ ).
()

Proof Let α = (θ , û(θ )), αk = (t –, ṽ), where θ ∈ T\{t –}, û(θ ) ∈ U[x(·)](θ ), ṽ ∈ U(t –).
Then taking into account () for the solution of the system () corresponding to the process
(û(t), x(t)), we have z(t; û, x,α,αk) = �ṽf (x(t – ), û(t – ), t – ).

The validity of the condition () follows from (). Further, if α = (θ , v) ∈ T\{t – } ×
U(θ ), αk = (θk , û(θk)) ∈ {θ, θ, . . .} ∩ T × U[x(·)](θk), then by (), (), from () we get con-
dition (). Thus, Corollary  is proved. �

Corollary  Let: () the vector function f (x, u, t) be linear with respect to x, i.e. f (x, u, t) =
A(u, t)x+b(u, t), where A(u, t) is a matrix function of n×n order, b(u, t) is an n-dimensional
vector function, and () the quality criterion has the form � = c′x + x′n, where c is an
n-dimensional vector, D is a matrix of n × n order. Then for the optimality of the control
u(t), t ∈ T , it is necessary that for any û(t) ∈ U[x(·)](t), t ∈ T , the following inequalities
be fulfilled:

(a)

d′z
(
t; û, x,α,αk

)
+




z′(t; û, x,α,αk
)(

D + D′)z
(
t; û, x,α,αk

) ≥  ()

for all α = (θ , v) ∈ T\{t – } × U(θ ), αk = (θk , ṽ) ∈ {θ, θ, . . .} ∩ T × U(θk).
(b)

�vH
(
ψ̂(θ ), x(θ ), u(θ ), θ

)
+ �vf ′(x(θ ), u(θ ), θ

)
�̂(θ )�vf

(
x(θ ), u(θ ), θ

) ≤  ()
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for all θ ∈ T , v ∈ U(θ ). Here

U
[
x(·)](t) =

{
û ∈ U(t) : A(û, t)x(t) + b(û, t)

= A
(
u(t), t

)
x(t) + b

(
u(t), t

)}
, t ∈ T , ()

d = c +
(
D + D′)x(t),

�vf
(
x(θ ), u(θ ), θ

)
= �vA

(
u(θ ), θ

)
x(θ ) + �vb

(
u(θ ), θ

)
,

H(ψ̂ , x, u, t) = ψ̂ ′f (x, u, t) = ψ̂ ′[A(u, t)x + b(u, t)
]
, ()

ψ̂(t – ) = A′(û(t), t
)
ψ̂(t), t ∈ T , ψ̂(t – ) = –d, ()

�̂(t – ) = A′(û(t), t
)
�̂(t)A

(
û(t), t

)
, t ∈ T , �̂(t – ) = –



(
D + D′), ()

and the vector function z(t; û, x,α,αk), t ∈ {θ, . . . , t}, is the solution of the linear discrete
system of the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z(t + ; û, x,α,αk) = A(û(t), t)z(t; û, x,α,αk), t ∈ {θk+, θk+, . . .} ∩ T ,
z(θk+; û, x,α,αk) = A(ṽ, θk)z(θk ; û, x,α)

+ �ṽA(u(θk), θk)x(θk) + �ṽb(u(θk), θk), if θk ∈ T ,
z(t + ; û, x,α) = A(û(t), t)z(t; û, x,α), t ∈ {θ, . . . , θk–} ∩ T ,
z(θ; û, x,α) = �vA(u(θ ), θ )x(θ ) + �vb(u(θ ), θ ), θ ∈ T\{t–}.

()

Proof From the conditions of Corollary  and by the system () it is seen that the vector
function z(t; û, x,α,αk) is the solution of the system (). Therewith, by the formula

�(x + �x) – �(x) =
(
c +

(
D + D′)x

)′
�x +



�x′(D + D′)�x

and by Lemma  the proof of the optimality condition () follows from the optimality
condition ().

Now we prove the optimality condition (). From the optimality condition () in par-
ticular it follows that for any fixed û(t) ∈ U[x(·)](t), t ∈ T , and for all α = (θ , v) ∈ T × U(θ )
it is fulfilled the inequality:

d′z
(
t; û, x,α

)
+




z′(t; û, x,α
)(

D + D′)z
(
t; û, x,α

) ≥ , ()

where z(t; û, x,α) is the solution of the system

z
(
t + ; û, x,α

)
= A

(
û(t), t

)
z
(
t; û, x,α

)
, t ∈ {θ, θ, . . .} ∩ T , ()

z
(
θ; û, x,α

)
= �vA

(
u(θ ), θ

)
x(θ ) + �vb

(
u(θ ), θ

)

≡ �vf
(
x(θ ), u(θ ), θ

)
, v ∈ U(θ ).

Now prove the optimality condition () sequentially by θ : θ = t – , t – , . . . , t. Let θ =
t – . Then from () we have z(t; û, x,α) = �vf (x(t – ), u(t – ), t – ), where α =
(t – , v), v ∈ U(t – ). Therewith assuming d = –ψ̂(t – ), 

 (D + D′) = –�̂(t – ) and
taking into account (), from () we get the validity of the condition () at the point
θ = t –  for all v ∈ U(t – ).
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Let us continue the proof. Let θ = t – k ∈ T , k > , and α = α(t – k, v), v ∈ U(t – k). By
means of the steps method, by (), () it is easy to show that the following formulas hold:

ψ̂ ′(t – )z
(
t; û, x,α(t – k, v)

)

= ψ̂ ′(t – k)z
(
t – k + ; û, x,α(t – k, v)

)
, ()

z′(t; û, x,α(t – k, v)
)
�̂(t – )z

(
t; û, x,α(t – k, v)

)

= z′(t – k + ; û, x,α(t – k, v)
)
�(t – k)z

(
t – k + ; û, x,α(t – k, v)

)
, ()

where z(t – k + ; û, x,α(t – k, v)) = �vf (x(t – k), u(t – k), t – k), and ψ̂(t – k), �̂(t – k)
are determined as the solution of the system () and (), respectively. Using (), ()
and taking into account (), inequality () implies the validity of the condition () at
the point θ = t – k for all v ∈ U(t – k). Thus, taking into account the arbitrariness of θ ∈ T
the optimality condition () is proved. Thus Corollary  is completely proved. �

Corollary  In problem ()-() let f (x, u, t) = A(u, t)x + b(u, t), �(x) = c′x, where A(u, t) is
a matrix function of n × n order, b(u, t) is an n-dimensional vector function, c is an n-
dimensional vector. Then:

() For the optimality of the control u(t), t ∈ T in problem ()-(), it is necessary that for
any û(t) ∈ U[x(·)](t), t ∈ T , for all

�vH
(
ψ̂(θ ), x(θ ), u(θ ), θ

) ≤  for all θ ∈ T , v ∈ U(θ ), ()

�vH
(
ψ̂(θ ), x(θ ), u(θ ), θ

)
+ �ṽH

(
ψ̂(θk), x(θk), u(θk), θk

)

+ �ṽH ′
x
(
ψ̂(θk), x(θk), û(θk), θk

)
z
(
θk ; û, x,α

) ≤  ()

for all α = (θ , v) ∈ T\{t – } × U(θ ), αk = (θk , ṽ) ∈ {θ, θ, . . .} ∩ T × U(θk).
() If the set T consists of at most two points, i.e. T = {t, t +} and along the control u(t),

t ∈ T inequality () is fulfilled for all α = (t, v), v ∈ U(t), α = (t +, ṽ), ṽ ∈ U(t +), then
the control u(t), t ∈ T , is an optimal control. Here the set U[x(·)](t), t ∈ T , is determined
by (); the function H(ψ̂ , x, u, t) by (); z(θk ; û, x,α(θ , v)) is the value of the solution of the
system () at the point θk , further

�ṽH ′
x
(
ψ̂(θk), x(θk), û(θk), θk

)
= ψ̂ ′(θk)

(
A(ṽ, θk) – A

(
û(θk), θk

))
; ()

ψ̂(t), t ∈ T , is the solution of the system

ψ̂(t – ) = A′(û(t), t
)
ψ̂(t), ψ̂(t – ) = –c. ()

Proof First we prove the optimality condition (). By the conditions of Corollary , the
optimality condition () takes the form

c′z
(
t; û, x,α,αk

) ≥ ,

∀û(t) ∈ U
[
x(·)](t), t ∈ T ,∀α = (θ , v) ∈ T\{t – } × U(θ ),

∀αk = (θk , ṽ) ∈ {θ, θ, . . .} ∩ T × U(θk), ()

where z(t; û, x,α,αk) is the solution of the system ().
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Let θ ∈ T\{t – } and θk ∈ {θ, θ, . . .} ∩ T . Then according to (), (), () by means of
the steps method we get

c′z
(
t; û, x,α,αk

)

= –ψ̂ ′(t – )A
(
û(t – ), t – 

)
z
(
t – ; û, x,α,αk

)

= –ψ̂ ′(t – )z
(
t – ; û, x,α,αk

)
= · · · = –ψ̂ ′(θk)z

(
θk+; û, x,α,αk

)

= –ψ̂ ′(θk)A(ṽ, θk)z
(
θk ; û, x,α

)
– ψ̂ ′(θk)

[
�ṽA

(
u(θk), θk

)
x(θk)

+ �ṽb
(
u(θk), θk

)]

= –�ṽH
(
ψ̂(θk), x(θk), u(θk), θk

)

– ψ̂ ′(θk)
[
A(ṽ, θk) – A

(
û(θk), θk

)]
z
(
θk ; û, x,α

)

– ψ̂ ′(θk)A
(
û(θk), θk

)
z
(
θk ; û, x,α

)
. ()

Further, for the last term of () quite similarly we have

ψ̂ ′(θk)A
(
û(θk), θk

)
z
(
θk ; û, x,α

)

= ψ̂ ′(θk–)z
(
θk ; û, x,α

)
= · · ·

= ψ̂ ′(θ )z
(
θ; û, x,α

)
= �vH

(
ψ̂(θ ), x(θ ), u(θ ), θ

)
. ()

According to (), (), () from (), we get the proof of the optimality condition ().
Assuming ṽ = û(θk) and taking into account û(t) ∈ U[x(·)](t), t ∈ T , from () in par-

ticular case for all θ ∈ T\{t – } it follows the proof of the optimality condition () and
for the proof of the condition () at the point θk = t –  it suffices to take into account
v = u(θ ) in (). The validity of the last statement of Corollary  using the scheme of the
proof of the optimality condition () follows directly from statement (b) of the theorem.
Consequently, Corollary  is proved. �

We stress that the optimality condition () for û(t) = u(t), t ∈ T , is obtained in [].

Corollary  In the problem let f (x, u, t) = A(u, t)x + b(u, t), �(x) = c′x + |d′x|, where A(u, t)
is a matrix function of order n × n, b(u, t) is an n-dimensional vector function, c and d are
n-dimensional vectors. Then for the optimality of the admissible process (u(t), x(t)) it is
necessary that for any û(t) ∈ U[x(·)](t), t ∈ T , and for all θ ∈ T , v ∈ U(θ ) the following
inequality be fulfilled:

∣
∣d′(t)

∣
∣ + �vH

(
ψ̂c(θ ), x(θ ), u(θ ), θ

)

≤ ∣∣d′(t) – �vH
(
ψ̂d(θ ), x(θ ), u(θ ), θ

)∣∣, ()

where the sets U[x(t)](t), t ∈ T , are determined by (), H(ψ̂ , x, u, t) by (): ψ̂c(t), ψ̂d(t),
are the solutions of the system () with the corresponding initial conditions

ψ̂c(t – ) = –c, ψ̂d(t – ) = –d. ()
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Proof It is easy to see that under the conditions of Corollary  the optimality condition
() takes the form

c′z
(
t; û, x,α(θ , v)

)
+

∣∣d′(t) + d′z
(
t, û, x,α(θ , v)

)∣∣ –
∣∣d′(t)

∣∣ ≥ ,

∀α = α(θ , v), θ ∈ T , v ∈ U(θ ),∀û(t) ∈ U
[
x(·)](t), t ∈ T , ()

where z(t; û, x,α(θ , v)) is the solution of the system ().
According to (), (), (), () it is easy (by applying the steps method) to get

c′z
(
t; û, x,α(θ , v)

)
= –ψ̂ ′

c(t – )A
(
û(t – ), t – 

)
z
(
t – ; û, x,α(θ , v)

)

= –ψ̂ ′
c(t – )z

(
t – ; û, x,α(θ , v)

)

= · · · = –ψ̂ ′
c(θ )z

(
θ; û, x,α(θ , v)

)

= –�vH
(
ψ̂ñ(θ ), x(θ ), u(θ ), θ

)
. ()

Similarly we have

d′z
(
t; û, x,α(θ , v)

)
= –�vH

(
ψ̂d(θ ), x(θ ), u(θ ), θ

)
. ()

Taking into account (), () in (), we get the proof of inequality (), and thus Corol-
lary  is proved. �

Corollary  In problem ()-() let f (x, u, t) = A(t)x + b(u, t), �(x) = c′x. Then for the opti-
mality of the control u(t), t ∈ T , it is necessary and sufficient that for all α = α(θ , v), θ ∈ T ,
v ∈ U(θ ) the following inequality be fulfilled:

c′z
(
t; u, x,α(θ , v)

) ≥ , ()

where z(t; u, x,α(θ , v)) is the solution of the system

{
z(t + ; u, x,α(θ , v)) = A(t)z(t; u, x,α(θ , v)), t ∈ {θ, θ, . . .} ∩ T ,
z(θ; u, x,α(θ , v)) = b(v, θ ) – b(u(θ ), θ ).

()

Proof Under the conditions of Corollary  the necessity is obvious. Now we prove the
second part of the corollary. Assume that along the admissible control u(t), t ∈ T condi-
tion () is fulfilled and let us prove that in this case the control u(t), t ∈ T , is optimal. It
suffices to show that the inequality

�S
(
u) = S

(
ũ(t)

)
– S

(
u(t)

)
= c′�x(t) ≥  ()

is fulfilled for all arbitrary admissible controls ũ(t), t ∈ T , where �x(t) = x̃(t) – x(t), t ∈ T ,
is the solution of the system

�x(t + ) = A(t)�x(t) + b
(
ũ(t), t

)
– b

(
u(t), t

)
, t ∈ T , �x(t) = . ()
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According to (), (), by means of the steps method (sequentially with respect to t: t =
t + , t + , . . . , t) it is easy to show that

�x(t) =
t–∑

θ=t

z
(
t; u, x,α

(
θ , ũ(θ )

))
, t ∈ {t + , t + , . . . , t}. ()

Since the condition () is fulfilled, using () we get the validity of (), i.e. we have

�S
(
u) = c′�x(t) =

t–∑

θ=t

c′z
(
t; u, x,α

(
θ , ũ(θ )

)) ≥ .

This proves the sufficiency of the condition (), and thus Corollary  is proved. �

Remark  Under the conditions of Corollary , the optimality condition () has first
been proved in [] as a necessary and sufficient optimality condition, and taking into ac-
count the scheme of the proof of Corollary , it is easy to show that the discrete maximum
principle from [] and the optimality conditions () are equivalent.

Finally we prove the following statement.

Corollary  In problem ()-() let us additionally suppose that the function �(x) is con-
tinuously differentiable and f (x, u, t) is a continuously differentiable vector function with
respect to x and u. Then:

. If the sets U(t), t ∈ T , are convex, then for the optimality of the control u(t), t ∈ T , it
is necessary that for any û(t) ∈ U[x(·)](t), t ∈ T , and for all θ ∈ T , v ∈ U(θ ), the following
inequality be fulfilled:

H ′
u
(
ψ̂(θ ), x(θ ), u(θ ), θ

)(
v – u(θ )

) ≤ . ()

. If the sets U(t), t ∈ T , are open or u(t) ∈ int U(t), t ∈ T , then for the optimality of the
control u(t), t ∈ T , it is necessary that for any û(t) ∈ U[x(·)](t), t ∈ T , and for all θ ∈ T
the following equality be fulfilled:

Hu
(
ψ̂(θ ), x(θ ), u(θ ), θ

)
= , ()

where the sets U[x(·)](t), t ∈ T , are determined by (); the function H(ψ̂ , x, u, t) by ();
and the vector function ψ̂(t) is the solution of the system

ψ̂(t – ) = f ′
x
(
x(t), û(t), t

)
ψ̂(t), ψ̂(t – ) = –�x

(
x(t)

)
. ()

Proof First we prove the optimality condition (). We use Corollary . Let θ ∈ T and v ∈
U(θ ) be arbitrary fixed elements. By definition of the convex set for any ε ∈ [, ] the vector
v(ε) = u(ε) + ε(v – u(θ )) is an element of the set U(θ ). By applying the steps method, for
the solution z(t; û, x,α(θ , v(ε))), t ∈ T = {θ, θ, . . . , t}, of the system () it is easy to get
the expansion of the form

z
(
t; û, x,α

(
θ , v(θ )

))
= εZ

(
t; û, x)fu

(
x(θ ), u(θ ), θ

)(
v – u(θ )

)
+ o(ε). ()
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Here the matrix function Z(t; û, x), t ∈ T, is the solution of the system

Z
(
t + ; û, x) = fx

(
x(t), û(t), t

)
Z
(
t; û, x), t ∈ {θ, θ, . . .} ∩ T ,

Z
(
θ; û, x) = E,

()

where E is the unit n × n matrix.
Note that we can write the statement of Corollary  in the following form []:

�
(
x(t) + z

(
t; û, x,α(θ , v)

))
– �

(
x(t)

) ≥ ,

∀α = α(θ , v) ∈ T × U(θ ),∀û = û(t) ∈ U
[
x(·)](t), t ∈ T .

Hence by () we get

ε�′
x
(
x(t)

)
Z
(
t; û, x)fu

(
x(θ ), u(θ ), θ

)(
v – u(θ )

)
+ o(ε) ≥ . ()

Further, similar to the scheme of the proof of (), using (), () we have

ψ̂ ′(t – )Z
(
t; û, x) = ψ̂ ′(θ )Z

(
θ; û, x).

Taking into account the last equality and Z(θ; û, x) = E, () yields the proof of inequality
(). When the sets U(t), t ∈ T , are open or u(t) ∈ int U(t), t ∈ T , the proof of the condi-
tion () follows directly from the optimality condition (). This completes the proof of
Corollary . �

Remark  Optimality conditions of type (), () obtained in [], for û(t) = u(t), t ∈ T ,
are obtained, for example, in [, , , , , , ].

Remark  If f (x, u, t), �(x) are continuously differentiable functions with respect to x,
and the sets {f (x, u, t) : u ∈ U(t)} are convex for any x ∈ En, t ∈ T , then similar to the
scheme of the proof of Corollary , the discrete maximum principle follows as a par-
ticular case from the statement of Corollary  [, , ].

4 Discussion of the theorem and its corollaries. Examples
It should be noted that the necessary optimality condition () is rather general. The merit
of the sufficient condition () compared with discrete maximum principle [, , , ] is
that it has no convexity or smoothness conditions with respect to the input data of prob-
lem ()-(). Therefore the optimality condition () has a wider range of applications than
the earlier known necessary optimality conditions (for example, [, , –, , , , ,
]). Note that the optimality condition () allows one to replace the many-dimensional
minimization problem by a sequence of problems of less dimensions, and its application is
convenient when its test is performed sequentially with respect to θ : θ = t – , t – , . . . , t

(see Example ). By Corollaries - and Remark  it is shown that the optimality con-
dition () contains as a particular case both new and known optimality conditions. The
necessary optimality conditions given in Corollaries - show how important it is to take
into account the specific character of the concrete optimization problem ()-().
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Corollary  as an independent result is obtained in []. Taking into account the method
of proof of Corollaries  and , we find that optimality () contains as a particular case the
optimality conditions (), (), (). The optimality conditions (), (), () following
the sets U[x(t)](t), t ∈ T , are direct strengthenings of the discrete maximum principle,
discrete analog of the linearized maximum principle and discrete analog of the Euler equa-
tion [, , , , , ], respectively (see Example ). As is seen, optimality conditions (),
() are the corollaries of the condition (), (), though unlike the continuous [] case,
it is well known that [, ] in the general case they are not corollaries of the discrete
maximum principle. Note that the discrete maximum principle under the conditions of
Corollaries ,  admits different strengthenings in the form of optimality conditions ()
and (). The optimality condition of type () is obtained in another way in [], and as
far as we know the optimality conditions (), () have no analog. It is interesting to note
that verification of the optimality condition () at any two neighboring points θ , θ is
more convenient but not sufficient for its complete application (see Example ). From the
optimality condition () and Example  we conclude that in the discrete case, unlike the
continuous one, the discrete principle of the maximum (as a necessary optimality con-
dition of first order) is strengthened at the expense of multipoint variation of control as
well.

The above is confirmed by the following examples.

Example  x(t + ) = u(t), x(t + ) = |x(t)| – |u(t)|, x(t + ) = x(t)u(t), xi() = , i =
, , ; T = {, , }, u = (u, u)′∗ × U∗, U∗ = [–, – 

 ] ∪ {} ∪ [ 
 , ], �(x()) = x() → min.

As an illustration of richness of the content and application scheme of the necessary op-
timality condition () we study the optimality of admissible control u(t) = (u(t), u(t))′ =
(, )′, t ∈ T . It is easy to calculate (by (), ()) x(t) = (, , )′, t ∈ T ∪ {}; U[x(·)](t) =
{û = (, û)′ : û ∈ U∗}, t ∈ T ;

z
(
; u, x;α(, v)

)
=

(
v, –|v|, 

)′,

z
(
; u, x;α(, v)

)
=

(
v, –|v|, 

)′,

z
(
; u, x;α(, v)

)
=

(
, |v|, 

)′,

z
(
; u, x;α(, v)

)
=

(
v, –|v|, 

)′.

Let us apply Corollary . It is fulfilled for û(t) = u(t) = (, )′, t ∈ T , and for all θ (θ , v),
θ ∈ T , v = (v, v)′ ∈ U :  ≥ .

Now we check the condition () for û(t) ≡ (, )′ ∈ U[x(·)](t), t ∈ T . We have

z
(
; û, x;α(, v)

)
=

(
v, –|v|, 

)′, z
(
; û, x;α(, v)

)

=
(
v, –|v|, 

)′, z
(
; û, x;α(, v)

)

=
(
, |v|, –|v|

)′.

Not continuing calculations, we get the condition () for û(t) ≡ (, )′, t ∈ T , θ =  ∈ T
is no longer fulfilled: z(; û, x;α(, v)) = –|v| ≥ , v ∈ U∗.

Consequently, the control u(t) = (, )′, t ∈ T , is not optimal by virtue of the optimality
condition (). Note that as the right-hand side is not differentiable with respect to x, u, we
cannot use the necessary optimality conditions from [, , –, , –, , , –].
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Example  As an illustration of the optimality condition () consider the problem:

x(t + ) = u(t), x(t + ) = x(t) + u(t), x(t + ) = x(t)u(t),

xi() = , i = , , , t ∈ T = {, }, u = (u, u) ∈ U = U∗ × U∗,

U∗ = [–, ], �
(
x()

)
= x() → min .

Let us check the control u(t) = (u
 (t), u

(t))′ ≡ (, )′, t ∈ T , for optimality. We have (by
(), (), ())

x(t) = (, , )′() = (, , –)′() = (, , )′;

U
[
x(·)](t) =

{
û = (, û)′ : û ∈ U∗}, t ∈ T ; H

(
ψ(t), x(t), u(t), t

) ≡ ,

t ∈ T , ∀u(t) ∈ U , t ∈ T . Obviously, the maximum principle in the present case is ineffec-
tive: �vH(ψ(t), x(t), u(t), t) ≡  ≤ , t ∈ T , v ∈ U . However, application of the optimal-
ity condition () for û(t) = (, )′ ∈ U[x(·)](t), t ∈ T , and θ =  leads to the contradictory
result:

�vH
(
ψ̂(), x(), u(), 

)
= –v ≤ , v ∈ U∗.

Here we have taken into account that ψ̂() = (, –, )′ and H(ψ̂(), x(), v, ) = –v.
Therefore, the considered control u(t) = (, )′, t ∈ T , cannot be optimal by virtue of

optimality condition () Note that using this example, it is easy to show the richness of
the content of the optimality conditions (), ().

Example  x(t + ) = u(t), x(t + ) = x(t), x(t + ) = |u(t)|x(t), xi() = , i = , , , T =
{, , }, U = [–, ], �(x()) = x → min.

Let us illustrate the richness of the content and application of the optimality condition
(). We study the optimality of the control u(t) ≡ , t ∈ T . We have (by (), (), (),
()):

x(t) = (, , )′, t ∈ T ∪ {},
ψ() = (, , –)′(t) = (, , )′, t = , ;

H
(
ψ(t), x(t), u(t)

) ≡ , t ∈ T , �ṽH ′
x
(
ψ(), x(), u(), 

)
= (, , )′,

�ṽH ′
x
(
ψ(), x(), u(), 

)
=

(
, –|ṽ|, 

)′, U
[
x(·)](t) = {}, t ∈ T ;

z
(
θ; u, x,α(θ , v)

)
= (v, , )′, θ ∈ {, }, θ = θ + ,

z
(
; u, x;α(, v)

)
= (, v, )′, z

(
; u, x;α(, v)

)
= (, , )′,

z
(
; u, x;α(, v)

)
= (, v, )′.

Taking into account these calculations, it is easy to be convinced that the optimality
conditions (), (), (), () leave the control u(t) = , t ∈ T , among the pretenders for
optimality. It is easy to see that the optimality condition () is fulfilled at all possible two
neighboring points. However, it is not fulfilled at θ = , θk =  (non-neighboring points):
–|ṽ|v ≤ , v, ṽ ∈ U = [–, ], i.e. the control u(t) = , t ∈ T , is not optimal.
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