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Abstract
The rapid development of q-calculus has led to the discovery of new generalizations
of Bernstein polynomials and Genocchi polynomials involving q-integers. The present
paper deals with weighted q-Bernstein polynomials (or called q-Bernstein
polynomials with weight α) and weighted q-Genocchi numbers (or called
q-Genocchi numbers with weight α and β). We apply the method of generating
function and p-adic q-integral representation on Zp, which are exploited to derive
further classes of Bernstein polynomials and q-Genocchi numbers and polynomials.
To be more precise, we summarize our results as follows: we obtain some
combinatorial relations between q-Genocchi numbers and polynomials with weight
α and β . Furthermore, we derive an integral representation of weighted q-Bernstein
polynomials of degree n based on Zp. Also we deduce a fermionic p-adic q-integral
representation of products of weighted q-Bernstein polynomials of different degrees
n1,n2, . . . on Zp and show that it can be in terms of q-Genocchi numbers with weight
α and β , which yields a deeper insight into the effectiveness of this type of
generalizations. We derive a new generating function which possesses a number of
interesting properties which we state in this paper.
MSC: Primary 05A10; 11B65; secondary 11B68; 11B73

Keywords: Genocchi numbers and polynomials; q-Genocchi numbers and
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1 Introduction
The q-calculus theory is a novel theory that is based on finite difference re-scaling. First
results in q-calculus belong to Euler, who discovered Euler’s identities for q-exponential
functions, and Gauss, who discovered q-binomial formula. The systematic development of
q-calculus begins from FH Jackson who  reintroduced the Euler-Jackson q-difference
operator (Jackson, ). One of the important branches of q-calculus is q-special orthog-
onal polynomials. Also p-adic numbers were invented by Kurt Hensel around the end of
the nineteenth century, and these two branches of number theory joined in the link of
p-adic integral and developed. In spite of them being already one hundred years old, these
special numbers and polynomials, for instance, q-Bernstein polynomials, q-Genocchi
numbers and polynomials, etc., are still today enveloped in an aura of mystery within the
scientific community. The p-adic integral was used in mathematical physics, for instance,
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the functional equation of the q-zeta function, q-Stirling numbers and q-Mahler theory of
integration with respect to the ring Zp together with Iwasawa’s p-adic L functions. During
the last ten years, the q-Bernstein polynomials and q-Genocchi polynomials have attracted
a lot of interest and have been studied from different points of view along with some gen-
eralizations and modifications by a number of researchers. By using the p-adic invariant
q-integral on Zp, Kim [] constructed p-adic Bernoulli numbers and polynomials with
weight α. He also gave the identities on the q-integral representation of the product of sev-
eral q-Bernstein polynomials and constructed a link between q-Bernoulli polynomials and
q-umbral calculus (cf. [, ]). Our aim of this paper is also to show that a fermionic p-adic
q-integral representation of products of weighted q-Bernstein polynomials of different de-
grees n, n, . . . on Zp can be written in terms of q-Genocchi numbers with weight α and β .

Suppose that p is chosen as an odd prime number. Throughout this paper, we make use
of the following notations: Zp denotes the ring of p-adic rational integers, Q denotes the
field of rational numbers, Qp denotes the field of p-adic rational numbers and Cp denotes
the completion of algebraic closure of Qp. Let N be the set of natural numbers and N

∗ =
N∪ {}. The normalized p-adic absolute value is defined by |p|p = 

p . When one mentions
q-extension, q can be variously considered as an indeterminate, a complex number q ∈C,
or a p-adic number q ∈Cp. If q ∈ C, we assume |q| < . If q ∈Cp, we assume |q–|p < p– 

p– .
Suppose UD(Zp) is the space of uniformly differentiable functions on Zp. For f ∈

UD(Zp), the fermionic p-adic q-integral on Zp is defined by Kim (see [, ]):

I–q(f ) =
∫
Zp

f (ξ ) dμ–q(ξ ) = lim
N→∞


[pN ]–q

pN –∑
ξ=

qξ f (ξ )(–)ξ . (.)

For α, k, n ∈ N
∗ and x ∈ [, ], Kim et al. defined weighted q-Bernstein polynomials as

follows:

B(α)
k,n(x, q) =

(
n
k

)
[x]k

qα [ – x]n–k
q–α (see [] and []). (.)

If we put q →  and α =  in Eq. (.), since [x]k
qα → xk , [ – x]n–k

q–α → ( – x)n–k , it turns
out to be the classical Bernstein polynomials (see [] and []).

The q-extension of x, [x]q, is defined by

[x]q =
 – qx

 – q
.

Note that limq→[x]q = x (for more information, see [–]).
In [], for n ∈ N

∗, modified q-Genocchi numbers with weight α and β are defined by
Araci et al. as follows:

g(α,β)
n+,q(x)
n + 

=
∫
Zp

q–βξ [x + ξ ]n
qα dμ–qβ (ξ )

=
[]qβ

[α]n
q( – q)n

n∑
l=

(
n
l

)
(–)lqα�x 

 + qα�

= []qβ

∞∑
m=

(–)m[m + x]n
qα . (.)
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In the case, for x = , we have g(α,β)
n,q () = g(α,β)

n,q that are called q-Genocchi numbers with
weight α and β .

In [], for α ∈ N
∗ and n ∈ N, q-Genocchi numbers with weight α and β are defined by

Araci et al. as follows:

g(α,β)
,q = , and g(α,β)

n,q () + g(α,β)
n,q =

{
[]qβ if n = ,
 if n > .

(.)

In this paper, we obtain some relations between the weighted q-Bernstein polynomials
and the modified q-Genocchi numbers with weight α and β . From these relations, we
derive some interesting identities on the q-Genocchi numbers with weight α and β .

2 On the weighted q-Genocchi numbers and polynomials
In this part, we will give some arithmetical properties of weighted q-Genocchi polyno-
mials by using the techniques of p-adic integral and the method of generating functions.
Thus, by utilizing the definition of weighted q-Genocchi polynomials, we have

g(α,β)
n+,q(x)
n + 

=
∫
Zp

q–βξ [x + ξ ]n
qα dμ–qβ (ξ )

=
∫
Zp

q–βξ
(
[x]qα + qαx[ξ ]qα

)n dμ–q(ξ )

=
n∑

k=

(
n
k

)
[x]n–k

qα qαkx
∫
Zp

q–βξ [ξ ]k
qα dμ–q(ξ )

=
n∑

k=

(
n
k

)
[x]n–k

qα qαkx g(α,β)
k+,q

k + 
.

Thus we state the following theorem.

Theorem  Suppose n,α,β ∈N
∗. Then we have

g(α,β)
n,q (x) = q–αx

n∑
k=

(
n
k

)
qαkxg(α,β)

k,q [x]n–k
qα . (.)

Moreover,

g(α,β)
n,q (x) = q–αx(qαxg(α,β)

q + [x]qα

)n, (.)

by using the umbral (symbolic) convention (g(α,β)
q )n = g(α,β)

n,q .

By expression of (.), we get

g(α,β)
n+,q– ( – x)

n + 
=

∫
Zp

qβξ [ – x + ξ ]n
q–α dμ–q–β (ξ )

=
[]q–β

( – q–α)n

n∑
l=

(
n
l

)
(–)lq–α�(–x) 

 + q–α�
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= (–)nqαn–β

(
[]qβ

( – qα)n

n∑
l=

(
n
l

)
(–)lqαlx 

 + qαl

)

= (–)nqαn–β
g(α,β)

n+,q(x)
n + 

.

Consequently, we obtain the following theorem.

Theorem  The following

g(α,β)
n+,q– ( – x) = (–)nqαn–βg(α,β)

n+,q(x) (.)

is true.

From expression of (.) and Theorem , we get the following theorem.

Theorem  The following identity holds:

g(α,β)
,q = , and q–α

(
qαg(α,β)

q + 
)n + g(α,β)

n,q =

{
[]qβ if n = ,
 if n > ,

with the usual convention about replacing (g(α,β)
q )n by g(α,β)

n,q .

For n,α ∈N, by Theorem , we note that

qαg(α,β)
n,q () =

(
qα

(
qαg(α,β)

q + 
)

+ 
)n

=
n∑

k=

(
n
k

)
qkα

(
qαg(α,β)

q + 
)k

=
(
qαg(α,β)

q + 
) + nqα

(
qαg(α,β)

q + 
) +

n∑
k=

(
n
k

)
qkα

(
qαg(α,β)

q + 
)k

= nqα[]qβ – qα

n∑
k=

(
n
k

)
qαkg(α,β)

k,q

= nqα[]qβ + qαg(α,β)
n,q if n > .

Consequently, we state the following theorem.

Theorem  Suppose n ∈ N. Then we have

g(α,β)
n,q () = n[]qβ +

g(α,β)
n,q

qα
.

From expression of Theorem  and (.), we easily see that

(n + )q–β

∫
Zp

q–βξ [ – ξ ]n
q–α dμ–qβ (ξ )

= (–)nqnα–β

∫
Zp

q–βξ [ξ – ]n
qα dμ–qβ (ξ )

= (–)nqnα–βg(α,β)
n+,q(–) = g(α,β)

n+,q– (). (.)
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Thus, we obtain the following theorem.

Theorem  The following identity

(n + )q–β

∫
Zp

q–βξ [ – ξ ]n
q–α dμ–qβ (ξ ) = g(α,β)

n+,q– ()

is true.

Suppose n,α ∈N. By expression of Theorem  and Theorem , we get

(n + )q–β

∫
Zp

q–βξ [ – ξ ]n
q–α dμ–qβ (ξ )

= (n + )q–β []qβ + qαg(α,β)
n+,q– . (.)

For (.), we obtain the corollary as follows.

Corollary  Suppose n,α ∈N
∗. Then we have

∫
Zp

q–βξ [ – ξ ]n
q–α dμ–qβ (ξ ) = []qβ + qα–β

g(α,β)
n+,q–

n + 
.

3 Novel identities on the weighted q-Genocchi numbers
In this section, we develop modified q-Genocchi numbers with weight α and β , namely
we derive interesting and worthwhile relations in analytic number theory.

For x ∈ Zp, the p-adic analogues of weighted q-Bernstein polynomials are given by

B(α)
k,n(x, q) =

(
n
k

)
[x]k

qα [ – x]n–k
q–α , where n, k,α ∈N

∗. (.)

By expression of (.), Kim et al. get the symmetry of q-Bernstein polynomials weight α

as follows:

B(α)
k,n(x, q) = B(α)

n–k,n
(
 – x, q–) (for details, see []). (.)

Thus, from Corollary , (.) and (.), we see that

∫
Zp

B(α)
k,n(ξ , q)q–βξ dμ–qβ (ξ )

=
∫
Zp

B(α)
n–k,n

(
 – ξ , q–)q–βξ dμ–qβ (ξ )

=
(

n
k

) k∑
l=

(
k
l

)
(–)k+l

∫
Zp

q–βξ [ – ξ ]n–l
q–α dμ–qβ (ξ )

=
(

n
k

) k∑
l=

(
k
l

)
(–)k+l

(
[]qβ + qα–β

g(α,β)
n–l+,q–

n – l + 

)
.
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For n, k ∈N
∗ and α ∈N with n > k, we obtain

∫
Zp

B(α)
k,n(ξ , q)q–βξ dμ–qβ (ξ )

=
(

n
k

) k∑
l=

(
k
l

)
(–)k+l

(
[]qβ + qα–β

g(α,β)
n–l+,q–

n – l + 

)

=

⎧⎪⎨
⎪⎩

[]qβ + qα–β
g(α,β)

n+,q–
n+ if k = ,

(n
k
)∑k

l=
(k

l
)
(–)k+l([]qβ + qα–β

g(α,β)
n–l+,q–
n–l+ ) if k > .

(.)

Let us take the fermionic p-adic q-integral on Zp on the weighted q-Bernstein polyno-
mials of degree n as follows:

∫
Zp

B(α)
k,n(ξ , q)q–βξ dμ–qβ (ξ )

=
(

n
k

)∫
Zp

q–βξ [ξ ]k
qα [ – ξ ]n–k

q–α dμ–qβ (ξ )

=
(

n
k

) n–k∑
l=

(
n – k

l

)
(–)l g(α,β)

l+k+,q

l + k + 
. (.)

Consequently, by expression of (.) and (.), we state the following theorem.

Theorem  The following identity holds:

n–k∑
l=

(
n – k

l

)
(–)l g(α,β)

l+k+,q

l + k + 

=

⎧⎪⎨
⎪⎩

[]qβ + qα–β
g(α,β)

n+,q–
n+ if k = ,

∑k
l=

(k
l
)
(–)k+l([]qβ + qα–β

g(α,β)
n–l+,q–
n–l+ ) if k > .

Suppose n, n, k ∈ N
∗ and α ∈ N with n + n > k. It yields

∫
Zp

B(α)
k,n

(ξ , q)B(α)
k,n

(ξ , q)q–βξ dμ–qβ (ξ )

=
(

n

k

)(
n

k

) k∑
l=

(
k
l

)
(–)k+l

∫
Zp

q–βξ [ – ξ ]n+n–l
q–α dμ–qβ (ξ )

=

((
n

k

)(
n

k

) k∑
l=

(
k
l

)
(–)k+l

(
[]qβ + qα–β

g(α,β)
n+n–l+,q–

n + n – l + 

))

=

⎧⎪⎨
⎪⎩

[]qβ + qα–β
g(α,β)

n+n+,q–

n+n+ if k = ,
(n

k
)(n

k
)∑k

l=
(k

l
)
(–)k+l([]qβ + qα–β

g(α,β)
n+n–l+,q–

n+n–l+ ) if k �= .

Therefore, we obtain the following theorem.
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Theorem  Suppose n, n, k ∈N
∗ and α,β ∈N with n + n > k, then we have

∫
Zp

q–βξ B(α)
k,n

(ξ , q)B(α)
k,n

(ξ , q) dμ–qβ (ξ )

=

⎧⎪⎨
⎪⎩

[]qβ + qα–β
g(α,β)

n+n+,q–

n+n+ if k = ,
(n

k
)(n

k
)∑k

l=
(k

l
)
(–)k+l([]qβ + qα–β

g(α,β)
n+n–l+,q–

n+n–l+ ) if k �= .

By using the binomial theorem, we can derive the following equation:

∫
Zp

B(α)
k,n

(ξ , q)B(α)
k,n

(ξ , q)q–βξ dμ–qβ (ξ )

=
∏

i=

(
ni

k

) n+n–k∑
l=

(
n + n – k

l

)
(–)l

∫
Zp

[ξ ]k+l
qα q–βξ dμ–qβ (ξ )

=
∏

i=

(
ni

k

) n+n–k∑
l=

(
n + n – k

l

)
(–)l g(α,β)

l+k+,q

l + k + 
. (.)

Thus, we can obtain the following corollary.

Corollary  Suppose n, n, k ∈N
∗ and α ∈ N with n + n > k. Then we have

n+n–k∑
l=

(
n + n – k

l

)
(–)l g(α,β)

l+k+,q

l + k + 

=

⎧⎪⎨
⎪⎩

[]qβ + qα–β
g(α,β)

n+n+,q–

n+n+ if k = ,
∑k

l=
(k

l
)
(–)k+l([]qβ + qα–β

g(α,β)
n+n–l+,q–

n+n–l+ ) if k �= .

For ξ ∈ Zp and s ∈Nwith s ≥ , let n, n, . . . , ns, k ∈N
∗ and α ∈Nwith

∑s
l= nl > sk. Then

we take the fermionic p-adic q-integral on Zp for the weighted q-Bernstein polynomials
of degree n as follows:

∫
Zp

B(α)
k,n

(ξ , q)B(α)
k,n

(ξ , q) · · ·B(α)
k,ns

(ξ , q)︸ ︷︷ ︸
s-times

q–βξ dμ–qβ (ξ )

=
s∏

i=

(
ni

k

)∫
Zp

[ξ ]sk
qα [ – ξ ]n+n+···+ns–sk

q–α q–βξ dμ–qβ (ξ )

=
s∏

i=

(
ni

k

) sk∑
l=

(
sk
l

)
(–)l+sk

∫
Zp

q–βξ [ – ξ ]n+n+···+ns–sk
q–α dμ–qβ (ξ )

=

⎧⎪⎨
⎪⎩

[]qβ + qα–β
g(α,β)

n+n+···+ns+,q–

n+n+···+ns+ if k = ,
∏s

i=
(ni

k
)∑sk

l=
(sk

l
)
(–)sk+l([]qβ + qα–β

g(α,β)
n+n+···+ns–l+,q–

n+n+···+ns–l+ ) if k �= .

So from above, we have the following theorem.
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Theorem  Suppose s ∈N with s ≥ , let n, n, . . . , ns, k ∈ N
∗ and α ∈ N with

∑s
l= nl > sk.

Then we have

∫
Zp

q–βξ

s∏
i=

B(α)
k,ni

(ξ ) dμ–q(ξ )

=

⎧⎪⎨
⎪⎩

[]qβ + qα–β
g(α,β)

n+n+···+ns+,q–

n+n+···+ns+ if k = ,
∏s

i=
(ni

k
)∑sk

l=
(sk

l
)
(–)sk+l([]qβ + qα–β

g(α,β)
n+n+···+ns–l+,q–

n+n+···+ns–l+ ) if k �= .

From the definition of weighted q-Bernstein polynomials and the binomial theorem, we
easily get

∫
Zp

q–βξ B(α)
k,n

(ξ , q)B(α)
k,n

(ξ , q) · · ·B(α)
k,ns

(ξ , q)︸ ︷︷ ︸
s-times

dμ–qβ (ξ )

=
s∏

i=

(
ni

k

) n+···+ns–sk∑
l=

(∑s
d=(nd – k)

l

)
(–)l

∫
Zp

q–βξ [ξ ]sk+l
qα dμ–qβ (ξ )

=
s∏

i=

(
ni

k

) n+···+ns–sk∑
l=

(∑s
d=(nd – k)

l

)
(–)l g(α,β)

l+sk+,q

l + sk + 
. (.)

Therefore, from (.) and Theorem , we get an interesting corollary as follows.

Corollary  Suppose s ∈N with s ≥ , let n, n, . . . , ns, k ∈N
∗ and α ∈N with

∑s
l= nl > sk.

Then we have

n+···+ns–sk∑
l=

(∑s
d=(nd – k)

l

)
(–)l g(α,β)

l+sk+,q

l + sk + 

=

⎧⎪⎨
⎪⎩

[]qβ + qα–β
g(α,β)

n+n+···+ns+,q–

n+n+···+ns+ if k = ,
∑sk

l=
(sk

l
)
(–)sk+l([]qβ + qα–β

g(α,β)
n+n+···+ns–l+,q–

n+n+···+ns–l+ ) if k �= .
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