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Abstract
In this paper, we study the existence of multiple positive solutions for the nonlinear
fractional differential equation boundary value problem Dα

0+u(t) + f (t,u(t)) = 0,
0 < t < 1, u(0) = u(1) = u′(0) = 0, where 2 < α ≤ 3 is a real number, Dα

0+ is the
Riemann-Liouville fractional derivative. By the properties of the Green’s function, the
lower and upper solution method and the Leggett-Williams fixed point theorem,
some new existence criteria are established. As applications, examples are presented
to illustrate the main results.
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Keywords: fractional differential equation; boundary value problem; positive
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1 Introduction
Fractional differential equations have been of great interest. It is caused both by the in-
tensive development of the theory of fractional calculus itself and by the applications.
Apart from diverse areas of mathematics, fractional differential equations arise in rhe-
ology, dynamical processes in self-similar and porous structures, fluid flows, electrical
networks, viscoelasticity, chemical physics, and many other branches of science; see [–
]. Recently, there have appeared some papers dealing with the existence of solutions of
fractional differential equations by the use of techniques of nonlinear analysis (fixed point
theorems, Leray-Schauder theory, Adomian decomposition method, etc.); see [–]. Es-
pecially, boundary value problems for fractional differential equations have attracted con-
siderable attention; see [–]. As is well known, the aim of finding solutions to boundary
value problems is of main importance in various fields of applied mathematics. Recently,
there seems to be a new interest in the study of the boundary value problems for fractional
differential equations.

Bai and Lü [] studied the following two-point boundary value problem of fractional
differential equations:

Dα
+ u(t) + f

(
t, u(t)

)
= ,  < t < ,

u() = u() = ,

where  < α ≤  is a real number and Dα
+ is the standard Riemann-Liouville fractional

derivative. They obtained the existence of positive solutions by means of the Krasnosel’skii
fixed point theorem and the Leggett-Williams fixed point theorem.
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Zhang [] considered the existence and multiplicity of positive solutions for the non-
linear fractional boundary value problem

CDα
+ u(t) = f

(
t, u(t)

)
,  < t < ,

u() + u′() = , u() + u′() = ,

where  < α ≤  is a real number, f : [, ] × [, +∞) → [, +∞) is continuous and CDα
+ is

the standard Caputo fractional derivative. The author obtained the existence and multi-
plicity results of positive solutions by means of the Krasnosel’skii fixed point theorem and
the Leggett-Williams fixed point theorem.

Liang and Zhang [] investigated the following nonlinear fractional boundary value
problem:

Dα
+ u(t) + f

(
t, u(t)

)
= ,  < t < ,

u() = u′() = u′′() = u′′() = ,

where  < α ≤  is a real number, f ∈ C([, ] × [, +∞), (, +∞)) and Dα
+ is the standard

Riemann-Liouville fractional derivative. By means of the lower and upper solution method
and fixed point theorems, some results on the existence of positive solutions are obtained
for the above fractional boundary value problems.

Yu and Jiang [] discussed the following two-point boundary value problem of frac-
tional differential equations:

Dα
+ u(t) + f

(
t, u(t)

)
= ,  < t < ,

u() = u() = u′() = ,

where  < α ≤  is a real number and Dα
+ is the standard Riemann-Liouville fractional

derivative. By the properties of the Green’s function, they gave some results of multiple
positive solutions for singular and nonsingular boundary value problems by means of the
Leray-Schauder nonlinear alternative, a fixed point theorem on cones, and a mixed mono-
tone method.

From the above works, we can see that, although the fractional boundary value problems
have been investigated by some authors, the lower and upper solution method and the
fixed point theorem due to Leggett-Williams are seldom considered. In addition, in the
latter work the multiplicity of the solutions was not employed. Furthermore, the solution
technique of upper and lower solutions was not studied, and it was also assumed that
 < α ≤ . This paper will fill up the gap.

Motivated by all the works above, in this paper we discuss the boundary value problem

Dα
+ u(t) + f

(
t, u(t)

)
= ,  < t < , (.)

u() = u() = u′() = , (.)

where  < α ≤  is a real number and Dα
+ is the Riemann-Liouville fractional differenti-

ation. Using the lower and upper solution method and the Leggett-Williams fixed point
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theorem, we give some new existence criteria for the boundary value problem (.) and
(.). Finally, we present an example to demonstrate our results.

The plan of the paper is as follows. In Section , we shall give some definitions and
lemmas to prove our main results. In Section , we establish the existence of a single pos-
itive solution for the boundary value problem (.) and (.) by the lower and upper solu-
tion method. In Section , we establish the existence of multiple positive solutions for the
boundary value problem (.) and (.) by the Leggett-Williams fixed point theorem. Ex-
amples are presented to illustrate the main results in Section  and Section , respectively.
In Section , we give the conclusion of the paper.

2 Preliminaries
For the convenience of the reader, we give some background materials from fractional
calculus theory to facilitate the analysis of problem (.) and (.). These materials can be
found in the recent literature; see [–].

Definition . ([]) The Riemann-Liouville fractional derivative of order α >  of a con-
tinuous function f : (, +∞) →R is given by

Dα
+ f (t) =


�(n – α)

(
d
dt

)(n) ∫ t



f (s)
(t – s)α–n+ ds,

where n = [α] + , [α] denotes the integer part of number α, provided that the right side is
pointwise defined on (, +∞).

Definition . ([]) The Riemann-Liouville fractional integral of order α >  of a func-
tion f : (, +∞) →R is given by

Iα
+ f (t) =


�(α)

∫ t


(t – s)α–f (s) ds,

provided that the right side is pointwise defined on (, +∞).

From the definition of the Riemann-Liouville derivative, we can obtain the following
statement.

Lemma . Let α > . If we assume u ∈ C(, ) ∩ L(, ), then the fractional differential
equation

Dα
+ u(t) = 

has u(t) = ctα– + ctα– + · · · + cntα–n, ci ∈R, i = , , . . . , n, as the unique solution, where n
is the smallest integer greater than or equal to α.

Lemma . Assume that u ∈ C(, ) ∩ L(, ) with a fractional derivative of order α > 
that belongs to C(, ) ∩ L(, ). Then

Iα
+ Dα

+ u(t) = u(t) + ctα– + ctα– + · · · + cntα–n, for some ci ∈R, i = , , . . . , n,

where n is the smallest integer greater than or equal to α.
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In the following, we present the Green’s function of the fractional differential equation
boundary value problem.

Lemma . ([]) Let h ∈ C[, ] and  < α ≤ . The unique solution of problem

Dα
+u(t) + h(t) = ,  < t < , (.)

u() = u() = u′() = , (.)

is

u(t) =
∫ 


G(t, s)h(s) ds,

where

G(t, s) =

⎧
⎨

⎩

tα–(–s)α––(t–s)α–

�(α) ,  ≤ s ≤ t ≤ ,
tα–(–s)α–

�(α) ,  ≤ t ≤ s ≤ .
(.)

Here G is called the Green’s function of the boundary value problem (.) and (.).

The following properties of the Green’s function play important roles in this paper.

Lemma . ([]) The function G defined by (.) satisfies the following conditions:
() G(t, s) = G( – s,  – t), for t, s ∈ (, );
() tα–( – t)s( – s)α– ≤ �(α)G(t, s) ≤ (α – )s( – s)α–, for t, s ∈ (, );
() G(t, s) > , for t, s ∈ (, );
() tα–( – t)s( – s)α– ≤ �(α)G(t, s) ≤ (α – )( – t)tα–, for t, s ∈ (, ).

Remark . Obviously, by Lemma ., we have u(t) ≥  if h(t) ≥  on t ∈ [, ], where
u(t) and h(t) are defined as (.).

Now we introduce the following two definitions concerned with the upper and lower
solutions of the fractional boundary value problem (.) and (.).

Definition . A function β is called a lower solution of the fractional boundary value
problem (.) and (.), if β ∈ C[, ] and β(t) satisfies

–Dα
+β(t) ≤ f

(
t,β(t)

)
,  < t < ,  < α ≤ ,

β() ≤ , β() ≤ , β ′() ≤ ,

where f ∈ C([, ] × [, +∞), (, +∞)).

Definition . A function γ is called a upper solution of the fractional boundary value
problem (.) and (.), if γ ∈ C[, ] and γ (t) satisfies

–Dα
+γ (t) ≥ f

(
t,γ (t)

)
,  < t < ,  < α ≤ ,

γ () ≥ , γ () ≥ , γ ′() ≥ ,

where f ∈ C([, ] × [, +∞), (, +∞)).
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The following definition is about the nonnegative continuous concave functional.

Definition . The map θ is said to be a nonnegative continuous concave functional on
a cone P of a real Banach space E provided that θ : P → [,∞) is continuous and

θ
(
tx + ( – t)y

) ≥ tθ (x) + ( – t)θ (y),

for all x, y ∈ P and  ≤ t ≤ .

The following lemma is fundamental in the proofs of our main results.

Lemma . ([]) Let P be a cone in a real Banach space E, Pc = {x ∈ P|‖x‖ ≤ c}, θ a
nonnegative continuous concave functional on P such that θ (x) ≤ ‖x‖, for all x ∈ Pc, and
P(θ , b, d) = {x ∈ P|b ≤ θ (x),‖x‖ ≤ d}. Suppose A : Pc → Pc is completely continuous and
there exist constants  < a < b < d ≤ c such that

(C) {x ∈ P(θ , b, d)|θ (x) > b} 
= ∅ and θ (Ax) > b for x ∈ P(θ , b, d);
(C) ‖Ax‖ < a for x ≤ a;
(C) θ (Ax) > b for x ∈ P(θ , b, c) with ‖Ax‖ > d.

Then A has at least three fixed points x, x, x with

‖x‖ < a, b < θ (x), a < ‖x‖ and θ (x) < b.

Remark . If we have d = c, then condition (C) of Lemma . implies condition (C) of
Lemma ..

For convenience, we set q(t) = tα–( – t), k(s) = s( – s)α–, then

q(t)k(s) ≤ �(α)G(t, s) ≤ (α – )k(s).

3 Single positive solution
In this section, we establish the existence of single positive solution for the boundary value
problem (.) and (.) by the lower and upper solution method. In this section, we set
f ∈ C([, ] × [, +∞), (, +∞)). As an application, an example is given to illustrate the
main results.

Lemma . If u is a positive solution of (.) and (.), then there exist two constants r and
R such that rρ(t) ≤ u(t) ≤ Rρ(t), where ρ(t) =

∫ 
 G(t, s) ds.

Proof Since u ∈ C[, ], there exists M′ >  so that |u(t)| ≤ M′ for t ∈ [, ]. Taking

r = min
(t,u)∈[,]×[,M′]

f
(
t, u(t)

)
, R = max

(t,u)∈[,]×[,M′]
f
(
t, u(t)

)
.

In view of Lemma ., we have

r
∫ 


G(t, s) ds ≤ u(t) =

∫ 


G(t, s)f

(
s, u(s)

)
ds ≤ R

∫ 


G(t, s) ds.
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By direct computation, we have

ρ(t) =
∫ 


G(t, s) ds.

Thus we finish the proof of Lemma .. �

Theorem . The fractional boundary value problem (.) and (.) has a positive solution
u if the following conditions are satisfied:

(Hf ) f (t, u) ∈ C([, ] × [, +∞),R+) is nondecreasing relative to u, f (t,ρ(t)) 
≡  for t ∈
(, ) and there exists a positive constant μ <  such that

kμf (t, u) ≤ f (t, ku), ∀ ≤ k ≤ .

Proof At first, we will prove that the functions β(t) = kg(t), γ (t) = kg(t) are lower and
upper solutions of (.) and (.), respectively, where  < k ≤ min{ 

a
, (a)

μ
–μ }, k ≥

max{ 
a

, (a)
μ

–μ },

a = min
{

, inf
t∈[,]

f
(
t,ρ(t)

)}
> ,

a = max
{

, sup
t∈[,]

f
(
t,ρ(t)

)}

and

g(t) =
∫ 


G(t, s)f

(
s,ρ(s)

)
ds.

In view of Lemma . and Remark ., we know that g(t) is a positive solution of the fol-
lowing problem:

–Dα
+ g(t) = f

(
t,ρ(t)

)
,  < t < ,  < α ≤ ,

g() = g() = g ′() = .

From the conclusion of Lemma ., we know that

aρ(t) ≤ g(t) ≤ aρ(t), t ∈ [, ].

Thus, by virtue of the assumptions of Theorem ., one shows that

ka ≤ β(t)
ρ(t)

≤ ka ≤ ,


ka

≤ ρ(t)
γ (t)

≤ 
ka

≤ ,

(ka)μ ≥ k, (ka)μ ≤ k.
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Therefore, we have

f
(
t,β(t)

)
= f

(
t,

β(t)
ρ(t)

ρ(t)
)

≥
(

β(t)
ρ(t)

)μ

f
(
t,ρ(t)

)

≥ (ka)μf
(
t,ρ(t)

) ≥ kf
(
t,ρ(t)

)
,

kf
(
t,ρ(t)

)
= kf

(
t,

ρ(t)
γ (t)

γ (t)
)

≥ k

(
ρ(t)
γ (t)

)μ

f
(
t,γ (t)

)

≥ k(ka)–μf
(
t,γ (t)

) ≥ f
(
t,γ (t)

)
.

It implies that

–Dα
+β(t) = kf

(
t,ρ(t)

) ≤ f
(
t,β(t)

)
,  < t < ,  < α ≤ ,

–Dα
+γ (t) = kf

(
t,ρ(t)

) ≥ f
(
t,γ (t)

)
,  < t < ,  < α ≤ .

Obviously, β(t) = kg(t), γ (t) = kg(t) satisfy the boundary conditions (.). So, β(t) =
kg(t), γ (t) = kg(t) are lower and upper solutions of (.) and (.), respectively.

Next, we will prove the fractional boundary value problem

– Dα
+ u(t) = g

(
t, u(t)

)
,  < t < ,  < α ≤ ,

u() = u() = u′() = ,
(.)

has a solution, where

g
(
t, u(t)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

f (t,β(t)), if u(t) ≤ β(t),

f (t, u(t)), if β(t) ≤ u(t) ≤ γ (t),

f (t,γ (t)), if γ (t) ≤ u(t).

Thus, we consider that the operator T : C[, ] → C[, ] is defined as follows:

Tu(t) =
∫ 


G(t, s)g

(
s, u(s)

)
ds,

where G(t, s) is defined as (.). It is clear that T is continuous in C[, ]. Since the function
f (t, u) in nondecreasing in u, this shows that, for any u ∈ C([, ], [, +∞)),

f
(
t,β(t)

) ≤ g
(
t, u(t)

) ≤ f
(
t,γ (t)

)
, for t ∈ [, ].

The operator T : C[, ] → C[, ] is continuous in view of continuity of G(t, s) and
g(t, u(t)). By means of the Arzela-Ascoli theorem, T is a compact operator. Therefore,
from the Leray-Schauder fixed point theorem, the operator T has a fixed point, i.e., the
fractional boundary value problem (.) has a solution.

Finally, we will prove that the fractional boundary value problem (.) and (.) has a
positive solution.

Suppose that u∗(t) is a solution of the fractional boundary value problem (.). Since the
function f (t, u) is nondecreasing in u, we know that

f
(
t,β(t)

) ≤ g
(
t, u∗(t)

) ≤ f
(
t,γ (t)

)
, for t ∈ [, ].
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Thus,

–Dα
+ z(t) ≥ f

(
t,γ (t)

)
– g

(
t, u∗(t)

) ≥ ,

z() = z() = z′() = ,

where z(t) = γ (t) – u∗(t). By Remark ., z(t) ≥ , i.e., u∗(t) ≤ γ (t) for t ∈ [, ]. Similarly,
β(t) ≤ u∗(t) for t ∈ [, ]. Therefore, u∗(t) is a positive solution of the fractional boundary
value problem (.) and (.). We have finished the proof of Theorem .. �

In the following, we present a simple example to explain our results.

Example . Consider the boundary value problem

D


+ u(t) + f (t, u) = ,  < t < ,

u() = u() = u′() = 
(.)

and

f (t, u) = t + uμ,  < μ < .

Proof Since kμ ≤  for  < μ <  and  ≤ k ≤ . It is easy to verify that

kμf (t, u) = kμt + kμuμ ≤ t + (ku)μ = f (t, ku).

Thus, by Theorem ., we know that the boundary value problem (.) has a positive so-
lution u. �

4 Multiple positive solutions
In this section, we establish the existence of multiple positive solutions for the boundary
value problem (.) and (.) by the Legget-Williams fixed point theorem. In this section,
we set f ∈ C([, ] × [, +∞), [, +∞)). As an application, an example is given to illustrate
the main results.

Let the Banach space E = C[, ] be endowed with the norm ‖u‖ = max≤t≤ |u(t)|. De-
fine the cone P ⊂ E by

P =
{

u ∈ E : u(t) ≥ q(t)
α – 

‖u‖, t ∈ [, ]
}

.

Let the nonnegative continuous concave functional θ on the cone P be defined by

θ (u) = min

 ≤t≤ 



∣
∣u(t)

∣
∣.

Suppose that u is a solution of the boundary value problem (.) and (.). Then

u(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds, t ∈ [, ].
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We define an operator A : P → E as follows:

(Au)(t) =
∫ 


G(t, s)f

(
s, u(s)

)
ds, t ∈ [, ].

By Lemma ., we have

‖Au‖ ≤ 
�(α)

∫ 


(α – )k(s)f

(
s, u(s)

)
ds,

(Au)(t) ≥ 
�(α)

∫ 


q(t)k(s)f

(
s, u(s)

)
ds ≥ q(t)

α – 
‖Au‖.

Thus, A(P) ⊂ P.
Then we have the following lemma.

Lemma . A : P → P is completely continuous.

Proof The operator A : P → P is continuous in view of the continuity of G(t, s) and
f (t, u(t)). By means of the Arzela-Ascoli theorem, A : P → P is completely continuous. �

For convenience, we denote

M =
(


�(α)

∫ 


(α – )k(s) ds

)–

, N =
(


�(α)

∫ 





(α – )σk(s) ds
)–

,

Ñ =
(


�(α)

∫ 





(α – )k(s) ds
)–

, σ = min

 ≤t≤ 



q(t)
α – 

.

Theorem . Suppose f (t, u) is continuous on [, ] × [, +∞) and there exist constants
 < a < b < c such that the following assumptions hold:

(B) f (t, u) < Ma, for (t, u) ∈ [, ] × [, a];
(B) f (t, u) ≥ Nb, for (t, u) ∈ [/, /] × [b, c];
(B) f (t, u) ≤ Mc, for (t, u) ∈ [, ] × [, c].

Then the boundary value problem (.) and (.) has at least three positive solutions u, u,
u with

max
≤t≤

∣∣u(t)
∣∣ < a, b < min


 ≤t≤ 



∣∣u(t)
∣∣ < max

≤t≤

∣∣u(t)
∣∣ ≤ c,

a < max
≤t≤

∣∣u(t)
∣∣ ≤ c, min


 ≤t≤ 



∣∣u(t)
∣∣ < b.

Proof We show that all the conditions of Lemma . are satisfied.
If u ∈ Pc, then ‖u‖ ≤ c. Assumption (B) implies f (t, u(t)) ≤ Mc for  ≤ t ≤ . Conse-

quently,

‖Au‖ ≤ 
�(α)

∫ 


(α – )k(s)f

(
s, u(s)

)
ds

< Mc


�(α)

∫ 


(α – )k(s) ds = c = ‖u‖.
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Hence, A : Pc → Pc. In the same way, if u ∈ Pa, then assumption (C) of Lemma . is
satisfied.

To check condition (C) of Lemma ., we choose u(t) = (b + c)/,  ≤ t ≤ . It is
easy to see that u(t) = (b + c)/ ∈ P(θ , b, c), θ (u) = θ ((b + c)/) > b, consequently, {u ∈
P(θ , b, c)|θ (u) > b} 
= ∅. Hence, if u ∈ P(θ , b, c), then b ≤ u(t) ≤ c for / ≤ t ≤ /. Thus,

θ (Au) = min

 ≤t≤ 



∣∣(Au)(t)
∣∣ ≥ 

�(α)

∫ 





q(t)k(s)f
(
s, u(s)

)
ds

≥ 
�(α)

∫ 





(α – )σk(s)f
(
s, u(s)

)
ds

≥ Nb


�(α)

∫ 





(α – )σk(s) ds = b,

i.e., θ (Au) > b for all u ∈ P(θ , b, c). This shows that condition (C) of Lemma . is satisfied.
By Lemma . and Remark ., the boundary value problem (.) and (.) has at least

three positive solutions u, u, and u, satisfying

max
≤t≤

∣∣u(t)
∣∣ < a, b < min


 ≤t≤ 



∣∣u(t)
∣∣ < max

≤t≤

∣∣u(t)
∣∣ ≤ c,

a < max
≤t≤

∣∣u(t)
∣∣ ≤ c, min


 ≤t≤ 



∣∣u(t)
∣∣ < b.

The proof is complete. �

Corollary . Suppose f (t, u) is continuous on [, ] × [, +∞) and there exist constants
 < a ≤ σb < (α – )σb < b < c such that the following assumptions hold:

(B) f (t, u) < Ma, for (t, u) ∈ [, ] × [, a];
(B) f (t, u) ≥ Ñb, for (t, u) ∈ [/, /] × [σb, c];
(B) f (t, u) ≤ Mc, for (t, u) ∈ [, ] × [, c].

Then the boundary value problem (.) and (.) has at least three positive solutions u, u,
u, satisfying

max
≤t≤

∣
∣u(t)

∣
∣ < a, σb < min


 ≤t≤ 



∣
∣u(t)

∣
∣ < max

≤t≤

∣
∣u(t)

∣
∣ ≤ c,

a < max
≤t≤

∣
∣u(t)

∣
∣ ≤ c, min


 ≤t≤ 



∣
∣u(t)

∣
∣ < σb.

Proof If we choose a = a, b = σb, and c = c, then from Theorem ., the conclusion
holds. �

Theorem . If condition (B) in Theorem . is replaced by

(B′) lim supu→∞
f (t,u)

u < M.

Then the conclusion of Theorem . also holds.

Proof We only need to show there exists a number c′ with c′ > c and A : Pc′ → Pc′ .
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From (B′), we know there exist R and ε < M, such that

f (t, u)
u

≤ ε, u ≥ R. (.)

Let L = maxu∈[,R] f (t, u), t ∈ [, ].
In view of (.), it is easy to see that

f (t, u) ≤ L + εu, u ≥ . (.)

Now let c′ be such that

c′ > max

{
c,

L
M – ε

}
. (.)

Then for arbitrary u ∈ Pc′ , t ∈ [, ], from (.) and (.), we obtain

‖Au‖ ≤ 
�(α)

∫ 


(α – )k(s)f

(
s, u(s)

)
ds

≤ (
L + εc′) 

�(α)

∫ 


(α – )k(s) ds ≤ c′.

Thus, A : Pc′ → Pc′ . �

Theorem . Suppose that there exist constants  < a′
 < σb′

 < (α – )σb′
 < b′

 < c′
 < a′

 <
σb′

 < (α – )σb′
 < b′

 < c′
 < · · · < a′

n, n ∈N, for i = , , . . . , n, such that
(B) f (t, u) < Ma′

i, for (t, u) ∈ [, ] × [, a′
i];

(B) f (t, u) ≥ Ñb′
i, for (t, u) ∈ [/, /] × [σb′

i, c′
i].

Then the boundary value problem (.) and (.) has at least n –  positive solutions.

Proof When n = , it is immediate from condition (B) that A : Pa′

→ Pa′


, which means

that A has at least one point u ∈ Pa′


by the Schauder fixed point theorem.
When n = , it is clear that Corollary . holds (with c′ = a′

). Then we can obtain at least
three positive solutions u, u, and u, satisfying

max
≤t≤

∣
∣u(t)

∣
∣ < a′

, σb′
 < min


 ≤t≤ 



∣
∣u(t)

∣
∣ < max

≤t≤

∣
∣u(t)

∣
∣ ≤ c′

,

a′
 < max

≤t≤

∣
∣u(t)

∣
∣ ≤ c′

 and min

 ≤t≤ 



∣
∣u(t)

∣
∣ < σb′

.

In this way, we finish the proof by induction. The proof is complete. �

In the following, we present a simple example to illustrate our results.

Example . Consider the boundary value problem

D


+ u(t) + f (t, u) = ,  < t < , (.)

u() = u() = u′() = , (.)
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where

f (t, u) =

⎧
⎨

⎩

t
 + u, for u ≤ ,

 + t
 + u, for u > .

We have

M =
(


�(α)

∫ 


(α – )k(s) ds

)–

=


√
π


≈ .,

N =
(


�(α)

∫ 





(α – )σk(s) ds
)–

≈ ..

Choosing a = 
 , b = , c = , we have

f (t, u) =
t


+ u ≤ . ≤ Ma ≈ ., for (t, u) ∈ [, ] ×

[
,




]
,

f (t, u) =  +
t


+ u ≥ . ≥ Nb ≈ ., for (t, u) ∈ [/, /] × [, ],

f (t, u) =  +
t


+ u ≤ . ≤ Mc ≈ ., for (t, u) ∈ [, ] × [, ].

From Theorem ., the boundary value problem (.) and (.) has at least three positive
solutions u, u, u satisfying

max
≤t≤

∣∣u(t)
∣∣ <




,  < min

 ≤t≤ 



∣∣u(t)
∣∣ < max

≤t≤

∣∣u(t)
∣∣ ≤ ,




< max
≤t≤

∣
∣u(t)

∣
∣ ≤ , min


 ≤t≤ 



∣
∣u(t)

∣
∣ < .

5 Conclusions
In this paper, we have studied the existence of positive solutions for a boundary value prob-
lem of nonlinear fractional differential equations involving the Riemann-Liouville frac-
tional derivative. The existence of a single positive solution for the given problem has been
obtained by using the properties of the Green’s function and the lower and upper solution
method, while the existence of multiple positive solutions is based on the Leggett-Williams
fixed point theorem. The main results are well illustrated with the help of examples. Our
results improve the work presented in [].
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