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Abstract
In this paper, we study the existence of chaos for a simple delay difference equation.
By using the snap-back repeller theory, we prove that the system is chaotic in the
sense of both Devaney and Li-Yorke when the parameters of this system satisfy some
mild conditions. For illustrating the theoretical result, we give two computer
simulations.
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1 Introduction
Time delay appears in many realistic systems with feedback in science and engineering. It
affects the behaviors of a dynamical system significantly. The main reason is that it causes
a system to be infinite dimensional. For example, Uçar [] proposed and analyzed a very
simple first-order delay differential equation that would admit decaying, oscillatory, and
even chaotic solutions. Recently, many researchers studied the following delay differential
equation:

ẋ(t) = –x(t) + af
(
x(t) – bx(t – τ )

)
, ()

where a, b are real parameters, τ >  is the delay, and f : R → R is a real function. Equation
() is known as a generalization of a neural network. When the function f (x) is taken as
tanh(x), () becomes a neural network, which was studied in [] for the stability character-
istics. Particularly, in [–], the authors studied the stability and chaos when f (x) and the
system parameters a, b satisfy some specific conditions.

It is well known that we can use the discrete analog to study the complex dynamical be-
haviors of nonlinear differential systems. Some qualitative properties of the corresponding
difference equations can provide much useful information for analyzing the properties of
the original differential equations. Therefore, it is very important to study properties of
difference equations. Many researchers had studied the following delay difference equa-
tion:

x(n + ) = cx(n) + g
(
x(n) – x(n – k)

)
, ()

where c is a parameter, k is a positive integer, and g : R → R is a map. Equation () can be
viewed as the Euler discretization of () for b = . Such an equation arises from some of
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the earliest mathematical models of the macroeconomic ‘trade cycle’, and has attracted a
great deal of attention; see [–], and many references therein. Most of them studied the
permanence, boundedness, stability, attractivity, oscillations, and bifurcations.

For the research on chaotic behavior of () or discretization of (), even for some spe-
cial forms of them, there are few results which are studied with rigorously mathematical
proofs. To the best of our knowledge, most of the existing results are studied with the aid of
computer simulations. The main goal of this paper is to study the existence of chaos in the
discrete analog of (). However, it is very difficult to study chaos for a general function f .
In [], Sprott proposed a simple prototype model with a sinusoidal nonlinearity to study
chaos for delay differential equations, which is regarded as one of the simplest chaotic
delay differential equations. This motivates us to use the sine function as an example to
explore the chaotic behavior in discrete analog of (). That is, we study the existence of
chaos of the following delay difference equation:

x(n + ) = αx(n) + β sin
[
x(n) – γ x(n – k)

]
, ()

where α, β , γ are real parameters, and k is a positive integer.
This paper is organized as follows. In Section , we give some basic concepts and one

lemma. In Section , we prove that the delay difference equation is chaotic in the sense
of both Devaney and Li-Yorke under some conditions, by using the snap-back repeller
theory. Then we give two computer simulations to illustrate the theoretical result. Finally,
we conclude this paper in Section .

2 Preliminaries
Up to now, there is no unified definition of chaos in mathematics. For convenience, we list
two definitions of chaos which will be used in this paper.

Definition  [] Let (X, d) be a metric space, F : X → X be a map, and S be a set of X
with at least two distinct points. Then S is called a scrambled set of F if for any two distinct
points x, y ∈ S,

(i) lim infn→∞ d(Fn(x), Fn(y)) = ;
(ii) lim supn→∞ d(Fn(x), Fn(y)) > .

The map F is said to be chaotic in the sense of Li-Yorke if there exists an uncountable
scrambled set S of F .

Remark  The term ‘chaos’ was first used by Li and Yorke [] for a map on a compact
interval. Following the work of Li and Yorke, Zhou [] gave the above definition of chaos
for a topological dynamical system on a general metric space.

Definition  [] Let (X, d) be a metric space. A map F : V ⊂ X → V is said to be chaotic
on V in the sense of Devaney if

(i) the set of the periodic points of F is dense in V ;
(ii) F is topologically transitive in V ;

(iii) F has sensitive dependence on initial conditions in V .

Remark  If F is continuous in V , then condition (iii) can be concluded by conditions (i)
and (ii), which was shown by Banks et al. []. Consequently, condition (iii) is unnecessary
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in Definition  if F is continuous in V . In [], Huang and Ye showed that chaos in the sense
of Devaney is stronger than that in the sense of Li-Yorke under some conditions.

In the rest of the paper, we use Br(z) and B̄r(z) to denote the open and closed balls of
radius r centered at z ∈ X, respectively. The following definitions in [] are used in this
paper.

Definition  [, Definitions .-.] Let (X, d) be a metric space and F : X → X be a
map.

(i) A point z ∈ X is called an expanding fixed point (or a repeller) of F in B̄r(z) for some
constant r > , if F(z) = z and there exists a constant λ >  such that

d
(
F(x), F(y)

) ≥ λd(x, y) ∀x, y ∈ B̄r(z).

The constant λ is called an expanding coefficient of F in B̄r(z). Furthermore, z is
called a regular expanding fixed point of F in B̄r(z) if z is an interior point of
F(Br(z)). Otherwise, z is called a singular expanding fixed point of F in B̄r(z).

(ii) Assume that z is an expanding fixed point of F in B̄r(z) for some r > . Then z is said
to be a snap-back repeller of F if there exists a point x ∈ Br(z) with x �= z and
Fm(x) = z for some positive integer m. Furthermore, z is said to be a nondegenerate
snap-back repeller of F if there exist positive constants μ and r < r such that
Br (x) ⊂ Br(z) and

d
(
Fm(x), Fm(y)

) ≥ μd(x, y) ∀x, y ∈ Br (x).

z is called a regular snap-back repeller of F if F(Br(z)) is open and there exists a
positive constant δ such that Bδ (x) ⊂ Br(z) and for each positive constant δ ≤ δ,
z is an interior point of Fm(Bδ(x)). Otherwise, z is called a singular snap-back
repeller of F .

Remark  The concept of snap-back repeller for maps in Rn was introduced by Marotto
[] in . Obviously, Definition  is given in general metric spaces, which is an extension
of Marotto’s definition. In terms of Definition , the snap-back repeller given by Marotto
[] is regular and nondegenerate.

Lemma  ([, Theorem .], [, Theorem .]) Let F : Rn → Rn be a map with a fixed
point z ∈ Rn. Assume that

(i) F is continuously differentiable in a neighborhood of z and all the eigenvalues of
DF(z) have absolute values larger than , which implies that there exist a positive
constant r and a norm ‖ · ‖ in Rn such that F is expanding in B̄r(z) in ‖ · ‖;

(ii) z is a snap-back repeller of F with Fm(x) = z, x �= z, for some x ∈ Br(z) and some
positive integer m. Furthermore, F is continuously differentiable in some
neighborhoods of x, x, . . . , xm–, respectively, and det DF(xj) �=  for  ≤ j ≤ m – ,
where xj = F(xj–) for  ≤ j ≤ m – .

Then for each neighborhood U of z, there exist a positive integer k > m and a Cantor set
� ⊂ U such that Fk : � → � is topologically conjugate to the symbolic dynamical system
σ :

∑+
 → ∑+

 . Consequently, there exists a compact and perfect invariant set V ⊂ Rn,
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containing the Cantor set �, such that F is chaotic on V in the sense of Devaney as well as
in the sense of Li-Yorke, and has a dense orbit in V .

Remark  We can easily conclude that z is a regular and nondegenerate snap-back re-
peller from Lemma . Hence, Lemma  can be summed as a single word: ‘a regular and
nondegenerate snap-back repeller in Rn implies chaos in the sense of both Devaney and
Li-Yorke’. For more details, one can see [, ].

3 Existence of chaos
Let uj(n) := x(n + j – k – ) for  ≤ j ≤ k + , then () is changed into a (k + )-dimensional
system on Rk+,

u(n + ) =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

u(n)
u(n)

...
uk+(n)

αuk+(n) + β sin[uk+(n) – γ u(n)]

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

:= F
(
u(n)

)
, ()

where u = (u, u, . . . , uk+)T ∈ Rk+.
System () is called the system induced by () in Rk+. It is clear that a solution

{x(n – k), . . . , x(n)}∞n= of () corresponds to a solution {u(n)}∞n= of system (), where
the initial condition {x(–k), . . . , x()} of () corresponds to an initial condition u() =
(u(), . . . , uk+())T ∈ Rk+ of system (). Hence, we can study the dynamical behavior of
() by studying that of its induced system () in Rk+. So, we call () is chaotic in the sense
of Devaney (or Li-Yorke) on V ⊂ Rk+ if its induced system () is chaotic in the sense of
Devaney (or Li-Yorke) on V ⊂ Rk+.

Now, we state the main result of this paper as the following theorem.

Theorem  There exists a constant β >  such that for arbitrary β satisfying |β| > β and
for some γ satisfying

|γ | >
 + |α + β|

|β| , ()

system (), and consequently (), is chaotic in the sense of both Devaney and Li-Yorke.

Proof Lemma  will be used to prove this theorem. Therefore, we only need to show that
the map F of system () satisfies all the assumptions in Lemma .

It is clear that O := (, . . . , )T ∈ Rk+ is always a fixed point of system (), and other fixed
points P := (x, . . . , x)T ∈ Rk+ satisfy

sin
[
( – γ )x

]
=

( – α)x
β

.

For simplicity, we will only prove that the fixed point O may be a regular and nondegener-
ate snap-back repeller of the map F when parameters satisfy the conditions in Theorem .
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For simplifying the proof and convenience, γ is taken as an integer and satisfies condi-
tion () throughout the proof.

Firstly, it is to show that O is an expanding fixed point of F in Rk+ under condition ().
It is obvious that F is continuously differentiable in Rk+, and its Jacobian matrix at O is

DF(O) =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

   · · · 
   · · · 
·· ·· ·· · · · ··
   · · · 

–βγ   · · · α + β

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

(k+)×(k+).

The characteristic equation of DF(O) is

λk+ – (α + β)λk + βγ = ,

from which we obtain the result that all the eigenvalues of DF(O) have absolute values
larger than  under condition (). If it is not true, then there will exist at least an eigenvalue
λ of DF(O) satisfies |λ| ≤ . So, we can obtain the following contradiction:

 + |α + β| ≥ ∣∣λk+


∣∣ +
∣∣(α + β)λk


∣∣

≥ ∣
∣λk+

 – (α + β)λk

∣
∣ = | – βγ | >  + |α + β|.

Therefore, we find that O is an expanding fixed point of F from the first condition of
Lemma , that is,

∥
∥F(x) – F(y)

∥
∥∗ ≥ μ‖x – y‖∗, ∀x, y ∈ B̄r(O),

where r >  is a constant, ‖ · ‖∗ is some norm in Rk+, and μ >  is an expanding coefficient
of F in B̄r(O).

Secondly, one is to prove that O is a snap-back repeller of the map F . Let W ⊂ B̄r(O)
be an arbitrary neighborhood of O in Rk+. Then we can obtain a small interval U ⊂ R
containing  such that U × U × · · · × U︸ ︷︷ ︸

k+

⊂ W . Now, one is to show that there exists a

point O ∈ W such that O �= O and

Fk+(O) = O.

When k = , we can achieve a positive constant β such that for arbitrary |β| > β, there
exist two points x, x ∈ U satisfying

⎧
⎨

⎩
β sin(γ x) = –απ ,

β sin(x – γ x) = π – αx.
()

Let O = (x, x)T ∈ R, it follows that O ∈ U × U ⊂ W with O �= O for arbitrary |β| > β.
From (), we obtain the result that F(O) = (x,π )T , F(O) = (π , )T , F(O) = O.
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When k > , we can also achieve a positive constant β such that for arbitrary |β| > β,
there exist two points x, x ∈ U satisfying

⎧
⎨

⎩
β sin(γ x) = –π ,

β sin(γ x) = –απ .
()

Let O = (x, x, , . . . , )T ∈ Rk+, it also follows that O ∈ U × U × · · · × U︸ ︷︷ ︸
k+

⊂ W with O �=

O for arbitrary |β| > β. From (), we also obtain the result that F(O) = (x, , . . . ,π )T ,
Fj(O) = (, . . . , ,π , , . . . , ︸ ︷︷ ︸

j

)T for  ≤ j ≤ k + , and Fk+(O) = O.

Set β := max{β,β}. From the above discussion, it follows that for arbitrary β satisfying
|β| > β, there exists a point O ∈ W satisfying O �= O and Fk+(O) = O. Therefore, O is
a snap-back repeller of F for arbitrary β satisfying |β| > β.

Thirdly, one is to prove that for arbitrary |β| > β, the following holds:

det DF(Oj) �= ,  ≤ j ≤ k + ,

where Oj := F(Oj–) for  ≤ j ≤ k + . The existence of the Jacobian matrices of F at Oj

( ≤ j ≤ k + ) is because F is continuously differentiable in Rk+.
It is easy to conclude that for arbitrary u = (u, . . . , uk+)T ∈ Rk+, the following holds:

det DF(u) = (–)k+βγ cos(uk+ – γ u). ()

When k = , it follows that O = (x, x)T , O = (x,π )T , O = (π , )T ∈ R. From (), we
get sin(γ x) �=  and sin(x – γ x) �=  for arbitrary |β| > β. Together with (), we get the
following for arbitrary |β| > β:

det DF(O) = βγ cos(x – γ x) �= ,

det DF(O) = –βγ cos(γ x) �= ,

det DF(O) = βγ cos(γπ ) = ±βγ �= .

When k > , it follows that O = (x, x, , . . . , )T , O = (x, , . . . , ,π )T , and Oj =
(, . . . , ,π , , . . . , ︸ ︷︷ ︸

j

)T ∈ Rk+ for  ≤ j ≤ k + . Similarly, it follows from () that sin(γ x) �= 

and sin(γ x) �=  for arbitrary |β| > β. Consequently, the following hold for arbitrary
|β| > β:

det DF(O) = (–)k+βγ cos(γ x) �= ,

det DF(O) = (–)kβγ cos(γ x) �= ,

det DF(Oj) = (–)k+βγ �= , for  ≤ j ≤ k,

det DF(Ok+) = (–)k+βγ cos(γπ ) = ±βγ �= .

In summary, the map F satisfies all the assumptions in Lemma . Consequently, sys-
tem (), i.e., (), is chaotic in the sense of both Devaney and Li-Yorke. This completes the
proof. �
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Remark  For simplifying the proof of Theorem , the parameter γ is taken as an integer.
It should be pointed out that γ may be taken as other values such that system () is chaotic.
In addition, it follows from the above proof that there exists a constant β >  such that
for arbitrary |β| > β, system () is chaotic in the sense of both Devaney and Li-Yorke.
However, there are few methods to determine the concrete expanding area of a fixed point
in the literature. So it is not easy to get the particular value β. In practical problems, we
can take the parameter |β| large enough such that () or () in the proof of Theorem  are
satisfied.

For illustrating the theoretical result, we present two computer simulations of system
(), from which we can see that system (), i.e., () indeed has complex dynamical behav-
iors. The parameters are taken as α = ., β = , γ = , k = , . From the proof of Theo-
rem , we see that O is an expanding fixed point of the map F for |γ | =  > [+ |α +β|]/|β| =
.. It is also easy to obtain the result that there exist two pairs of points x ≈ –.,
x ≈ –. satisfying () when k = , and x ≈ –., x ≈ –. satisfying ()
when k > . Therefore, O is a regular and nondegenerate snap-back repeller of the map
F . Two simulation results are given in Figures  and  for k = , , which exhibit complex
dynamical behaviors of the system.

4 Conclusion
In this paper, we rigorously show the existence of chaos in a simple delay difference equa-
tion, which illustrates that the discrete analog of system () indeed has very complicated
dynamical behaviors. By using the snap-back repeller theory, we prove that the system is
chaotic in the sense of both Devaney and Li-Yorke when the parameters of this system sat-
isfy some mild conditions. Numerical simulations confirm the theoretical analysis. How-
ever, the map f of system () is taken as a special function. Therefore, it is very interesting
to study the chaotic behavior of system () or its discrete analog for a more general form
of f , which will be our further research.

Figure 1 Computer simulation of system (4) for α = 0.1, β = 200, γ = 6, k = 1, and n from 0 to 20,000,
with the initial condition u(0) = (0.01, 0.01)T .
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Figure 2 Computer simulation of system (4) for α = 0.1, β = 200, γ = 6, k = 2, and n from 0 to 20,000,
with the initial condition u(0) = (0.01, 0.01, 0.01)T .
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