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the earliest mathematical models of the macroeconomic •trade cycle•, and has attracted a
great deal of attention; see [� …�� ], and many references therein. Most of them studied the
permanence, boundedness, stability, attractivity, oscillations, and bifurcations.

For the research on chaotic behavior of (� ) or discretization of (� ), even for some spe-
cial forms of them, there are few results which are studied with rigorously mathematical
proofs. To the best of our knowledge, most of the existing results are studied with the aid of
computer simulations. The main goal of this paper is to study the existence of chaos in the
discrete analog of (� ). However, it is very di	cult to study chaos for a general functionf .
In [ �� ], Sprott proposed a simple prototype model with a sinusoidal nonlinearity to study
chaos for delay di�erential equations, which is regarded as one of the simplest chaotic
delay di�erential equations. This motivates us to use the sine function as an example to
explore the chaotic behavior in discrete analog of (� ). That is, we study the existence of
chaos of the following delay di�erence equation:

x(n + �) = � x(n) + � sin
�
x(n) …� x(n …k)

�
, (�)

where� , � , � are real parameters, andk is a positive integer.
This paper is organized as follows. In Section� , we give some basic concepts and one

lemma. In Section� , we prove that the delay di�erence equation is chaotic in the sense
of both Devaney and Li-Yorke under some conditions, by using the snap-back repeller
theory. Then we give two computer simulations to illustrate the theoretical result. Finally,
we conclude this paper in Section
 .

2 Preliminaries
Up to now, there is no uni“ed de“nition of chaos in mathematics. For convenience, we list
two de“nitions of chaos which will be used in this paper.

De“nition � [�� ] Let (X,d) be a metric space,F : X � X be a map, andS be a set ofX
with at least two distinct points. ThenSis called a scrambled set ofF if for any two distinct
points x,y � S,

(i) lim infn�� d(Fn(x),Fn(y)) = � ;
(ii) limsupn�� d(Fn(x),Fn(y)) > � .

The map F is said to be chaotic in the sense of Li-Yorke if there exists an uncountable
scrambled setSof F.

Remark � The term •chaos• was “rst used by Li and Yorke [�
 ] for a map on a compact
interval. Following the work of Li and Yorke, Zhou [�� ] gave the above de“nition of chaos
for a topological dynamical system on a general metric space.

De“nition � [�� ] Let (X,d) be a metric space. A mapF : V � X � V is said to be chaotic
on V in the sense of Devaney if

(i) the set of the periodic points of F is dense in V ;
(ii) F is topologically transitive in V ;

(iii) F has sensitive dependence on initial conditions in V .

Remark � If F is continuous inV , then condition (iii) can be concluded by conditions (i)
and (ii), which was shown by Bankset al.[�� ]. Consequently, condition (iii) is unnecessary
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in De“nition � if F is continuous inV . In [�� ], Huang and Ye showed that chaos in the sense
of Devaney is stronger than that in the sense of Li-Yorke under some conditions.

In the rest of the paper, we useBr(z) and B̄r (z) to denote the open and closed balls of
radius r centered atz � X, respectively. The following de“nitions in [�� ] are used in this
paper.

De“nition � [�� , De“nitions �.�-�.
] Let ( X,d) be a metric space andF : X � X be a
map.

(i) A point z � X is called an expanding fixed point (or a repeller) of F in B̄r (z) for some
constant r > � , if F(z) = z and there exists a constant � > � such that

d
�
F(x),F(y)

�
� � d(x,y) � x,y � B̄r (z).

The constant � is called an expanding coefficient of F in B̄r (z). Furthermore, z is
called a regular expanding fixed point of F in B̄r (z) if z is an interior point of
F(Br(z)). Otherwise, z is called a singular expanding fixed point of F in B̄r (z).

(ii) Assume that z is an expanding fixed point of F in B̄r (z) for some r > � . Then z is said
to be a snap-back repeller of F if there exists a point x� � Br (z) with x� �= z and
Fm(x� ) = z for some positive integer m. Furthermore, z is said to be a nondegenerate
snap-back repeller of F if there exist positive constants µ and r� < r such that
Br� (x� ) � Br (z) and

d
�
Fm(x),Fm(y)

�
� µ d(x,y) � x,y � Br� (x� ).

z is called a regular snap-back repeller of F if F(Br(z)) is open and there exists a
positive constant � � such that B� � (x� ) � Br (z) and for each positive constant � 	 � � ,
z is an interior point of Fm(B� (x� )). Otherwise, z is called a singular snap-back
repeller of F.

Remark � The concept of snap-back repeller for maps inRn was introduced by Marotto
[�
 ] in �
��. Obviously, De“nition � is given in general metric spaces, which is an extension
of Marotto•s de“nition. In terms of De“nition � , the snap-back repeller given by Marotto
[�
 ] is regular and nondegenerate.

Lemma � ([�� , Theorem 
.
], [ �� , Theorem �.�]) Let F : Rn � Rn be a map with a “xed
point z � Rn. Assume that

(i) F is continuously differentiable in a neighborhood of z and all the eigenvalues of
DF(z) have absolute values larger than , which implies that there exist a positive
constant r and a norm 
 · 
 in Rn such that F is expanding in B̄r (z) in 
 · 
 ;

(ii) z is a snap-back repeller of F with Fm(x� ) = z, x� �= z, for some x� � Br (z) and some
positive integer m. Furthermore, F is continuously differentiable in some
neighborhoods of x� ,x� , . . . ,xm…�, respectively, and detDF(xj) �= � for � 	 j 	 m … �,
where xj = F(xj…�) for � 	 j 	 m … �.

Then for each neighborhood U of z, there exist a positive integer k> m and a Cantor set
� � U such that Fk : � � � is topologically conjugate to the symbolic dynamical system
	 :

� +
� �

� +
� . Consequently, there exists a compact and perfect invariant set V� Rn,
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containing the Cantor set� , such that F is chaotic on V in the sense of Devaney as well as

in the sense of Li-Yorke, and has a dense orbit in V.

Remark � We can easily conclude thatz is a regular and nondegenerate snap-back re-

peller from Lemma� . Hence, Lemma� can be summed as a single word: •a regular and

nondegenerate snap-back repeller inRn implies chaos in the sense of both Devaney and

Li-Yorke•. For more details, one can see [�� , �� ].

3 Existence of chaos
Let uj(n) := x(n + j …k … �) for � 	 j 	 k + �, then (� ) is changed into a (k + �)-dimensional

system onRk+� ,

u(n + �) =

�

�
�
�
�
�
�
�
	

u� (n)

u� (n)
...

uk+� (n)

� uk+� (n) + � sin[uk+� (n) …� u� (n)]




�
�
�
�
�
�
�
�

:= F
�
u(n)

�
, (
)

whereu = (u� ,u� , . . . ,uk+� )T � Rk+� .

System (
 ) is called the system induced by (� ) in Rk+� . It is clear that a solution

{x(n …k), . . . ,x(n)}�
n=� of (� ) corresponds to a solution{u(n)}�

n=� of system (
 ), where

the initial condition {x(…k), . . . ,x(�) } of (� ) corresponds to an initial conditionu(�) =

(u� (�), . . . , uk+� (�)) T � Rk+� of system (
 ). Hence, we can study the dynamical behavior of

(� ) by studying that of its induced system (
 ) in Rk+� . So, we call (� ) is chaotic in the sense

of Devaney (or Li-Yorke) onV � Rk+� if its induced system (
 ) is chaotic in the sense of

Devaney (or Li-Yorke) onV � Rk+� .

Now, we state the main result of this paper as the following theorem.

Theorem � There exists a constant� � > � such that for arbitrary� satisfying|� | > � � and

for some� satisfying

|� | >
� + |� + � |

|� |
, (�)

system(
 ), and consequently(� ), is chaotic in the sense of both Devaney and Li-Yorke.

Proof Lemma� will be used to prove this theorem. Therefore, we only need to show that

the mapF of system (
 ) satis“es all the assumptions in Lemma� .

It is clear thatO := (�, . . . , �) T � Rk+� is always a “xed point of system (
 ), and other “xed

points P := (x� , . . . ,x� )T � Rk+� satisfy

sin
�
(� …� )x

�
=

(� …� )x
�

.

For simplicity, we will only prove that the “xed pointO may be a regular and nondegener-

ate snap-back repeller of the mapF when parameters satisfy the conditions in Theorem� .
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For simplifying the proof and convenience,� is taken as an integer and satis“es condi-

tion (� ) throughout the proof.

Firstly, it is to show thatO is an expanding “xed point ofF in Rk+� under condition (� ).

It is obvious thatF is continuously di�erentiable in Rk+� , and its Jacobian matrix atO is

DF(O) =

�

�
�
�
�
�
�
	

� � � · · · �

� � � · · · �

·· ·· ·· · · · ··

� � � · · · �

…�� � � · · · � + �




�
�
�
�
�
�
�

(k+�) × (k+�).

The characteristic equation ofDF(O) is

� k+� … (� + � )� k + �� = �,

from which we obtain the result that all the eigenvalues ofDF(O) have absolute values

larger than � under condition (� ). If it is not true, then there will exist at least an eigenvalue

� � of DF(O) satis“es|� � | 	 �. So, we can obtain the following contradiction:

� + |� + � | �



 � k+�

�




 +




(� + � )� k

�






�



 � k+�

� … (� + � )� k
�




 = | …�� | > � + |� + � |.

Therefore, we “nd that O is an expanding “xed point ofF from the “rst condition of

Lemma� , that is,

�
� F(x) …F(y)

�
� �

� µ 
 x …y
 � , � x,y � B̄r (O),

wherer > � is a constant,
 · 
 � is some norm inRk+� , andµ > � is an expanding coe	cient

of F in B̄r (O).

Secondly, one is to prove thatO is a snap-back repeller of the mapF. Let W � B̄r (O)

be an arbitrary neighborhood ofO in Rk+� . Then we can obtain a small intervalU � R

containing � such that U × U × · · · × U� �� �
k+�

� W . Now, one is to show that there exists a

point O� � W such thatO� �= O and

Fk+� (O� ) = O.

When k = �, we can achieve a positive constant� � such that for arbitrary|� | > � � , there

exist two pointsx� ,x� � U satisfying

�
�

�
� sin(� x� ) = …�
 ,

� sin(x� …� x� ) = 
 …� x� .
(�)

Let O� = (x� ,x� )T � R� , it follows that O� � U × U � W with O� �= O for arbitrary |� | > � � .

From (� ), we obtain the result thatF(O� ) = (x� , 
 )T , F� (O� ) = (
 , �) T , F� (O� ) = O.
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When k > �, we can also achieve a positive constant� � such that for arbitrary |� | > � � ,
there exist two pointsx� ,x� � U satisfying

�
�

�
� sin(� x� ) = …
 ,

� sin(� x� ) = …�
 .
(�)

LetO� = (x� ,x� , �, . . . , �) T � Rk+� , it also follows thatO� � U × U × · · · × U� �� �
k+�

� W with O� �=

O for arbitrary |� | > � � . From (� ), we also obtain the result thatF(O� ) = (x� , �, . . . , 
 )T ,
Fj(O� ) = (�, . . . , �, 
 , �, . . . , �� �� �

j

)T for � 	 j 	 k + �, and Fk+� (O� ) = O.

Set� � := max{� � , � � }. From the above discussion, it follows that for arbitrary� satisfying
|� | > � � , there exists a pointO� � W satisfyingO� �= O and Fk+� (O� ) = O. Therefore,O is
a snap-back repeller ofF for arbitrary � satisfying|� | > � � .

Thirdly, one is to prove that for arbitrary|� | > � � , the following holds:

detDF(Oj) �= �, � 	 j 	 k + �,

where Oj := F(Oj…�) for � 	 j 	 k + �. The existence of the Jacobian matrices ofF at Oj

(� 	 j 	 k + �) is becauseF is continuously di�erentiable in Rk+� .
It is easy to conclude that for arbitraryu = (u� , . . . ,uk+� )T � Rk+� , the following holds:

detDF(u) = (…�)k+� �� cos(uk+� …� u� ). (�)

When k = �, it follows that O� = (x� ,x� )T , O� = (x� , 
 )T , O� = (
 , �) T � R� . From (� ), we
get sin(� x� ) �= � and sin(x� …� x� ) �= � for arbitrary |� | > � � . Together with (� ), we get the
following for arbitrary |� | > � � :

det DF(O� ) = �� cos(x� …� x� ) �= �,

det DF(O� ) = …�� cos(� x� ) �= �,

det DF(O� ) = �� cos(� 
 ) = ± �� �= �.

When k > �, it follows that O� = (x� ,x� , �, . . . , �) T , O� = (x� , �, . . . , �, 
 )T , and Oj =
(�, . . . , �, 
 , �, . . . , �� �� �

j

)T � Rk+� for � 	 j 	 k + �. Similarly, it follows from (� ) that sin(� x� ) �= �

and sin(� x� ) �= � for arbitrary |� | > � � . Consequently, the following hold for arbitrary
|� | > � � :

detDF(O� ) = (…�)k+� �� cos(� x� ) �= �,

detDF(O� ) = (…�)k�� cos(� x� ) �= �,

detDF(Oj) = (…�)k+� �� �= �, for � 	 j 	 k,

detDF(Ok+� ) = (…�)k+� �� cos(� 
 ) = ± �� �= �.

In summary, the mapF satis“es all the assumptions in Lemma� . Consequently, sys-
tem (
 ), i.e., (� ), is chaotic in the sense of both Devaney and Li-Yorke. This completes the
proof. �
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Remark � For simplifying the proof of Theorem� , the parameter� is taken as an integer.
It should be pointed out that� may be taken as other values such that system (
 ) is chaotic.
In addition, it follows from the above proof that there exists a constant� � > � such that
for arbitrary |� | > � � , system (
 ) is chaotic in the sense of both Devaney and Li-Yorke.
However, there are few methods to determine the concrete expanding area of a “xed point
in the literature. So it is not easy to get the particular value� � . In practical problems, we
can take the parameter|� | large enough such that (� ) or (� ) in the proof of Theorem� are
satis“ed.

For illustrating the theoretical result, we present two computer simulations of system
(
 ), from which we can see that system (
 ), i.e., (� ) indeed has complex dynamical behav-
iors. The parameters are taken as� = �.�, � = ���, � = �, k = �, �. From the proof of Theo-
rem� , we see thatO is an expanding “xed point of the mapF for |� | = � > [�+ |� + � |]/ |� | =
�.����. It is also easy to obtain the result that there exist two pairs of points x� � …�.����,
x� � …�.���� satisfying ( � ) when k = �, and x� � …�.����, x� � …�.���� satisfying ( � )
when k > �. Therefore, O is a regular and nondegenerate snap-back repeller of the map
F. Two simulation results are given in Figures� and � for k = �, �, which exhibit complex
dynamical behaviors of the system.

4 Conclusion
In this paper, we rigorously show the existence of chaos in a simple delay di�erence equa-
tion, which illustrates that the discrete analog of system (� ) indeed has very complicated
dynamical behaviors. By using the snap-back repeller theory, we prove that the system is
chaotic in the sense of both Devaney and Li-Yorke when the parameters of this system sat-
isfy some mild conditions. Numerical simulations con“rm the theoretical analysis. How-
ever, the mapf of system (� ) is taken as a special function. Therefore, it is very interesting
to study the chaotic behavior of system (� ) or its discrete analog for a more general form
of f , which will be our further research.

Figure 1 Computer simulation of system (4) for α = 0.1, β = 200, γ = 6, k = 1, and n from 0 to 20,000,
with the initial condition u(0) = (0.01, 0.01)T .
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Figure 2 Computer simulation of system (4) for α = 0.1, β = 200, γ = 6, k = 2, and n from 0 to 20,000,
with the initial condition u(0) = (0.01, 0.01, 0.01)T .
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