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Abstract
In the spirit of a publication by Cheung in 2013 we study generalized Gerber-Shiu
functions in the compound Poisson risk model perturbed by diffusion. These
generalized Gerber-Shiu functions can be used to analyze the moments of the total
discounted claim costs until ruin. Integral equations for the generalized Gerber-Shiu
functions are derived and a solution procedure is also provided. Some explicit results
are given when the claim size density is a combination of exponentials, and some
numerical results are also given.
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1 Introduction
In this paper, we describe the surplus process of an insurance company by the following
compound Poisson risk model perturbed by diffusion:

U(t) = u + ct –
N(t)∑

i=

Xi + σB(t), (.)

where u ≥  is the initial surplus, c >  is the incoming premium rate per unit time. The
counting process

N(t) = max{n : V + · · · + Vn ≤ t}

is a homogeneous Poisson process with intensity λ > , where V is the time until the first
claim arrival, and for i ≥ , Vi is the inter-claim time between the (i – )th claim and the
ith claim. For k ≥ , let Tk =

∑k
i= Vi be the kth claim arrival time. The claim sizes {Xi}∞i=

are positive continuous random variables which form an i.i.d. sequence distributed like a
generic variable X with density function fX and Laplace transform f̂X(s) =

∫ ∞
 e–sxfX(x) dx.

In addition, σ >  is the diffusion coefficient and {B(t)}t≥ is a standard Brownian motion.
Finally, we assume that {N(t)}, {Xi}, and {B(t)} are mutually independent.

The perturbed compound Poisson risk model, first proposed by Gerber [], is an exten-
sion of the classical risk model by adding diffusion process to denote small volatility in
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the surplus process. Since then, a lot of contributions have been made to this model and
its extension. See e.g. Tsai and Willmot [] for the compound Poisson risk model, Li and
Garrido [] for a Sparre Andersen risk model with Erlang inter-claim times, Zhang and
Yang [] for a perturbed compound Poisson model with dependence between inter-claim
times and claim sizes, and Zhang et al. [] for a Sparre Andersen risk model with time
dependent claim sizes.

In ruin theory, one of the effective tools to study ruin related problems is the expected
discounted penalty function (also known as Gerber-Shiu function) proposed by Gerber
and Shiu []. It provides a unified approach to study the time to ruin, the surplus before
ruin and the deficit at ruin. Recently, some generalized Gerber-Shiu functions are pro-
posed by some researchers to study other ruin related quantities. For example, Cai et al.
[] propose a generalized discounted penalty function that can be used to study the total
discounted operating costs up to ruin; Cheung [] considers a generalized Gerber-Shiu
type function that can be used to analyze the moments of the total discounted costs up to
ruin in a Sparre Andersen risk model with general inter-claim times; Cheung and Woo []
study the discounted aggregate claim costs in a class of dependent Sparre Andersen risk
models.

For risk model (.), we define the ruin time by

τ = inf
{

t ≥  : U(t) ≤ 
}

,

where τ = ∞ if U(t) >  for all t ≥ . In this paper, we study the following generalized
Gerber-Shiu type function proposed by Cheung []:

φn(u) = E

[
e–ατ

(N(τ )∑

k=

e–δTk θ (Xk)

)n

w
(∣∣U(τ )

∣∣)I(τ < ∞)
∣∣∣∣U() = u

]
, (.)

where α, δ ≥  are the forces of interest; n is a nonnegative integer; w is a nonnegative
penalty function that depends only on the deficit at ruin; I(A) is the indicator function of
event A. The random variable

∑N(τ )
k= e–δTk θ (Xk) can be interpreted as the total discounted

claim costs until ruin, where θ (·) is the ’cost’ function of a given claim size. We remark that
the expected total discounted claim costs have been studied by Cai et al. [] in the com-
pound Poisson model. For higher order moments (n > ), we refer the interested readers
to Cheung []. To the best of our knowledge, there has been no contribution to this gen-
eralized Gerber-Shiu function in the diffusion perturbed risk model.

Due to the existence of Brownian motion, ruin can be caused by claims or diffusion
oscillation. Hence, we decompose φn(u) as follows:

φn,w(u) = E

[
e–ατ

(N(τ )∑

k=

e–δTk θ (Xk)

)n

w
(∣∣U(τ )

∣∣)I
(
τ < ∞, U(τ ) < 

)∣∣∣∣U() = u

]
,

φn,d(u) = w()E

[
e–ατ

(N(τ )∑

k=

e–δTk θ (Xk)

)n

I
(
τ < ∞, U(τ ) = 

)∣∣∣∣U() = u

]
.
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It follows that φn,w(u) is the generalized Gerber-Shiu function when ruin is due to a claim.
In particular, when n = ,

φ,w(u) = E
[
e–ατ w

(∣∣U(τ )
∣∣)I

(
τ < ∞, U(τ ) < 

)|U() = u
]

is the traditional discounted penalty function of the deficit at ruin when ruin is caused by
a claim, which has been studied extensively in ruin theory. In the remainder of this paper,
whenever we talk about φn,d(u), we suppose that w() = , and for the case n = , we mean

φ,d(u) = E
[
e–ατ I

(
τ < ∞, U(τ ) = 

)|U() = u
]
,

which is the Laplace transform of the ruin time when ruin is caused by oscillation. For
applications of the above general discounted penalty functions, we refer the interested
readers to Cheung [].

The paper is organized as follows. In Section , we derive integral equations for φn,w(u)
and φn,d(u), and propose a recursive approach to solve the integral equations. In Section ,
we derive some explicit expressions when the claim size density is a combination of expo-
nentials. Some numerical examples are illustrated in Section .

2 Integral equations and the solutions
In order to derive integral equations for φn,w(u) and φn,d(u), we need to condition on the
surplus level immediately before the first claim arrival time. To this end, for q ≥  we
introduce the following q-potential measure:

R(q)(u, dx) =
∫ ∞


e–qt Pr

(
u + ct + σB(t) ∈ dx, t < τ–


)

dt,

where τ–
 = inf{t ≥  : u + ct + σB(t) ≤ }. Let

s,q =
–c +

√
c + σ q
σ  , s,q =

–c –
√

c + σ q
σ 

be the roots of the quadratic equation (in s)



σ s + cs – q = .

It follows from Theorem . and Corollary . in Kyprianou [] that R(q)(u, dx) admits a
density which is such that R(q)(u, dx) = r(q)(u, x) dx and is given by

r(q)(u, x) = e–s,qxW (q)(u) – W (q)(u – x),

where W (q) is a q-scale function defined as W (q)(x) =  for x <  and

W (q)(x) =
es,qx – es,qx

σ
 (s,q – s,q)
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for x ≥ . More explicitly, we have

r(q)(u, x) =

⎧
⎪⎨

⎪⎩

es,q(u–x)–es,qu–s,qx

σ
 (s,q–s,q)

,  ≤ x ≤ u,

es,q(u–x)–es,qu–s,qx

σ
 (s,q–s,q)

, x > u.
(.)

Now we are ready to derive integral equations for the generalized Gerber-Shiu func-
tions. First, we consider φn,w(u). Conditioning on the time of the first claim arrival and
distinguishing whether or not ruin occurs due to the first claim, by binomial expansion
we obtain

φn,w(u) = E
[
e–αV

(
e–δVθ (X)

)nw
(∣∣U(V)

∣∣)I(τ = V)|U() = u
]

+ E

[
e–α[V+(τ–V)]

(
e–δVθ (X) + e–δV

N(τ )∑

k=

e–δ(Tk –V)θ (Xk)

)n

× w
(∣∣U(τ )

∣∣)I(V < τ < ∞)
∣∣∣∣U() = u

]

=
∫ ∞


λe–(λ+α+nδ)t

∫ ∞



∫ ∞

y
θn(x)w(x – y)fX(x) dx

× Pr
(
u + ct + σB(t) ∈ dy, t < τ–


)

dt

+
n∑

j=

(
n
j

)∫ ∞


λe–(λ+α+nδ)t

∫ ∞



∫ y


θn–j(x)φj,w(y – x)fX(x) dx

× Pr
(
u + ct + σB(t) ∈ dy, t < τ–


)

dt

= λ

∫ ∞



∫ ∞

y
θn(x)w(x – y)fX(x)r(λ+α+nδ)(u, y) dx dy

+ λ

n∑

j=

(
n
j

)∫ ∞



∫ y


θn–j(x)φj,w(y – x)fX(x)r(λ+α+nδ)(u, y) dx dy

=
n∑

j=

(
n
j

)∫ ∞



∫ y


φj,w(y – x)γn–j(x) dxr(λ+α+nδ)(u, y) dy

+
∫ ∞


βn(y)r(λ+α+nδ)(u, y) dy, (.)

where

βn(y) = λ

∫ ∞

y
θn(x)w(x – y)fX(x) dx,

γj(x) = λθ j(x)fX(x), j = , , , . . . .

Similarly, we have

φn,d(u) =
n∑

j=

(
n
j

)∫ ∞



∫ y


φj,d(y – x)γn–j(x) dxr(λ+α+nδ)(u, y) dy. (.)
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We use Laplace transform method to solve integral equations (.) and (.). In the re-
mainder of this paper, we denote the Laplace transform of a function by adding a hat on
the corresponding letter. For example,

φ̂n,w(s) =
∫ ∞


e–suφn,w(u) du, φ̂n,d(s) =

∫ ∞


e–suφn,d(u) du,

β̂n(s) =
∫ ∞


e–syβn(y) dy, γ̂j(s) =

∫ ∞


e–sxγj(x) dx.

For notational convenience, we set

s,n = s,λ+α+nδ , s,n = s,λ+α+nδ .

For Re(s) > , multiplying both sides of (.) by e–su and then performing integration from
 to ∞ gives

φ̂n,w(s) =
n∑

j=

(
n
j

)∫ ∞


e–su

∫ ∞



∫ y


φj,w(y – x)γn–j(x) dxr(λ+α+nδ)(u, y) dy du

+
∫ ∞


e–su

∫ ∞


βn(y)r(λ+α+nδ)(u, y) dy du. (.)

It follows from (.) that

∫ ∞


e–sur(λ+α+nδ)(u, y) du

=


σ
 (s,n – s,n)

(∫ y


e–su+s,n(u–y) du +

∫ ∞

y
e–su+s,n(u–y) du –

∫ ∞


e–su+s,nu–s,ny du

)

=


σ
 (s,n – s,n)

(
e–s,ny – e–sy

s – s,n
+

e–sy

s – s,n
–

e–s,ny

s – s,n

)

=
e–s,ny – e–sy

σ
 (s – s,n)(s – s,n)

=
e–s,ny – e–sy


σ s + cs – (λ + α + nδ)

.

Hence, by changing the order of integrals we can obtain

∫ ∞


e–su

∫ ∞


βn(y)r(λ+α+nδ)(u, y) dy du

=
∫ ∞

 [e–s,ny – e–sy]βn(y) dy

σ s + cs – (λ + α + nδ)

=
β̂n(s,n) – β̂n(s)


σ s + cs – (λ + α + nδ)

. (.)

Similarly, for j = , , . . . , n

∫ ∞


e–su

∫ ∞



∫ y


φj,w(y – x)γn–j(x) dxr(λ+α+nδ)(u, y) dy du

=
γ̂n–j(s,n)φ̂j,w(s,n) – γ̂n–j(s)φ̂j,w(s)


σ s + cs – (λ + α + nδ)

. (.)
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Substituting (.) and (.) back into (.) we find that

φ̂n,w(s) =



σ s + cs – (λ + α + nδ)

×
( n∑

j=

(
n
j

)[
γ̂n–j(s,n)φ̂j,w(s,n) – γ̂n–j(s)φ̂j,w(s)

]
+

[
β̂n(s,n) – β̂n(s)

]
)

.

Rearranging terms in the above equation gives rise to
(



σ s + cs – (λ + α + nδ) + λ̂fX(s)

)
φ̂n,w(s)

= an,w –
n–∑

j=

(
n
j

)
γ̂n–j(s)φ̂j,w(s) – β̂n(s), (.)

where

an,w =
n∑

j=

(
n
j

)
γ̂n–j(s,n)φ̂j,w(s,n) + β̂n(s,n).

Similarly, we can obtain from (.)

(


σ s + cs – (λ + α + nδ) + λ̂fX(s)

)
φ̂n,d(s) = an,d –

n–∑

j=

(
n
j

)
γ̂n–j(s)φ̂j,d(s), (.)

where an,d =
∑n

j=
(n

j
)
γ̂n–j(s,n)φ̂j,d(s,n).

To make the following analysis more transparent, we introduce the Dickson-Hipp oper-
ator Ts (see e.g. Dickson and Hipp []), which for any integrable function f on (,∞) and
any complex number s with Re(s) ≥  is defined as

Tsf (y) =
∫ ∞

y
e–s(x–y)f (x) dx =

∫ ∞


e–sxf (x + y) dx, y ≥ .

The following commutative property will be used in the sequel:

TsTrf (y) = TrTsf (y) =
Tsf (y) – Trf (y)

r – s
, y ≥ ,

for complex numbers s �= r.
By Gerber and Landry [] we know that the following generalized Lundberg equation:



σ s + cs – (λ + α + nδ) + λ̂fX(s) =  (.)

has a unique nonnegative root, say ρα+nδ . By subtraction we have



σ s + cs – (λ + α + nδ) + λ̂fX(s)

=


σ (s – ρα+nδ)(s + ρα+nδ) + c(s – ρα+nδ) + λ

[̂
fX(s) – f̂X(ρα+nδ)

]

= (s – ρα+nδ)
(



σ (s + ρα+nδ) + c – λTsTρα+nδ

fX()
)

. (.)
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Setting s = ρα+nδ in (.) gives

an,w =
n–∑

j=

(
n
j

)
γ̂n–j(ρα+nδ)φ̂j,w(ρα+nδ) + β̂n(ρα+nδ).

Hence,

an,w –
n–∑

j=

(
n
j

)
γ̂n–j(s)φ̂j,w(s) – β̂n(s)

=
n–∑

j=

(
n
j

)[
γ̂n–j(ρα+nδ)φ̂j,w(ρα+nδ) – γ̂n–j(s)φ̂j,w(s)

]
+

[
β̂n(ρα+nδ) – β̂n(s)

]

= (s – ρα+nδ)
n–∑

j=

(
n
j

)(
γ̂n–j(ρα+nδ)

φ̂j,w(ρα+nδ) – φ̂j,w(s)
s – ρα+nδ

+
γ̂n–j(ρα+nδ) – γ̂n–j(s)

s – ρα+nδ

φ̂j,w(s)
)

+ (s – ρα+nδ)
β̂n(ρα+nδ) – β̂n(s)

s – ρα+nδ

= (s – ρα+nδ)
n–∑

j=

(
n
j

)(
γ̂n–j(ρα+nδ)TsTρα+nδ

φj,w() + φ̂j,w(s)TsTρα+nδ
γn–j()

)

+ (s – ρα+nδ)TsTρα+nδ
βn(). (.)

Plugging (.) and (.) into (.) gives

(


σ (s + ρα+nδ) + c – λTsTρα+nδ

fX()
)

φ̂n,w(s)

=
n–∑

j=

(
n
j

)(
γ̂n–j(ρα+nδ)TsTρα+nδ

φj,w() + φ̂j,w(s)TsTρα+nδ
γn–j()

)
+ TsTρα+nδ

βn().

(.)

Similarly, for φ̂n,d(s) we have

(


σ (s + ρα+nδ) + c – λTsTρα+nδ

fX()
)

φ̂n,d(s)

=
n–∑

j=

(
n
j

)(
γ̂n–j(ρα+nδ)TsTρα+nδ

φj,d() + φ̂j,d(s)TsTρα+nδ
γn–j()

)
. (.)

Applying some arrangements to the above two equations results in

φ̂n,w(s) =
λTsTρα+nδ

fX()

σ (s + ρα+nδ) + c

φ̂n,w(s)

+
n–∑

j=

(
n
j

)(
γ̂n–j(ρα+nδ)


σ (s + ρα+nδ) + c

TsTρα+nδ
φj,w() +

TsTρα+nδ
γn–j()


σ (s + ρα+nδ) + c

φ̂j,w(s)
)

+
TsTρα+nδ

βn()

σ (s + ρα+nδ) + c

(.)
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and

φ̂n,d(s) =
λTsTρα+nδ

fX()

σ (s + ρα+nδ) + c

φ̂n,d(s) +
n–∑

j=

(
n
j

)(
γ̂n–j(ρα+nδ)


σ (s + ρα+nδ) + c

TsTρα+nδ
φj,d()

+
TsTρα+nδ

γn–j()

σ (s + ρα+nδ) + c

φ̂j,d(s)
)

. (.)

Define

gn(x) =
λ

σ 

∫ x


e–(ρα+nδ+ c

σ )(x–y)Tρα+nδ
fX(y) dy,

χ,n,j(x) =

σ  γ̂n–j(ρα+nδ)e–(ρα+nδ+ c

σ )x, j = , , . . . , n – ,

χ,n,j(x) =

σ 

∫ x


e–(ρα+nδ+ c

σ )(x–y)Tρα+nδ
γn–j(y) dy, j = , , . . . , n – ,

ζn(x) =

σ 

∫ x


e–(ρα+nδ+ c

σ )(x–y)Tρα+nδ
βn(y) dy.

Inverting the Laplace transforms in (.) and (.) we obtain the following result.

Proposition  The generalized Gerber-Shiu functions φn,w(u) and φn,d(u) satisfy the fol-
lowing integral equations:

φn,w(u) =
∫ u


φn,w(u – x)gn(x) dx +

n–∑

j=

(∫ u


χ,n,j(u – x)Tρα+nδ

φj,w(x) dx

+
∫ u


χ,n,j(u – x)φj,w(x) dx

)
+ ζn(u), (.)

φn,d(u) =
∫ u


φn,d(u – x)gn(x) dx

+
n–∑

j=

(∫ u


χ,n,j(u – x)Tρα+nδ

φj,d(x) dx +
∫ u


χ,n,j(u – x)φj,d(x) dx

)
. (.)

The integral equations (.) and (.) are defective renewal equations since∫ ∞
 gn(x) dx <  under the net profit condition c > λEX (see Tsai and Willmot []). De-

fine Sn(x) =
∑∞

k= g∗k
n (x), where g∗

n (x) = gn(x) and for k ≥ , g∗k
n (x) =

∫ x
 gn(x – y)g∗(k–)

n (y) dy.
By renewal theory, we can express the solutions to (.) and (.) as follows:

φn,w(u) =
n–∑

j=

(∫ u


χ,n,j(u – x)Tρα+nδ

φj,w(x) dx +
∫ u


χ,n,j(u – x)φj,w(x) dx

)
+ ζn(u)

+
n–∑

j=

∫ u


Sn(u – y)

(∫ y


χ,n,j(y – x)Tρα+nδ

φj,w(x) dx

+
∫ y


χ,n,j(y – x)φj,w(x) dx

)
dy +

∫ u


Sn(u – y)ζn(y) dy

=
n–∑

j=

(
n
j

)∫ u



[
p,n,j(u – x)Tρα+nδ

φj,w(x) + p,n,j(u – x)φj,w(x)
]

dx + pn(u) (.)
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and

φn,d(u) =
n–∑

j=

(
n
j

)∫ u



[
p,n,j(u – x)Tρα+nδ

φj,d(x) + p,n,j(u – x)φj,d(x)
]

dx, (.)

where

pn(u) = ζn(u) +
∫ u


Sn(u – y)ζn(y) dy,

pi,n,j(u) = χi,n,j(u) +
∫ u


Sn(u – y)χi,n,j(y) dy, i = , .

It follows from (.) and (.) that we can compute φn,w(u) and φn,d(u) recursively with
the starting points φ,w(u) and φ,d(u). For φ,w(u), setting n =  in (.) gives

φ,w(u) = p(u) = ζ(u) +
∫ u


S(u – y)ζ(y) dy. (.)

For φ,d(u), it follows from Tsai and Willmot [] that the following defective renewal equa-
tion holds:

φ,d(u) =
∫ u


φ,d(u – x)g(x) dx + e–(ρα+ c

σ )u. (.)

Hence,

φ,d(u) = e–(ρα+ c
σ )u +

∫ u


S(u – x)e–(ρα+ c

σ )x dx. (.)

3 Explicit results
In this section, we assume that the individual claim size is distributed as a combination of
exponentials with density

fX(x) =
m∑

i=

ηiμie–μix, x > , (.)

where μ, . . . ,μm > , η, . . . ,ηm are distinct constants such that
∑m

i= ηi = . It is well known
that the class of combinations of exponentials can be used to approximate any absolutely
continuous distribution on (,∞) (see e.g. Dufresne []). We assume that the cost func-
tion is a linear function with the following form:

θ (x) = θ + θx, (.)

where θ, θ ≥ , and θ + θ > . Hence, each claim cost comprises a fixed cost θ and
a proportional part with coefficient θ. It follows from (.) and (.) that we need to
determine the functions pn(u), p,n,j(u), p,n,j(u) as well as the starting values φ,w(u) and
φ,d(u). We will use the Laplace transform method to determine these functions.
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3.1 Determination of pn(u)
By Laplace transform we have

p̂n(s) =
(
 + Ŝn(s)

)̂
ζn(s) =

ζ̂n(s)
 – ĝn(s)

. (.)

For fX given by (.) we have

ĝn(s) =
λ

σ

s + ρα+nδ + c
σ

f̂X(s) – f̂X(ρα+nδ)
ρα+nδ – s

=
λ

σ

s + ρα+nδ + c
σ

m∑

i=

ηiμi

(s + μi)(ρα+nδ + μi)
.

Since ρα+nδ is the root of (.), we have

(s – ρα+nδ)
(

s + ρα+nδ +
c
σ 

)(
 – ĝn(s)

)

= (s – ρα+nδ)
(

s + ρα+nδ +
c
σ 

)
+

λ

σ 

(̂
fX(s) – f̂X(ρα+nδ)

)

=

σ 

(


σ s + cs – (λ + α + nδ) + λ̂fX(s)

)

=
(s – ρα+nδ)

∏m+
i= (s + Rn,i)∏m

i=(s + μi)
, (.)

where –Rn,, . . . , –Rn,m+ are negative roots of the generalized Lundberg equation (.). In
the remainder of this paper, it is assumed that –Rn,, . . . , –Rn,m+ are distinct.

For ζ̂n(s), we consider two cases. First, we consider the case θ �=  and θ = . Since

βn(y) = λ

∫ ∞

y
θn

 w(x – y)fX(x) dx = λθn


m∑

i=

ηiμie–μiy
∫ ∞


w(x)e–μix dx,

we have

ζ̂n(s) =

σ 


s + ρα+nδ + c

σ

β̂n(s) – β̂n(ρα+nδ)
ρα+nδ – s

=
λ

σ

s + ρα+nδ + c
σ

m∑

i=

θn
 ηiμiŵ(μi)

(s + μi)(ρα+nδ + μi)
.

Then by (.) and (.) we have

p̂n(s) =
ζ̂n(s)

 – ĝn(s)
=

(s – ρα+nδ)(s + ρα+nδ + c
σ )̂ζn(s)

(s–ρα+nδ )
∏m+

i= (s+Rn,i)∏m
i=(s+μi)

=
L,n(s)

∏m+
i= (s + Rn,i)

,

where

L,n(s) =
(

s + ρα+nδ +
c
σ 

)
ζ̂n(s)

m∏

i=

(s + μi)

is a polynomial with degree m – . By partial fraction we have

p̂n(s) =
m+∑

i=

L,n,i

s + Rn,i
,
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where

L,n,i =
L,n(–Rn,i)∏m+

j=,j �=i(Rn,j – Rn,i)
, i = , , . . . , m + .

By Laplace inversion we obtain the following result.

Proposition  Suppose that –Rn,, . . . , –Rn,m+ are distinct. If θ �=  and θ = , then

pn(u) =
m+∑

i=

L,n,ie–Rn,iu. (.)

Next, we consider the case θ �= . By binomial expansion we have

βn(y) = λ

∫ ∞

y
(θ + θx)nw(x – y)fX(x) dx

= λ

∫ ∞


(θ + θx + θy)nw(x)fX(x + y) dx

= λ

m∑

i=

n∑

k=

(
n
k

)
ηiμi(θy)ke–μiy

∫ ∞


(θ + θx)n–kw(x)e–μix dx.

Then

β̂n(s) = λ

m∑

i=

n∑

k=

(
n
k

)
ηi

∫ ∞


μi(θy)ke–μiye–sy dy

∫ ∞


(θ + θx)n–kw(x)e–μix dx

= λ

m∑

i=

n∑

k=

ηi

(
θ

μi

)k n!
(n – k)!

∫ ∞



μk+
i yk

k!
e–μiye–sy dy

×
∫ ∞


(θ + θx)n–kw(x)e–μix dx

= λ

m∑

i=

n∑

k=

n!
(n – k)!

ηiμiθ
k


(s + μi)k+

∫ ∞


(θ + θx)n–kw(x)e–μix dx

= λ

m∑

i=

n∑

k=

zn,i,k

(s + μi)k+ ,

where

zn,i,k = ηiμiθ
k


n!
(n – k)!

∫ ∞


(θ + θx)n–kw(x)e–μix dx.

Consequently,

ζ̂n(s) =

σ 


s + ρα+nδ + c

σ

β̂n(s) – β̂n(ρα+nδ)
ρα+nδ – s

=
λ

σ

s + ρα+nδ + c
σ

m∑

i=

n∑

k=

(ρα+nδ + μi)k+ – (s + μi)k+

ρα+nδ – s
zn,i,k

(s + μi)k+(ρα+nδ + μi)k+ .
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By (.) and (.) we have

p̂n(s) =
ζ̂n(s)

 – ĝn(s)
=

(s – ρα+nδ)(s + ρα+nδ + c
σ )̂ζn(s)

(s–ρα+nδ )
∏m+

i= (s+Rn,i)∏m
i=(s+μi)

=
L,n(s)

[
∏m+

i= (s + Rn,i)][
∏m

i=(s + μi)n]
,

where

L,n(s) =
(

s + ρα+nδ +
c
σ 

)
ζ̂n(s)

m∏

i=

(s + μi)n+

is a polynomial with degree m(n + ). It is easily seen that –μ, . . . , –μm are not zeros of
L,n(s). Hence, by partial fraction we have

p̂n(s) =
m+∑

i=

L,n,i

s + Rn,i
+

m∑

i=

n∑

j=

L,n,i,j

(
μi

s + μi

)j

, (.)

where

L,n,i =
L,n(–Rn,i)

[
∏m+

j=,j �=i(Rn,j – Rn,i)][
∏m

j=(μj – Rn,i)n]
, i = , . . . , m,

L,n,i,j =


(n – j)!μj
i

dn–j

dsn–j
L,n(s)

[
∏m+

k= (s + Rn,k)][
∏m

k=,k �=i(s + μk)n]

∣∣∣
s=–μi

,

i = , . . . , m; j = , . . . , n.

Inverting the Laplace transforms in (.) yields the following result.

Proposition  Suppose that –Rn,, . . . , –Rn,m+ are distinct. If θ �= , then

pn(u) =
m∑

i=

L,n,ie–Rn,iu +
m∑

i=

n∑

j=

L,n,i,j
μ

j
iuj–e–μiu

(j – )!
. (.)

3.2 Determination of p1,n,j(u) and p2,n,j(u)
The Laplace transform of p,n,j(u) is given by

p̂,n,j(s) =
(
 + Ŝn(s)

)
χ̂,n,j(s) =

χ̂,n,j(s)
 – ĝn(s)

=


σ γ̂n–j(ρα+nδ) 

s+ρα+nδ+ c
σ

 – ĝn(s)

=

σ γ̂n–j(ρα+nδ)

∏m
i=(s + μi)

∏m+
i= (s + Rn,i)

,

where the last step follows from (.). By partial fraction we have

p̂,n,j(s) =
m+∑

i=

Kn,j,i

s + Rn,i
,
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where

Kn,j,i =

σ γ̂n–j(ρα+nδ)

∏m
k=(μk – Rn,i)

∏m+
k=,k �=i(Rn,k – Rn,i)

, i = , , . . . , m + .

Then Laplace inversion gives the following result.

Proposition  Suppose that –Rn,, . . . , –Rn,m+ are distinct. Then

p,n,j(u) =
m+∑

i=

Kn,j,ie–Rn,iu. (.)

Now we consider p,n,j(u), which has the Laplace transform

p̂,n,j(s) =
(
 + Ŝn(s)

)
χ̂,n,j(s) =

χ̂,n,j(s)
 – ĝn(s)

. (.)

First, for the case θ �=  and θ = , we have

χ̂,n,j(s) =

σ 


s + ρα+nδ + c

σ
TsTρα+nδ

γn–j()

=
λ

σ θ
n–j


s + ρα+nδ + c
σ

f̂X(s) – f̂X(ρα+nδ)
ρα+nδ – s

=
λ

σ θ
n–j


s + ρα+nδ + c
σ

m∑

i=

ηiμi

(s + μi)(ρα+nδ + μi)
.

Hence, by (.) and (.) we have

p̂,n,j(s) =
Wn,j(s)

∏m+
i= (s + Rn,i)

,

where

Wn,j(s) =
(

s + ρα+nδ +
c
σ 

)
χ̂,n,j(s)

m∏

i=

(s + μi)

is a polynomial with degree m – . By partial fraction we can obtain

p̂,n,j(s) =
m+∑

i=

Wn,j,i

s + Rn,i
,

where

Wn,j,i =
Wn,j(–Rn,i)∏m+

j=,j �=i(Rn,j – Rn,i)
, i = , , . . . , m + .

Then Laplace inversion gives the following result.
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Proposition  Suppose that –Rn,, . . . , –Rn,m+ are distinct. If θ �=  and θ = , then

p,n,j(u) =
m+∑

i=

Wn,j,ie–Rn,iu. (.)

Next, we consider the case θ �= . For θ = , we have

γn–j(x) = λ(θx)n–jfX(x),

which has the Laplace transform

γ̂n–j(s) = λ

m∑

i=

ηiμi

∫ ∞


(θx)n–je–μixe–sx dx = λ

m∑

i=

ηiμiθ
n–j


(n – j)!
(s + μi)n–j+ ,

then

χ̂,n,j(s) =

σ 


s + ρα+nδ + c

σ

γ̂n–j(s) – γ̂n–j(ρα+nδ)
ρα+nδ – s

=
λ

σ

s + ρα+nδ + c
σ

m∑

i=

(ρα+nδ + μi)n–j+ – (s + μi)n–j+

ρα+nδ – s

× ηiμiθ
n–j
 (n – j)!

(s + μi)n–j+(ρα+nδ + μi)n–j+ . (.)

For θ �= , by binomial expansion we have

γn–j(x) = λ(θ + θx)n–jfX(x) = λ

n–j∑

k=

(
n – j

k

)
θ

n–j–k
 (θx)kfX(x),

which has Laplace transform

γ̂n–j(s) = λ

m∑

i=

n–j∑

k=

(
n – j

k

)
ηiμiθ

n–j–k


∫ ∞


(θx)ke–μixe–sx dx

= λ

m∑

i=

n–j∑

k=

ηiμiθ
n–j–k
 θ k


(n – j)!

(n – j – k)!


(s + μi)k+ ,

then

χ̂,n,j(s) =

σ 


s + ρα+nδ + c

σ

γ̂n–j(s) – γ̂n–j(ρα+nδ)
ρα+nδ – s

=
λ

σ

s + ρα+nδ + c
σ

m∑

i=

n–j∑

k=

ηiμiθ
n–j–k
 θ k


(n – j)!

(n – j – k)!

× (ρα+nδ + μi)k+ – (s + μi)k+

ρα+nδ – s


(s + μi)k+(ρα+nδ + μi)k+ . (.)
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By (.) and (.) we have

p̂,n,j(s) =
Gn,j(s)

[
∏m+

i= (s + Rn,i)][
∏m

i=(s + μi)n–j]
,

where by (.) and (.) we find that

Gn,j(s) =
(

s + ρα+nδ +
c
σ 

)
χ̂,n,j(s)

m∏

i=

(s + μi)n–j+

is a polynomial with degree m(n – j + ) – . By partial fraction we obtain

p̂,n,j(s) =
m+∑

i=

Gn,j,i

s + Rn,i
+

m∑

i=

n–j∑

i=

Gn,j,i,i

(
μi

s + μi

)i
,

where

Gn,j,i =
Gn,j(–Rn,i)

[
∏m+

k=,k �=i(Rn,k – Rn,i)][
∏m

k=(μk – Rn,i)n–j]
, i = , . . . , m + ,

Gn,j,i,i =


(n – j – i)!μi
i

dn–j–i

dsn–j–i

Gn,j(s)
[
∏m+

i= (s + Rn,i)][
∏m

i=,i�=i (s + μi)n–j]

∣∣∣
s=–μi

,

i = , . . . , m; i = , . . . , n – j.

Finally, Laplace inversion gives the following result.

Proposition  Suppose that –Rn,, . . . , –Rn,m+ are distinct. If θ �= , then

p,n,j(u) =
m+∑

i=

Gn,j,ie–Rn,iu +
m∑

i=

n–j∑

i=

Gn,j,i,i
μ

i
i ui–e–μi u

(i – )!
. (.)

3.3 Determination of φ0,w(u) and φ0,d(u)
First, note that φ,w(u) does not depend on θ (x). By (.) and (.) we have

φ,w(u) = p(u) =
m+∑

i=

L,,ie–R,iu. (.)

Next, for φ,d(u), taking Laplace transform in (.) and using (.) we obtain

φ̂,d(s) =


s+ρα+ c

σ

 – ĝ(s)
=

∏m
i=(s + μi)∏m+

i= (s + R,i)
=

m+∑

i=

Ad,i

s + R,i
,

where

Ad,i =
∏m

j=(μj – R,i)
∏m+

j=,j �=i(R,j – R,i)
, i = , . . . , m + .
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Hence, Laplace inversion gives

φ,d(u) =
m+∑

i=

Ad,ie–R,iu. (.)

4 Numerical illustrations
In this section, we present some numerical examples. First, we compute the expected
number of claims until ruin. We set c = ., λ = , δ = α = , σ  = ., w ≡ , θ = , and
θ = . We consider the exponential claim size density fX(x) = e–x. In Figure (a), we depict
the curves of

Meann,d(u) := E
[
N(τ )I

(
τ < ∞, U(τ ) = 

)|U() = u
]
,

Meann,w(u) := E
[
N(τ )I

(
τ < ∞, U(τ ) < 

)|U() = u
]
,

Meann(u) = Meann,d(u) + Meann,w(u).

We observe that Meann,d(u), Meann,w(u) and Meann(u) start from zero, then increase
w.r.t. u, and finally decrease to zero as u → ∞. This is due to the fact that ruin occurs
immediately for zero initial surplus, and ruin is unlikely to occur for large initial surplus.
Instead, if we consider the condition means

CMeann,d(u) := E
[
N(τ )I

(
U(τ ) = 

)|τ < ∞, U() = u
]
,

CMeann,w(u) := E
[
N(τ )I

(
U(τ ) < 

)|τ < ∞, U() = u
]
,

CMeann(u) = Meann,d(u) + Meann,w(u),

it follows from Figure (b) that they are increasing functions of u and almost linear func-
tions for large enough u.

Figure 1 The expected numbers of claims until ruin. (a) Meann,d(u) (the red curve), Meann,w (u) (the green
curve), Meann(u) (the blue curve); (b) CMeann,d(u) (the red curve), CMeann,w (u) (the green curve), CMeann(u)
(the blue curve).
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Figure 2 The conditional variances of the
number of claims until ruin. CVarn,d(u) (the red
curve), CVarn,w (u) (the green curve) and CVarn(u)
(the blue curve).

Figure 3 The expected total discounted claims
until ruin. MeanX ,d(u) (the red curve), MeanX ,w (u)
(the green curve) and MeanX (u) (the blue curve).

We also study variances of the number of claims until ruin conditional on ruin occurring,
which are defined as

CVarn,d(u) = Var
[
N(τ )I

(
U(τ ) = 

)|τ < ∞, U() = u
]
,

CVarn,w(u) = Var
[
N(τ )I

(
U(τ ) < 

)|τ < ∞, U() = u
]
,

CVarn(u) = Var
[
N(τ )|τ < ∞, U() = u

]
.

We plot the conditional variances in Figure . It follows that the conditional variances
CVarn,d(u) and CVarn,w(u) behave like quadratic functions of u as the initial surplus be-
comes large, while the total conditional variance CVarn(u) behaves like a linear function
of u for large initial surplus.

Next, we consider the expected total discounted claims until ruin. With the other set-
tings as above, we set δ = ., θ = , and θ = . For the following functions:

MeanX,d(u) = E

[N(τ )∑

k=

e–δTk XkI
(
τ < ∞, U(τ ) = 

)∣∣∣∣U() = u

]
,

MeanX,w(u) = E

[N(τ )∑

k=

e–δTk XkI
(
τ < ∞, U(τ ) < 

)∣∣∣∣U() = u

]
,

MeanX(u) = MeanX,d(u) + MeanX,w(u),
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Figure 4 The mean and variance of total discounted claims until ruin conditional ruin occurring.
(a) CMeanX ,d(u) (the red curve), CMeanX ,w (u) (the green curve), CMeanX (u) (the blue curve); (b) CVarX ,d(u) (the
red curve), CVarX ,w (u) (the green curve), CVarX (u) (the blue curve).

it follows from Figure  that they have the same behavior as the expected number of claims
until ruin, which can be explained as above. Furthermore, we study the mean and variance
conditional on ruin occurring, which are defined as

CMeanX,d(u) = E

[N(τ )∑

k=

e–δTk XkI
(
U(τ ) = 

)∣∣∣∣τ < ∞, U() = u

]
,

CMeanX,w(u) = E

[N(τ )∑

k=

e–δTk XkI
(
U(τ ) < 

)∣∣∣∣τ < ∞, U() = u

]
,

CMeanX(u) = CMeanX,d(u) + CMeanX,w(u),

CVarX,d(u) = Var

[N(τ )∑

k=

e–δTk XkI
(
U(τ ) = 

)∣∣∣∣τ < ∞, U() = u

]
,

CVarX,w(u) = Var

[N(τ )∑

k=

e–δTk XkI
(
U(τ ) < 

)∣∣∣∣τ < ∞, U() = u

]
,

CVarX(u) = Var

[N(τ )∑

k=

e–δTk Xk

∣∣∣∣τ < ∞, U() = u

]
.

We find from Figure  that the conditional means and variances are increasing functions
of u and converge to some finite constants as u → ∞. The finite limit behavior has also
been found by Cheung [].

Finally, we consider the case when fX is a combination of exponentials with the following
setting:

fX(x) = .e–x + .e–.x.

Furthermore, we set c = ., λ = , σ  = ., δ = ., α = , and the cost function θ (x) =
x + ..

CMeanθ ,d(u) = E

[N(τ )∑

k=

e–δTk θ (Xk)I
(
U(τ ) = 

)∣∣∣∣τ < ∞, U() = u

]
,



Liu and Zhang Advances in Difference Equations  (2015) 2015:34 Page 19 of 20

Figure 5 The mean and conditional mean of total discounted claim costs until ruin conditional ruin
occurring. (a) φ1,d(u) (the red curve), φ1,w (u) (the green curve), φ1,d(u) + φ1,w (u) (the blue curve);
(b) CMeanθ ,d(u) (the red curve), CMeanθ ,w (u) (the green curve), CMeanθ (u) (the blue curve).

CMeanθ ,w(u) = E

[N(τ )∑

k=

e–δTk θ (Xk)I
(
U(τ ) < 

)∣∣∣∣τ < ∞, U() = u

]
,

CMeanθ (u) = CMeanθ ,d(u) + CMeanθ ,w(u).

In Figure , we plot the means and conditional means of the total discounted claim costs
until ruin. Again, we observe that the means start from zero, then increase, and finally
decrease to zero, however, the conditional means increase to some finite constants.
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