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Abstract
In this paper, we investigate the growth and the exponent of convergence of the
sequence of ϕ-points of meromorphic solutions of the linear differential equations

Ak(z)f (k) + Ak–1(z)f (k–1) + · · · + A1(z)f ′ + A0(z)f = 0

and

Ak(z)f (k) + Ak–1(z)f (k–1) + · · · + A1(z)f ′ + A0(z)f = F(z),

with entire coefficients Aj(z), j = 0, 1, . . . , k and F(z), where k ≥ 2, A0(z)Ak(z) �≡ 0, ϕ(z) is a
meromorphic function of finite order, and there is only one dominant coefficient Ak(z)
of the maximal order, which is also a Fabry gap series.
MSC: 30D35; 34M10
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1 Introduction and main results
We make use of the standard notations of Nevanlinna’s value distribution theory (see,
e.g., [–]). In the whole paper, let f (z) be a meromorphic function in the whole complex
plane.

Firstly, let us recall the following definitions (see, e.g., [–]).

Definition . The iterated p-order σp(f ) and the iterated p-lower order μp(f ) of a mero-
morphic function f (z) are defined respectively by

σp(f ) = lim
r→∞

logp T(r, f )
log r

and μp(f ) = lim
r→∞

logp T(r, f )
log r

, p ∈ N.

Especially, σ (f ) = σ(f ), μ(f ) = μ(f ).
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Definition . The finiteness degree of the order of a meromorphic function f (z) is de-
fined by

i(f ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

 if f (z) is rational;
min{p ∈N : σp(f ) < ∞} if f (z) is transcendental with

σp(f ) < ∞ for some p ∈N;
∞ if σp(f ) = ∞ for all p ∈N.

Definition . The iterated exponents of convergence of the sequence of a-points and
the sequence of distinct a-points of a meromorphic function f (z) are defined respectively
by

λp(f – a) = lim
r→∞

logp N(r, 
f –a )

log r
and λp(f – a) = lim

r→∞
logp N(r, 

f –a )
log r

, p ∈N,

where a ∈C∪ {∞}.

Further, we can get the definitions λp(f – ϕ) and λp(f – ϕ), when a is replaced by a mero-
morphic function ϕ(z).

Secondly, let us recall some results on the growth of solutions of the homogeneous linear
differential equation

f (k) + Ak–(z)f (k–) + · · · + A(z)f ′ + A(z)f = , (.)

where k ≥ , Aj(z), j = , , . . . , k – , are entire functions (see, e.g., [, –]). It is well
known that all solutions of (.) are entire functions.

In , Chen and Gao considered the growth of solutions of (.) and obtained the
following theorem in [].

Theorem A (see []) Suppose that k ≥ , Aj(z), j = , , . . . , k – , are entire functions and
satisfy

(i) σ (Aj) < σ (A) < ∞, j = , . . . , k – 
or

(ii) A(z) is a transcendental entire function with σ (A) < ∞, and Aj(z), j = , . . . , k – ,
are polynomials.

Then every solution f (z) ( �≡ ) of (.) satisfies σ (f ) = ∞.

Generally, when Ad(z) ( ≤ d ≤ k – ) is dominant, Chen and Gao obtained the following
theorem in [] in .

Theorem B (see []) Suppose that k ≥ , Aj(z), j = , , . . . , k – , are entire functions, and
there exists Ad(z) ( ≤ d ≤ k – ) such that

(i) σ (Aj) < σ (Ad) < 
 (j = , . . . , d – , d + , . . . , k – )

or
(ii) Ad(z) is transcendental with σ (Ad) =  and Aj(z) (j �= d) are polynomials.

Then every solution f (z) ( �≡ ) of (.) is either a polynomial with deg f ≤ d – , or an infinite
order entire function. Furthermore, if among Ad–(z), . . . , A(z) there exist and only exist
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Am (z), . . . , Ams (z) (d –  ≥ m > m > · · · > ms ≥ ) being transcendental, and σ (Amj ) (j =
, . . . , s) are unequal to each other or s = , and if () ms = , or () ms >  and polynomials
Ams–(z), . . . , A(z) satisfy that deg Aj – j (j = ms –, . . . , ) are unequal to each other or ms = 
and A(z) �≡ , then every solution f (z) ( �≡ ) of (.) satisfies σ (f ) = ∞.

Theorems A and B give the properties of solutions of (.) when there is exactly one
coefficient that has the maximal order. Thus, a natural question arises: how about the
properties of solutions of (.) when there is more than one coefficient having the maximal
order? In this paper, we proceed in this way.

Now, we turn to consider the homogeneous linear differential equation

Ak(z)f (k) + Ak–(z)f (k–) + · · · + A(z)f ′ + A(z)f = , (.)

where k ≥ , Ak(z)A(z) �≡ , and Aj(z), j = , , . . . , k, are entire functions. Hamani and
Belaïdi in [] and He et al. in [] investigated (.) and obtained the properties of the
iterated order of solutions of (.) when there exists one As(z) (s ∈ {, , . . . , k – }) having
the maximal iterated order. When Ak(z) has the order larger than the others or Ak(z) is
transcendental while the others are polynomials, by dividing (.) by Ak(z), we find that
it is just the case when all coefficients of (.) are meromorphic and have the same order
σ (Ak). For this case, we obtain the following results.

Theorem . Suppose that k ≥ , Aj(z), j = , , . . . , k, are entire functions satisfying
Ak(z)A(z) �≡  and σ (Aj) < σ (Ak) < ∞, j = , , . . . , k – . Suppose that Ak(z) =

∑∞
n= cλn zλn

and the sequence of exponents {λn} satisfies the Fabry gap condition

λn

n
→ ∞ (n → ∞). (.)

Then every rational solution f (z) of (.) is a polynomial with deg f ≤ k – , and every
transcendental meromorphic solution f (z) of (.), whose poles are of uniformly bounded
multiplicities such that λ( 

f ) < μ(f ), satisfies

λ(f – ϕ) = λ(f – ϕ) = σ (f ) = ∞, λ(f – ϕ) = λ(f – ϕ) = σ(f ) = σ (Ak),

where ϕ(z) is a finite order meromorphic function and does not solve (.).

Remark . Suppose that Ak(z) =
∑∞

n= cλn zλn is an entire function, and the sequence of
exponents {λn} satisfies Fabry gap condition (.), then the series

∑∞
n= cλn zλn is called a

Fabry gap series. It follows by [] that if Ak(z) is a Fabry gap series, then it has no deficient
values. In particular, zero is not a deficient value of Ak(z), then the solutions of (.) are
meromorphic in general.

Theorem . Suppose that k ≥ , Aj(z), j = , , . . . , k, are entire functions satisfying
Ak(z)A(z) �≡  and

(i) σ (Aj) < σ (Ak) < 
 , j = , , . . . , k – 

or
(ii) Ak(z) is transcendental with σ (Ak) = , and Aj(z), j = , , . . . , k – , are polynomials.
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Then every rational solution f (z) of (.) is a polynomial with deg f ≤ k – , and every
transcendental meromorphic solution f (z) of (.), whose poles are of uniformly bounded
multiplicities such that λ( 

f ) < μ(f ), satisfies

λ(f – ϕ) = λ(f – ϕ) = σ (f ) = ∞, λ(f – ϕ) = λ(f – ϕ) = σ(f ) = σ (Ak),

where ϕ(z) is a finite order meromorphic function and does not solve (.).

Next, we consider the non-homogeneous linear differential equation

Ak(z)f (k) + Ak–(z)f (k–) + · · · + A(z)f ′ + A(z)f = F(z), (.)

where k ≥ , Aj(z), j = , , . . . , k, F(z) are entire functions, Ak(z)A(z)F(z) �≡  and Aj(z),
j = , , . . . , k, satisfy the hypotheses of Theorem . or ..

Theorem . Suppose that Aj(z), j = , , . . . , k, satisfy the hypotheses of Theorem . or .,
F(z) ( �≡ ) is an entire function of finite order.

(i) If σ (F) < σ (Ak) (now Ak(z) does not satisfy (ii) of Theorem .), then every rational
solution f (z) of (.) is a polynomial with deg f ≤ k – , and every transcendental
meromorphic solution f (z) of (.), whose poles are of uniformly bounded
multiplicities such that λ( 

f ) < μ(f ), satisfies

λ(f – ϕ) = λ(f – ϕ) = σ (f ) = ∞, λ(f – ϕ) = λ(f – ϕ) = σ(f ) = σ (Ak),

where ϕ(z) is a finite order meromorphic function and does not solve (.).
(ii) If σ (F) > σ (Ak), then every infinite order meromorphic solution f (z) of (.) satisfies

λ(f – ϕ) = λ(f – ϕ) = σ (f ) = ∞,

where ϕ(z) is a finite order meromorphic function and does not solve (.). And every
finite order meromorphic solution f(z) satisfies

σ (F) ≤ σ (f) ≤ max
{
σ (F),λ(f)

}
.

For the case of entire solutions, we can deduce the following Corollary . easily.

Corollary . Under the hypotheses of Theorem . or . or ., the same conclusions hold
for every entire solution of (.) or (.).

2 Preliminary lemmas
Lemma . (see []) Let f (z) be a transcendental meromorphic function of finite order,
� = {(k, j), . . . , (km, jm)} be a finite set of distinct pairs of integers which satisfy ki > ji ≥ 
for i = , . . . , m, and let ε >  be a given constant. Then there exists a set E ⊂ (, +∞) that has
finite logarithmic measure such that for all z satisfying |z| /∈ E ∪ [, ] and for all (k, j) ∈ �,
we have

∣
∣
∣
∣
f (k)(z)
f (j)(z)

∣
∣
∣
∣ ≤ |z|(k–j)(σ (f )–+ε).
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Lemma . (see []) Let f (z) = g(z)
d(z) be a meromorphic function, where g(z), d(z) are entire

functions of finite iterated order satisfying i(f ) = p ∈N, μp(g) = μp(f ) ≤ σp(g) = σp(f ), i(d) <
p or σp(d) < μp(f ). Let z be a point with |z| = r at which |g(z)| = M(r, g), and let νg(r) denote
the central index of g(z), then the estimation

f (k)(z)
f (z)

=
(

νg(r)
z

)k(
 + o()

)
, k ∈N

holds for all |z| = r outside a set E of r of finite logarithmic measure.

Lemma . Let f (z) satisfy the hypotheses of Lemma ., then there exists a set E ⊂ (, +∞)
having finite logarithmic measure such that for all z satisfying |z| = r /∈ E∪ [, ] and |g(z)| =
M(r, g), we have

∣
∣
∣
∣

f (z)
f (k)(z)

∣
∣
∣
∣ ≤ rk , k ∈N.

Proof It follows by Lemma . that

f (k)(z)
f (z)

=
(

νg(r)
z

)k(
 + o()

)
,

where |z| = r /∈ E ∪ [, ], E ⊂ (, +∞) is of finite logarithmic measure and |g(z)| = M(r, g).
Since g(z) is transcendental, νg(r) → ∞ (r → ∞). Hence, when z satisfies |z| = r /∈ E ∪ [, ]
and |g(z)| = M(r, g), we get Lemma .. �

Lemma . (see [, ]) Let A(z) =
∑∞

n= cλn zλn be an entire function of finite order and
the sequence of exponents {λn} satisfy (.), and f (z) be an entire function satisfying σ (f ) =
σ ∈ (, +∞). Then, for any given ε ( < ε < σ ), there exists a set H ⊂ (, +∞) satisfying
log dens H ≥ η, where η ∈ (, ) is a constant, such that for all z satisfying |z| = r ∈ H , one
has

log M(r, f ) > rσ–ε , log L(r, A) > ( – η) log M(r, A),

where L(r, A) = min|z|=r |A(z)|, M(r, A) = max|z|=r |A(z)|, M(r, f ) = max|z|=r |f (z)|.

We may deduce the following Remark . from Lemma . immediately.

Remark . Let A(z) =
∑∞

n= cλn zλn be an entire function satisfying σ (A) = σ ∈ (, +∞),
and let the sequence of exponents {λn} satisfy (.). Then, for any given ε ( < ε < σ ),
there exists a set H ⊂ (, +∞) satisfying log dens H ≥ η, where η ∈ (, ) is a constant such
that for all z satisfying |z| = r ∈ H , one has

∣
∣A(z)

∣
∣ >

[
M(r, A)

]–η > exp
{

( – η)rσ–ε
}

> exp
{

rσ–ε
}

.

Lemma . (see []) Let Aj(z), j = , , . . . , k – , F(z) ( �≡ ) be meromorphic functions, and
f (z) be a meromorphic solution of

f (k) + Ak–(z)f (k–) + · · · + A(z)f ′ + A(z)f = F(z)
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satisfying one of the following conditions:
(i) max{i(F) = q, i(Aj) (j = , , . . . , k – )} < i(f ) = p +  ( < p < ∞),

(ii) b = max{σp+(F),σp+(Aj) (j = , , . . . , k – )} < σp+(f ) = σ .
Then λp+(f ) = λp+(f ) = σp+(f ) = σ .

Lemma . (see []) Suppose that k ≥ , Aj(z), j = , , . . . , k – , are meromorphic func-
tions, σ = max{σ (Aj), j = , , . . . , k – }. If f (z) is a transcendental meromorphic solution of
(.) and all poles of f (z) are of uniformly bounded multiplicity, then we have σ(f ) ≤ σ .

Lemma . (see []) Let f (z) be a transcendental meromorphic function, � = {(k, j), . . . ,
(km, jm)} be a finite set of distinct pairs of integers which satisfy ki > ji ≥  for i = , . . . , m,
and α >  be a given constant. Then there exists a set E ⊂ (, +∞) that has finite logarithmic
measure, and exists a constant C > , that depends only on α and �, such that for all z
satisfying |z| /∈ E ∪ [, ] and for all (k, j) ∈ �, we have

∣
∣
∣
∣
f (k)(z)
f (j)(z)

∣
∣
∣
∣ ≤ C

[
T(αr, f )

r
logα r log T(αr, f )

]k–j

.

Lemma . (see []) Let f (z) be an entire function of order σ (f ) = σ < 
 and denote A(r) =

inf|z|=r log |f (z)|, B(r) = sup|z|=r log |f (z)|. If σ < α < 
 , then

log dens
{

r : A(r) > (cosπα)B(r)
} ≥  –

σ

α
.

Lemma . (see []) Let f (z) be an entire function with μ(f ) = μ < 
 and μ < σ = σ (f ). If

μ ≤ δ < min{σ , 
 } and δ < α < 

 , then

log dens
{

r : A(r) > (cosπα)B(r) > rδ
}

> C(σ , δ,α),

where C(σ , δ,α) is a positive constant depending only on σ , δ, α.

Lemma . (see []) Let f (z) be a meromorphic function with σ (f ) = β < ∞. Then, for
any ε > , there exists a set E ⊂ (, +∞) with mE < ∞ such that for all z with |z| = r /∈
E ∪ [, ], r → ∞, we have

exp
{

–rβ+ε
} ≤ ∣

∣f (z)
∣
∣ ≤ exp

{
rβ+ε

}
.

Lemma . (see []) Let g : [, +∞) → R and h : [, +∞) → R be monotone nonde-
creasing functions such that g(r) ≤ h(r) for all r /∈ E ∪ [, ], where E ⊂ (, +∞) is a set of
finite logarithmic measure. Let α >  be a given constant. Then there exists r = r(α) > 
such that g(r) ≤ h(αr) for all r > r.

Lemma . (see []) Let f (z) be an entire function of finite iterated order with i(f ) = p + ,
p ∈ N, and νf (r) be the central index of f (z). Then

lim
r→∞

logp+ νf (r)
log r

= σp+(f ).
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3 Proofs of Theorems 1.1-1.3
Proof of Theorem . Suppose that f (z) is a rational solution of (.). Since σ (Ak) >
max{σ (Aj), j = , , . . . , k – }, it is clear that f (z) is a polynomial with deg f ≤ k – .

Now, suppose that f (z) is a transcendental meromorphic solution of (.), whose poles
are of uniformly bounded multiplicities such that λ( 

f ) < μ(f ). And we suppose on the
contrary that σ (f ) < ∞. By Lemma ., there exists a set E ⊂ (, +∞) of finite logarithmic
measure such that for all z satisfying |z| = r /∈ [, ] ∪ E, we have

∣
∣
∣
∣
f (j)(z)
f (z)

∣
∣
∣
∣ ≤ rk·σ (f ), j = , . . . , k – . (.)

Since λ( 
f ) < μ(f ), by Hadamard’s factorization theorem, we may denote f (z) as f (z) = g(z)

d(z) ,
where g(z) and d(z) are entire functions and d(z) is the canonical product formed by all
poles of f (z) such that σ (d) = λ( 

f ) < μ(f ) = μ(g) ≤ σ (g) = σ (f ) < ∞. Then, by Lemma .,
there exists a set E ⊂ (, +∞) of finite logarithmic measure such that for all z satisfying
|z| = r /∈ [, ] ∪ E and |g(z)| = M(r, g), we have

∣
∣
∣
∣

f (z)
f (k)(z)

∣
∣
∣
∣ ≤ rk . (.)

Set σ = σ (Ak) and β = max{σ (Aj), j = , , . . . , k – }. Since β < σ , for any given ε ( < ε <
σ–β

 ) and sufficiently large r = |z|, we have

∣
∣Aj(z)

∣
∣ ≤ M(r, Aj) ≤ exp

{
rβ+ε

}
, j = , , . . . , k – . (.)

By Remark ., for the above ε, there exists a set H ⊂ (, +∞) of infinite logarithmic mea-
sure such that for all z satisfying |z| = r ∈ H, we have

∣
∣Ak(z)

∣
∣ ≥ exp

{
rσ–ε

}
. (.)

And from (.) we can obtain that

–Ak(z) =
f

f (k)

(

Ak–(z)
f (k–)

f
+ · · · + A(z)

f ′

f
+ A(z)

)

. (.)

Combining (.)-(.), we have

exp
{

rσ–ε
} ≤ krk · exp

{
rβ+ε

} · rk·σ (f ), r ∈ H\
(
E ∪ E ∪ [, ]

)
. (.)

Noting that  < ε < σ–β

 , we can see that (.) is a contradiction. Therefore, every transcen-
dental meromorphic solution f (z) of (.), whose poles are of uniformly bounded multi-
plicities such that λ( 

f ) < μ(f ), satisfies σ (f ) = ∞.
Next, we prove λ(f – ϕ) = λ(f – ϕ) = σ (f ) = ∞. Set g(z) = f (z) – ϕ(z), then g(z) solves the

equation

g(k) +
Ak–(z)
Ak(z)

g(k–) + · · · +
A(z)
Ak(z)

g ′ +
A(z)
Ak(z)

g

= –ϕ(k) –
Ak–(z)
Ak(z)

ϕ(k–) – · · · –
A(z)
Ak(z)

ϕ′ –
A(z)
Ak(z)

ϕ,
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and satisfies σ (g) = σ (f ) = ∞. Since ϕ(z) does not solve (.), we have that

–ϕ(k) –
Ak–(z)
Ak(z)

ϕ(k–) – · · · –
A(z)
Ak(z)

ϕ′ –
A(z)
Ak(z)

ϕ �≡ .

Then, by Lemma . and σ (ϕ) < ∞, we have

λ(g) = λ(g) = σ (g) = ∞,

that is,

λ(f – ϕ) = λ(f – ϕ) = σ (f ) = ∞.

In the end, we prove λ(f – ϕ) = λ(f – ϕ) = σ(f ) = σ . By Lemma ., every transcen-
dental meromorphic solution f (z), whose poles are of uniformly bounded multiplicities,
of the equation

f (k) +
Ak–(z)
Ak(z)

f (k–) + · · · +
A(z)
Ak(z)

f ′ +
A(z)
Ak(z)

f =  (.)

satisfies σ(f ) ≤ max{σ ( Aj
Ak

), j = , , . . . , k – } = σ (Ak) = σ . On the other hand, by Lem-
ma ., there exist a set E ⊂ (, +∞) that has finite logarithmic measure and a constant
B >  such that for all z satisfying |z| = r /∈ [, ] ∪ E, we have

∣
∣
∣
∣
f (j)(z)
f (z)

∣
∣
∣
∣ ≤ B

(
T(r, f )

)k , j = , . . . , k – . (.)

Combining (.)-(.) with (.), we have

exp
{

rσ–ε
} ≤ krk · exp

{
rβ+ε

} · B
(
T(r, f )

)k , r ∈ H\
(
E ∪ E ∪ [, ]

)
,

which implies σ(f ) ≥ σ – ε. Since ε ( < ε < σ–β

 ) is arbitrary, σ(f ) ≥ σ = σ (Ak) holds.
Therefore, we have σ(f ) = σ = σ (Ak).

By using a similar method as above and Lemma ., we can obtain that

λ(f – ϕ) = λ(f – ϕ) = σ(f ) = σ (Ak). �

Proof of Theorem . (i) Suppose that f (z) is a rational solution of (.). Since σ (Ak) >
max{σ (Aj), j = , , . . . , k – }, it is clear that f (z) is a polynomial with deg f ≤ k – .

Now, suppose that f (z) is a transcendental meromorphic solution of (.), whose poles
are of uniformly bounded multiplicities such that λ( 

f ) < μ(f ). And we suppose on the
contrary that σ (f ) < ∞. Since λ( 

f ) < μ(f ), by Hadamard’s factorization theorem, we may
denote f (z) as f (z) = g(z)

d(z) , where g(z) and d(z) are entire functions and d(z) is the canonical
product formed by all poles of f (z) such that σ (d) = λ( 

f ) < μ(f ) = μ(g) ≤ σ (g) = σ (f ) < ∞.
Then (.) and (.) hold for all z satisfying |z| = r /∈ [, ] ∪ E ∪ E and |g(z)| = M(r, g).
Now, we choose two constants τ ,γ such that for j = , , . . . , k – ,

σ (Aj) < τ < γ < σ (Ak).
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Since σ = σ (Ak) < 
 , by Lemmas . and ., there exists a set H ⊂ (, +∞) of infinite

logarithmic measure such that for all z satisfying |z| = r ∈ H, we have

log
∣
∣Ak(z)

∣
∣ > rγ . (.)

Since σ (Aj) < τ , j = , , . . . , k – , we have, for sufficiently large r = |z|,
∣
∣Aj(z)

∣
∣ ≤ exp

{
rτ

}
, j = , , . . . , k – . (.)

Then (.), (.), (.), (.), (.) imply that

exp
{

rγ
} ≤ krk · exp

{
rτ

} · rk·σ (f ), r ∈ H\
(
E ∪ E ∪ [, ]

)
,

which is a contradiction. Therefore, every transcendental meromorphic solution f (z) of
(.), whose poles are of uniformly bounded multiplicities such that λ( 

f ) < μ(f ), satisfies
σ (f ) = ∞.

By Lemma ., every transcendental meromorphic solution f (z), whose poles are of uni-
formly bounded multiplicities, of equation (.) satisfies σ(f ) ≤ max{σ ( Aj

Ak
), j = , , . . . , k –

} = σ (Ak). On the other hand, combining (.), (.) with (.)-(.), we have

exp
{

rγ
} ≤ krk · exp

{
rτ

} · B
(
T(r, f )

)k , r ∈ H\
(
E ∪ E ∪ [, ]

)
,

which implies σ(f ) ≥ γ . Letting γ → σ (Ak), we have σ(f ) ≥ σ (Ak). Therefore, we have
σ(f ) = σ (Ak).

By using a similar method as the one in the proof of Theorem ., we can prove

λ(f – ϕ) = λ(f – ϕ) = σ (f ) = ∞, λ(f – ϕ) = λ(f – ϕ) = σ(f ) = σ (Ak).

(ii) Suppose that f (z) is a rational solution of (.). Since Ak(z) is transcendental and
Aj(z), j = , , . . . , k – , are polynomials, we can easily obtain that f (z) is a polynomial with
deg f ≤ k – .

Now, suppose that f (z) is a transcendental meromorphic solution of (.), whose poles
are of uniformly bounded multiplicities such that λ( 

f ) < μ(f ). And we suppose on the
contrary that σ (f ) < ∞. Since λ( 

f ) < μ(f ), by Hadamard’s factorization theorem, we may
denote f (z) as f (z) = g(z)

d(z) , where g(z) and d(z) are entire functions and d(z) is the canonical
product formed by all poles of f (z) such that σ (d) = λ( 

f ) < μ(f ) = μ(g) ≤ σ (g) = σ (f ) < ∞.
Then (.) and (.) hold for all z satisfying |z| = r /∈ [, ] ∪ E ∪ E and |g(z)| = M(r, g).
Since Aj(z), j = , , . . . , k – , are polynomials, there exists M >  such that

∣
∣Aj(z)

∣
∣ ≤ rM, j = , , . . . , k – . (.)

Since Ak(z) is transcendental, by Lemma ., there exists a set H ⊂ (, +∞) of infinite
logarithmic measure such that for all z satisfying |z| = r ∈ H, we have

min{log |Ak(z)| : |z| = r}
log r

→ ∞.
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Hence,

∣
∣Ak(z)

∣
∣ ≥ rk(σ (f )+)+M, |z| = r ∈ H. (.)

Then (.), (.), (.), (.) and (.) imply that

rk(σ (f )+)+M ≤ krk · rM · rk·σ (f ) = krk(σ (f )+)+M, r ∈ H\
(
E ∪ E ∪ [, ]

)
,

which is a contradiction. Therefore, every transcendental meromorphic solution f (z) of
(.), whose poles are of uniformly bounded multiplicities such that λ( 

f ) < μ(f ), satisfies
σ (f ) = ∞.

By using a similar method as the one in the proof of Theorem ., we can obtain that

λ(f – ϕ) = λ(f – ϕ) = σ (f ) = ∞.

Now, (.) together with Lemma . implies that

σ(f ) ≤ max
{
σ (Aj), j = , , . . . , k

}
= ,

that is,

λ(f – ϕ) = λ(f – ϕ) = σ(f ) = σ (Ak) = . �

Proof of Theorem . We prove only the case under the hypotheses of Theorem ., and
the case under the hypotheses of Theorem . can be proved similarly. So, we omit the
proof of the second case.

(i) Suppose that f (z) is a rational solution of (.). Since σ (Ak) > max{σ (Aj), j = , , . . . , k –
,σ (F)}, it is clear that f (z) is a polynomial with deg f ≤ k – .

Now, suppose that f (z) is a transcendental meromorphic solution of (.), whose poles
are of uniformly bounded multiplicities such that λ( 

f ) < μ(f ). And we suppose on the
contrary that σ (f ) < ∞. Since λ( 

f ) < μ(f ), by Hadamard’s factorization theorem, we may
denote f (z) as f (z) = g(z)

d(z) , where g(z) and d(z) are entire functions and d(z) is the canonical
product formed by all poles of f (z) such that σ (d) = λ( 

f ) < μ(f ) = μ(g) ≤ σ (g) = σ (f ) < ∞.
Then (.) and (.) hold for all z satisfying |z| = r /∈ [, ] ∪ E ∪ E and |g(z)| = M(r, g). Set
σ = σ (Ak) and δ = max{σ (Aj), j = , , . . . , k – ,σ (F)}. Since δ < σ , for any given ε ( < ε <

min{ σ–δ
 ,

μ(f )–λ( 
f )

 }) and sufficiently large r = |z|, we have

∣
∣F(z)

∣
∣ ≤ exp

{
rδ+ε

}
,

∣
∣Aj(z)

∣
∣ ≤ exp

{
rδ+ε

}
, j = , , . . . , k – . (.)

Moreover, (.) holds for all z satisfying |z| = r ∈ H. Since σ (d) = λ( 
f ) < μ(f ) = μ(g), for

the above ε and sufficiently large z satisfying |z| = r and |g(z)| = M(r, g), we have that

∣
∣
∣
∣


f (z)

∣
∣
∣
∣ =

∣
∣
∣
∣

d(z)
M(r, g)

∣
∣
∣
∣ ≤

∣
∣
∣
∣
exp{rλ( 

f )+ε}
exp{rμ(f )–ε}

∣
∣
∣
∣ ≤ . (.)

In addition, (.) implies

–Ak(z) =
f

f (k)

(

Ak–(z)
f (k–)

f
+ · · · + A(z)

f ′

f
+ A(z) – F(z)


f

)

. (.)
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Then (.), (.), (.), (.)-(.) imply that

exp
{

rσ–ε
} ≤ rk · rk·σ (f ) · (k + ) exp

{
rδ+ε

}
, r ∈ H\

(
E ∪ E ∪ [, ]

)
. (.)

Since  < ε < σ–δ
 , (.) is a contradiction. Therefore, every transcendental meromor-

phic solution f (z) of (.), whose poles are of uniformly bounded multiplicities such that
λ( 

f ) < μ(f ), satisfies σ (f ) = ∞.
Set g(z) = f (z) – ϕ(z), then g(z) solves the equation

g(k) +
Ak–(z)
Ak(z)

g(k–) + · · · +
A(z)
Ak(z)

g ′ +
A(z)
Ak(z)

g

=
F(z)

Ak(z)
– ϕ(k) –

Ak–(z)
Ak(z)

ϕ(k–) – · · · –
A(z)
Ak(z)

ϕ′ –
A(z)
Ak(z)

ϕ,

and satisfies σ (g) = σ (f ) = ∞. Since ϕ(z) does not solve (.), we have that

F(z)
Ak(z)

– ϕ(k) –
Ak–(z)
Ak(z)

ϕ(k–) – · · · –
A(z)
Ak(z)

ϕ′ –
A(z)
Ak(z)

ϕ �≡ .

By Lemma ., we have

λ(g) = λ(g) = σ (g) = ∞,

that is,

λ(f – ϕ) = λ(f – ϕ) = σ (f ) = ∞.

By using (.)-(.) instead of (.) and (.) and using a similar method as the one in
the proof of Theorem ., we can prove σ(f ) ≥ σ (Ak). (As for the case under the hypothe-
ses of Theorem .(i), combining (.), (.), (.) with (.)-(.), we have

exp
{

rγ
} ≤ (k + )rk · exp

{
rδ+ε

} · B
(
T(r, f )

)k , r ∈ H\
(
E ∪ E ∪ [, ]

)
,

which implies σ(f ) ≥ γ . Letting γ → σ (Ak), we have σ(f ) ≥ σ (Ak).) Now, we turn to
prove that σ(f ) ≤ σ (Ak). Equation (.) also implies that

–
f (k)

f
=

Ak–(z)
Ak(z)

f (k–)

f
+ · · · +

A(z)
Ak(z)

f ′

f
+

A(z)
Ak(z)

–
F(z)

Ak(z)

f

.

Then, by Lemma ., there exists a set E ⊂ (, +∞) of finite logarithmic measure such
that for any z satisfying |z| = r /∈ E ∪ [, ] and |g(z)| = M(r, g), we have

∣
∣
∣
∣

νk
g (r)
zk

(
 + o()

)
∣
∣
∣
∣ ≤

∣
∣
∣
∣

νk–
g (r)
zk–

(
 + o()

)
∣
∣
∣
∣

∣
∣
∣
∣
Ak–(z)
Ak(z)

∣
∣
∣
∣ + · · · +

∣
∣
∣
∣
νg(r)

z
(
 + o()

)
∣
∣
∣
∣

·
∣
∣
∣
∣

A(z)
Ak(z)

∣
∣
∣
∣ +

∣
∣
∣
∣
A(z)
Ak(z)

∣
∣
∣
∣ +

∣
∣
∣
∣

F(z)
Ak(z)

∣
∣
∣
∣ · |d(z)|

M(r, g)
. (.)
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Since max{σ ( Ak–
Ak

), . . . ,σ ( A
Ak

),σ ( F
Ak

)} = σ (Ak) < ∞, by Lemma ., for any given ε > ,
there exists a set E ⊂ (, +∞) of finite logarithmic measure such that for any z satisfying
|z| = r /∈ E ∪ [, ], we have

∣
∣
∣
∣

F(z)
Ak(z)

∣
∣
∣
∣ ≤ exp

{
rσ (Ak )+ε

}
,

∣
∣
∣
∣

Aj(z)
Ak(z)

∣
∣
∣
∣ ≤ exp

{
rσ (Ak )+ε

}
, j = , , . . . , k – . (.)

Then (.), (.) and (.) imply that for sufficiently large r /∈ E ∪ E ∪ [, ], we have



νk

g (r) ≤ (k + )rk · νk–
g (r) · exp

{
rσ (Ak )+ε

}
,

that is,

νg(r) ≤ (k + )rk · exp
{

rσ (Ak )+ε
}

.

By Lemmas . and ., we can obtain that σ(f ) = σ(g) ≤ σ (Ak) + ε. Since ε (> ) is
arbitrary, we have σ(f ) ≤ σ (Ak). Therefore, σ(f ) = σ (Ak) > . And from (.), Lemma .
and the fact that

σ(f ) = σ (Ak) >  = max

{

σ

(
Aj

Ak

)

, j = , , . . . , k – ,σ

(
F

Ak

)}

,

we have

λ(f ) = λ(f ) = σ(f ) = σ (Ak).

By using a similar method as above, we can obtain that

λ(f – ϕ) = λ(f – ϕ) = σ(f ) = σ (Ak).

(ii) Suppose that f (z) is an infinite order meromorphic solution of (.). By using a similar
method as the one above, we can obtain that

λ(f – ϕ) = λ(f – ϕ) = σ (f ) = ∞.

For every finite order meromorphic solution f(z) of (.), by a similar reasoning as the
one in the proof of Theorem  of [], we easily know that

T(r, f) ≤ kN
(

r,

f

)

+ (k + )rσ (F)+ε + O(log r)

holds for sufficiently large r and any given ε > . Therefore, we have σ (f) ≤ max{σ (F),
λ(f)}. We also have σ (F) ≤ σ (f) from (.). Hence, we have

σ (F) ≤ σ (f) ≤ max
{
σ (F),λ(f)

}
. �
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