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Abstract
This paper considers the robust stability for a class of Markovian jump impulsive
stochastic delayed reaction-diffusion Cohen-Grossberg neural networks with partially
known transition probabilities. Based on the Lyapunov stability theory and linear
matrix inequality (LMI) techniques, some robust stability conditions guaranteeing the
global robust stability of the equilibrium point in the mean square sense are derived.
To reduce the conservatism of the stability conditions, improved Lyapunov-Krasovskii
functional and free-connection weighting matrices are introduced. An example
shows the proposed theoretical result is feasible and effective.
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1 Introduction
During the last decades, neural networks (NNs) with time delays have received consider-
able attention, due to time delays are existed in many fields, for instance, finite switching
speeds of amplifiers and transmission of signals in a network, which effect the system per-
formance. So, the stability analysis of NNs with time delays has attracted more and more
attention of the researchers [–]. As is well known, uncertainties are inevitable in NNs be-
cause of the existence of modeling errors, external disturbance and parameter fluctuation
in practice. Therefore, it is important to ensure the stability of the designed networks in
the presence of such uncertainties. Accordingly, many sufficient conditions guaranteeing
the robust stability of delayed NNs have been derived in [, ]. On the other hand, impul-
sive phenomena can be found in a wide variety of evolutionary process, particularly the
state of the networks is subject to instantaneous perturbations, in implementation of elec-
tronic networks, which may be caused by the switching phenomenon, frequency change
or other sudden noise, that is, it exhibits impulsive effects [–]. NNs are often subject to
impulsive perturbations that in turn affect dynamical behaviors of the systems. Thus, it
is necessary to take both time delays and impulsive effects into account on dynamical be-
haviors of NNs [, , ]. However, the diffusion phenomena could not be ignored in NNs
and electric circuits when electrons are moving in a non-uniform electromagnetic field.
Therefore, it is essential to consider the state variables varying with the time and space
variables. The NNs with diffusion terms can commonly be expressed by partial differen-
tial equations [–]. In particular, by using delay differential inequality with impulses,
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the authors in [–] have derived sufficient stability conditions of the equilibrium point
for impulsive reaction-diffusion NNs (RDNNs) with delays and Neumann boundary con-
ditions. In [], under some suitable assumptions, utilizing a matrix decomposition and
linear matrix inequality (LMI) method, the authors have proposed some the new global
asymptotic stability sufficient conditions for RDNNs with continuously distributed delays.

In the real world, a system is usually affected by unknown disturbances, which may be re-
garded as stochastic effects. Consequently, it is of significant importance to study stochas-
tic effects for the NNs. In recent years, the dynamic behaviors of stochastic RDNNs, espe-
cially the stability of stochastic RDNNs, have become a hot study topic. For example, the
authors in [–] have obtained some criteria to guarantee the almost sure exponential
stability, and mean square exponential stability for RDNNs with continuously distributed
delays and stochastic influence.

Markovian jump systems (MJSs) involve both time-evolving and event-driven mecha-
nisms, which can be employed to model abrupt phenomena such as random failures and
repairs of the components, changes in the interconnections of subsystems, sudden en-
vironment changes, etc. The issues of stability for RDNNs have been well investigated
[–]. Particularly, the stability of stochastic RDNNs with Markovian jumping has been
studied in [, ], delay-dependent stability criteria were derived. It is noted that the au-
thors in [, ] did not take impulsive phenomena and diffusion effects into account on
the dynamic behaviors of RDNNs. Moreover, the obtained results are independent on the
measure of the space. However, the stability analysis problem for Markovian jump im-
pulsive stochastic reaction-diffusion Cohen-Grossberg NNs (RDCGNNs) with partially
known transition probabilities and mixed time delays, has received little attention, in de-
spite its practical importance.

Motivated by the above discussions, the objective of this paper is to study the asymptot-
ical stability of the equilibrium point in the mean square sense for Markovian jump impul-
sive stochastic RDCGNNs with partially known transition probabilities and mixed time
delays. In this paper, some novel criteria for the asymptotical stability in the mean square
sense are derived by employing a new Lyapunov-Krasovskii functional and LMI approach.
To reduce the conservatism of the stability conditions, improved Lyapunov-Krasovskii
functional and free-connection weighting matrices are introduced. The obtained criteria
are dependent on delays and the reaction-diffusion terms. The results of this paper are
new and they complement previously known results.

To begin with, we introduce some notation and recall some basic definitions.
The superscript ‘T ’ stands for matrix transposition; Rn denotes the n-dimensional Eu-

clidean space. Vector X ∈ Rn, its norm is defined as |X| =
√

XT X. For symmetric matri-
ces A and B, the notation A > B (A ≥ B) means that A – B is positive definite (positive-
semidefinite). The symmetric terms in a symmetric matrix are denoted by ∗. Mathemat-
ical expectation will be denoted by E[·]. trace(·) denotes the trace of the corresponding
matrix. I denotes the identity matrix with compatible dimensions. N∗ is the set of positive
integers, Z+ = {, , . . . , n}.

PC[� × �, Rn] = {u(t, x) : � × � → Rn|u(t, x) is continuous at t �= tk , u(t+
k , x) = u(tk , x)

and u(t–
k , x) exists for t, tk ∈ �, k ∈ N∗}, where � ⊂ R is an interval. PC[�] = {ϕ : (–∞, ]×

� → Rn|ϕ(s+, x) = ϕ(s, x) for s ∈ (–∞, ], ϕ(s–, x) exists for s ∈ (–∞, ], ϕ(s–, x) = ϕ(s, x) for
all but at most countable points s ∈ (–∞, ]}.
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For ϕ(s, x) = (ϕ(s, x), . . . ,ϕn(s, x))T ∈ PC[�], the norm on PC[�] is defined by

‖ϕ‖ =

(∫
�

n∑
i=

sup
–∞≤s≤

∣∣ϕi(s, x)
∣∣ dx

) 


.

For u(t, x) = (u(t, x), u(t, x), . . . , un(t, x))T ∈ Rn, we define

∥∥u(t, x)
∥∥

 =

[∫
�

n∑
i=

∣∣ui(t, x)
∣∣ dx

] 


.

L
Ft [�] denotes the family of all bounded Ft-measurable, PC[�]-valued stochastic vari-

ables ϕ(s, x) such that
∫
�

∫ 
–∞ E[|ϕ(s, x)|] ds dx < ∞. Let (�̄, F , {Ft}t≥, P) be a complete

probability space (�̄, F , {Ft}t≥, P) with a filtration {Ft}t≥ satisfying the usual conditions.

2 Problem formulation and preliminaries
In this paper, we consider the following Markovian jump impulsive stochastic delayed RD-
CGNNs with partially known transition probabilities

du(t, x) =
m∑

l=

∂

∂xl

(
Dl

∂u(t, x)
∂xl

)
dt – α̃

(
u(t, x), r(t)

)[
a
(
u(t, x), r(t)

)

– B
(
r(t)

)
f
(
u(t, x)

)
– C

(
r(t)

)
g
(
u
(
t – d(t), x

))
– E

(
r(t)

)
×

∫ t

–∞
K(t – s)h

(
u(s, x)

)
ds + J

]
dt

+ σ

(
t, x, u(t, x), u

(
t – d(t), x

)
,
∫ t

–∞
K(t – s)h

(
u(s, x)

)
ds, r(t)

)
dw(t),

t ≥ t ≥ , t �= tk , x ∈ �, ()

u(tk , x) = Iku
(
t–
k , x

)
, t = tk , ()

∂u(t, x)
∂n̄

= , (t, x) ∈ [, +∞) × ∂�, ()

u(t + s, x) = ϕ(s, x), (s, x) ∈ (–∞, ] × �, ()

where x = (x, x, . . . , xm)T ∈ � ⊂ Rm, � = {x||xi| < dl, l = , , . . . , m} is a compact set
with smooth boundary ∂� and measure mes� > ; u(t, x) denotes the state vector as-
sociated with the n neurons; α̃(u(t, x), r(t)) represents an amplification function, and
a(u(t, x), r(t)) is the behaved function. f (u(t, x)), g(u(t, x)), and h(u(s, x)) are the neu-
ron activation functions, and J = (J, J, . . . , Jn)T denotes a constant external input vec-
tor. B(r(t)) = (bij(r(t)))n×n, C(r(t)) = (cij(r(t)))n×n, and E(r(t)) = (eij(r(t)))n×n are the con-
nection weight matrix, the time-varying delay connection weight matrix, and the dis-
tributed delay connection weight matrix, respectively. d(t) denotes the time-varying delay,
d(t) is assumed to satisfy  ≤ d(t) ≤ d, ḋ(t) ≤ μ, where d and μ are constants; K(t – s) =
diag[k(t – s), . . . , kn(t – s)] and the delay kernel kj(·) is a real value non-negative continu-
ous function defined on [, +∞) and such that

∫ +∞
 kj(θ ) dθ = . Dl = diag(Dl, Dl, . . . , Dnl),

Dil = Dil(t, x, u) ≥ , stand for transmission diffusion operator along the ith neurons,
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i, j ∈ Z+. σ (·) = σ (t, x, u(t, x), u(t – d(t), x),
∫ t

–∞ K(t – s)h(u(s, x)) ds, r(t)) is the noise intensity
matrix; w(t) = (w(t), . . . , wn(t))T is a standard Brownian motion; Ik = (Ik , . . . , Ikn )T is the
impulse gain matrix at the moments of time tk , k ∈ N∗; u(tk , x) is the impulse at moment tk

and in space x. The discrete set {tk} satisfies  ≤ t < t < · · · < tk < tk+ < · · · , limk→∞ tk+ =
∞; u(t–, x) and u(t+, x) denote the left-hand limit and the right-hand limit of u(t, x) at
time t, respectively; n̄ is the outer normal vector of ∂�, ϕ(s, x) = (ϕ(s, x), . . . ,ϕn(s, x))T on
[(–∞, ] × �, Rn] in L

Ft [�].
Let r(t), t ≥ , be a right-continuous Markovian chain on the probability space which

takes values in the finite space S = {, , . . . , N} with generator 	 = (γij)N×N given by

P
{

r(t + δ) = j|r(t) = i
}

=

{
γijδ + o(δ), if i �= j,
 + γijδ + o(δ), if i = j.

Here δ >  and limδ→ o(δ)/δ = , γij ≥  is the transition rate from i to j if i �= j and γii =
–

∑
i�=j γij.

Since the transition probability is relation to the transition rates for the continuous-
time MJSs, the concept of partly unknown transition probabilities proposed in [–]
means that no knowledge of unknown elements in matrix � is required. For example, the
transition rate matrix � for system () with N operation modes may be described as

� =

⎡
⎢⎢⎢⎢⎣

γ ? γ . . . γN

? ? γ . . . γN
...

...
...

. . .
...

? γN ? . . . γNN

⎤
⎥⎥⎥⎥⎦ , ()

where ‘?’ represents the unknown transition rate. For notation clarity, ∀i ∈ S, the set i

denotes i = i
k ∪i

uk with i
k = {j : γij is known for j ∈ S}, i

uk = {j : γij is unknown for j ∈
S}. Moreover, when i

k �= φ, it is further expressed as

i
k =

{
ki

, ki
, . . . , ki

n
}

,

where  ≤ n ≤ N , n ∈ N∗ and ki
j ∈ N∗,  ≤ ki

j ≤ N , j = , , . . . , n represent the jth known
element of the set i

k in the ith row of the transition rate matrix �.

Remark  In [, ], the authors considered stability RDNNs with Markovian jumping
parameters. It is noted that the jumping process was commonly assumed to be completely
available (i

uk = φ, i
k = i) in [, ]. However, in most cases the transition probabilities

of MJSs, are not exactly known. Recently, a considerable amount of attention has been paid
to studying the stability and stabilization of general MJSs governed by ordinary differential
equations with partly unknown transition probabilities [–]. As is well known, the
stability analysis of partial differential equations with partial information on transition
probabilities is more complicated, very few results on such systems have appeared. In this
paper, the new stability criteria for a class of novel Markovian jump impulsive stochastic
delayed CGRDNNs with partial information on transition probability are proposed.

For the sake of simplicity, we write r(t) = i ∈ S, the matrices B(r(t)), C(r(t)), E(r(t)) and
σ (·) will be written as Bi, Ci, Ei and σi(·), respectively. Hence, () and () can be rewritten
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as the follows:

du(t, x) =
n∑

l=

∂

∂xl

(
Dl

∂u(t, x)
∂xl

)
dt – α̃

(
u(t, x), i

)[
A

(
u(t, x), i

)
– Bif

(
u(t, x)

)

– Cig
(
u
(
t – d(t), x

))
– Ei

∫ t

–∞
K(t – s)h

(
u(s, x)

)
ds + J

]
dt

+ σi

(
t, x, u(t, x), u

(
t – d(t), x

)
,
∫ t

–∞
K(t – s)h

(
u(s, x)

)
ds

)
dw(t),

t ≥ t ≥ , t �= tk , x ∈ �, ()

u(tk , x) = Iku
(
t–
k , x

)
, t = tk , x ∈ �. ()

The main aim of this paper is to investigate the stability of system ()-(). Let u∗ =
(u∗

 , u∗
, . . . , u∗

n)T be the equilibrium point of system ()-(). Now, we set z(t) = u(t, x) – u∗,
which yields the following system:

dz(t) =
n∑

l=

∂

∂xl

(
Dl

∂z(t)
∂xl

)
dt – α

(
z(t), i

)[
A

(
z(t), i

)
– Bif̄

(
z(t)

)

– Ciḡ
(
z
(
t – d(t)

))
– Ei

∫ t

–∞
K(t – s)h̄

(
z(t)

)
ds

]
dt

+ σi

(
t, x, z(t) + u∗, z

(
t – d(t)

)
+ u∗,

∫ t

–∞
K(t – s)h

(
z(s) + u∗)ds

)
dw(t), ()

z(tk) = Ikz
(
t–
k
)
, t = tk , ()

∂z(t)
∂n̄

∣∣∣
∂�

= , t ≥ t, ()

z(t + s) = ψ(s), (s, x) ∈ (–∞, ] × �, ()

where

α
(
z(t), i

)
= diag

(
α

(
z(t), i

)
, . . . ,αn

(
zn(t), i

))
,

αj
(
zj(t), i

)
= αj

(
zj(t) + u∗

j , i
)
, A

(
z(t), i

)
=

[
A

(
z(t), i

)
, . . . , An

(
zn(t), i

)]T ,

Aj
(
zj(t), i

)
= aj

(
zj(t) + u∗

j , i
)

– aj
(
u∗

j , i
)
, j = , , . . . , n,

f̄j
(
z(t)

)
= fj

(
z(t) + u∗) – fj

(
u∗), ḡj

(
z(t)

)
= gj

(
z(t) + u∗) – gj

(
u∗),

h̄j
(
z(s)

)
= hj

(
z(s) + u∗) – hj

(
u∗), f̄

(
z(t)

)
=

(
f̄
(
z(t)

)
, . . . , f̄n

(
z(t)

))T ,

ḡ
(
z(t)

)
=

(
ḡ

(
z(t)

)
, . . . , ḡn

(
z(t)

))T , h̄
(
z(s)

)
=

(
h̄

(
z(s)

)
, . . . , h̄n

(
z(s)

))T ,

ψj(s) = uj(t + s, x) – u∗
j , ψ(s) = u(t + s, x) – u∗.

Throughout this paper, the following assumptions are made.
(A) There exist positive constants δj(i), such that

zj(t)Aj
(
zj(t), i

) ≥ δj(i)z
j (t),

for all i ∈ S and j ∈ Z+.
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(A) The amplification function αj(zj(t), i) is positive and satisfies the following condi-
tion:

 < ᾱj(i) ≤ αj
(
zj(t), i

) ≤ α̂j(i), ᾱ(i) = min
≤j≤n

ᾱj(i),

α̂(i) = max
≤j≤n

α̂j(i), j ∈ Z+, i ∈ S.

(A) There exist positive diagonal matrices Lf = diag(Lf
, . . . , Lf

n), Lg = diag(Lg
 , . . . , Lg

n),
Lh = diag(Lh

 , . . . , Lh
n), such that

 ≤ fj(ξ) – fj(ξ)
ξ – ξ

≤ Lf
j ,  ≤ gj(ξ) – gj(ξ)

ξ – ξ
≤ Lg

j ,  ≤ hj(ξ) – hj(ξ)
ξ – ξ

≤ Lh
j ,

for all ξ, ξ ∈ R, ξ �= ξ, j ∈ Z+.
(A) There exist positive definite matrices �i, �i, and �i (i ∈ S) such that

tr
[(

σi(t, x, ζ, ζ, ζ)
)T(

σi(t, x, ζ, ζ, ζ)
)] ≤ ρiζ

T
 �iζ + ρiζ

T
 �iζ + ρiζ

T
 �iζ

for all ρi ∈ R+, ζ, ζ, ζ ∈ Rn.
(A) σi(t, x, u∗, u∗,

∫ t
–∞ K(t – s)h(u∗(s, x)) ds) = , where u∗ is the equilibrium point of sys-

tem ()-().
By assumptions (A)-(A), it is not difficult to prove that there exists a unique equilib-

rium point u∗ = (u∗
 , u∗

, . . . , u∗
n)T for system ()-() based on Mawhin’s continuation theo-

rem [].
Clearly, f̄j(zj(t)), ḡj(zj(t)), and h̄j(zj(s)) satisfy (A). Thus, the stability problem of system

()-() is equivalent to the stability problem of system ()-().

Lemma  [] Let � be a cube |xi| < dl (l = , . . . , m) and let h(x) be a real-valued function
belonging to C(�) which vanish on the boundary ∂� of �, i.e., h(x)|∂� = . Then

∫
�

h(x) dx ≤ d
l

∫
�

∣∣∣∣ ∂h
∂xi

∣∣∣∣dx.

Lemma  [] For any real matrices X and Y , the following matrix inequality holds:

XT Y + Y T X ≤ XT X + Y T Y .

Lemma  [] Given one positive definite matrix X >  and constant matrices X, X,
where X = XT

 , then X + XT
 X–

 X <  if and only if

(
X XT



X –X

)
<  or

(
–X X

XT
 X

)
< .

3 Main results
Theorem  Under assumptions (A)-(A), if there exist positive definite diagonal matrices
Pi, Q̃, positive definite symmetry matrices Q, G, positive definite diagonal matrices M, M

with appropriate dimensions, �i = �T
i and scalar ρi > , such that the following LMIs hold:

IT
k PjIk – Pi < , ()
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and

Pi ≤ ρiI, ()[
i Yi

∗ –[/(
√

α̂(i))]I

]
< , ()

where

Yi = [Pi       ]T ,

i =

⎡
⎢⎢⎢⎢⎢⎢⎣

α  α  
∗ α   
∗ ∗ α  
∗ ∗ ∗ α 
∗ ∗ ∗ ∗ α

⎤
⎥⎥⎥⎥⎥⎥⎦

< ,

Pj – �i ≤ , j ∈ i
uk , j �= i, ()

Pi – �i ≥ , j ∈ i
uk , j = i, ()

where

α = –PiAi – AiPi – PiD∗ + Q + LgGLg

+
∑
j∈i

k

γij(Pj – �i) – ᾱj(i)PiUi + LhQ̃Lh + ρi�
T
i�i,

α = Lf MT
 , α = –( – μ)Q + LgMT

 Lg + ρi�
T
i�i,

α = BT
i Bi – M, α = –( – μ)G – M + CT

i Ci,

α = ET
i Ei – Q̃ + ρi�

T
i�i, D∗ = diag

( m∑
l=

Dl

d
l

, . . . ,
m∑

l=

Dnl

d
l

)
,

then equilibrium point u∗ of system ()-() is asymptotical stability in the mean square
sense.

Proof Consider the Lyapunov-Krasovskii functional

V
(
t, z(t), i

)
= V

(
t, z(t), i

)
+ V

(
t, z(t), i

)
+ V

(
t, z(t), i

)
,

where V(t, z(t), i) =
∫
�

z(t)T Piz(t) dx,

V
(
t, z(t), i

)
=

∫
�

∫ t

t–d(t)
z(s)T Qz(s) ds dx +

∫
�

∫ t

t–d(t)
ḡ
(
z(s)

)T Gḡ
(
z(s)

)
ds dx,

V
(
t, z(t), i

)
=

∫
�

n∑
j=

qj

∫ ∞


Kj(θ )

∫ t

t–θ

h̄
j
(
zj(s)

)
ds dθ dx, t �= tk , x ∈ �,

()

and Q̃ = diag(q, q, . . . , qn) is positive diagonal matrix.
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By the Itô formula, we can calculate LV (t, z(t), i) along trajectories of the system ()-(),
then we have

LV
(
t, z(t), i

)
= Vt

(
t, z(t), i

)
+ Vz

(
t, z(t), i

){ n∑
l=

∂

∂xl

(
Dl

∂z(t)
∂xl

)
dt – α

(
z(t), i

)

×
[

A
(
z(t), i

)
– Bif̄

(
z(t)

)
– Ciḡ

(
z
(
t – d(t)

))
– Ei

∫ t

–∞
K(t – s)h̄

(
z(s)

)
ds

]}

+



trace
[
σ T

i (·)Vzz(t, z, i)σi(·)
]

+
N∑
j=

γijV
(
t, z(t), j

)
, ()

where

Vt
(
t, z(t), i

)
=

∂V (t, z(t), i)
∂t

, Vz
(
t, z(t), i

)
=

(
∂V (t, z(t), i)

∂z
, . . . ,

∂V (t, z(t), i)
∂zn

)
, and

Vzz
(
t, z(t), i

)
=

(
∂V (t, z(t), i)

∂zi ∂zj

)
n×n

.

For t = tk , we obtain

V
(
tk , z(tk), j

)
– V

(
t–
k , z

(
t–
k
)
, i
)

=
∫

�

z(tk)T Pjz(tk) dx –
∫

�

z
(
t–
k
)T Piz

(
t–
k
)

dx

+
∫

�

∫ tk

tk –d(tk )
z(s)T Qz(s) ds dx –

∫
�

∫ t–
k

t–
k –d(t–

k )
z(s)T Qz(s) ds dx

+
∫

�

∫ tk

tk –d(tk )
ḡ
(
z(s)

)T Gḡ
(
z(s)

)
ds dx –

∫
�

∫ t–
k

t–
k –d(t–

k )
ḡ
(
z(s)

)T Gḡ
(
z(s)

)
ds dx

+
∫

�

n∑
j=

qj

∫ ∞


Kj(θ )

∫ tk

tk –θ

h̄
j
(
zj(s)

)
ds dθ dx

–
∫

�

n∑
j=

qj

∫ ∞


Kj(θ )

∫ t–
k

t–
k –θ

h̄
j
(
zj(s)

)
ds dθ dx

=
∫

�

[
z(tk)T Pjz(tk) – z

(
t–
k
)T Piz

(
t–
k
)]

dx

=
∫

�

[
z
(
t–
k
)T(

IT
k PjIk – Pi

)
z
(
t–
k
)]

dx < .

Then

V
(
tk , z(tk), j

)
< V

(
t–
k , z

(
t–
k
)
, i
)
. ()

For t �= tk , by the infinitesimal operator of LV (t, z, i) (see []) along the trajectory of system
()-() and (), we can obtain
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LV
(
t, z(t), i

)
= z(t)T Pi

{ n∑
l=

∂

∂xl

(
Dl

∂z(t)
∂xl

)
dt – α

(
z(t), i

)

×
[

A
(
z(t), i

)
– Bif̄

(
z(t)

)
– Ciḡ

(
z
(
t – d(t)

))
– Ei

∫ t

–∞
K(t – s)h̄

(
z(s)

)
ds

]}

+ trace
[
σ T

i (·)Piσi(·)
]

+
N∑
j=

γijz(t)T Pjz(t)

+
∫

�

[
z(t)T Qz(t) –

(
 – ḋ(t)

)
z
(
t – d(t)

)T Qz
(
t – d(t)

)]
dx

+
∫

�

[
ḡ
(
z(t)

)T Gḡ
(
z(t)

)
–

(
 – ḋ(t)

)
ḡ
(
z
(
t – d(t)

))T Gḡ
(
z
(
t – d(t)

))]
dx

+
∫

�

n∑
j=

qj

∫ ∞


Kj(θ )h̄

j
(
zj(t)

)
dθ dx –

∫
�

n∑
j=

qj

∫ ∞


Kj(θ )h̄

j
(
zj(t – θ )

)
dθ dx

≤ 
∫

�

{
z(t)T Pi

{ n∑
l=

∂

∂xl

(
Dl

∂z(t)
∂xl

)
– α

(
z(t), i

)[
A

(
z(t), i

)
– Bif̄

(
z(t)

)

– Ciḡ
(
z
(
t – d(t)

))
– Ei

∫ t

–∞
K(t – s)h̄

(
z(s)

)
ds

]}
+

N∑
j=

γijz(t)T Pjz(t)

+ ρiz(t)T�T
i�iz(t) + ρiz

(
t – d(t)

)T
�T

i�iz
(
t – d(t)

)
+ ρi

(∫ t

–∞
K(t – s)h̄

(
z(s)

)
ds

)T

�T
i�i

∫ t

–∞
K(t – s)h̄

(
z(s)

)
ds

}
dx

+
∫

�

[
z(t)T Qz(t) –

(
 – ḋ(t)

)
z
(
t – d(t)

)T Qz
(
t – d(t)

)]
dx

+
∫

�

[
ḡ
(
z(t)

)T Gḡ
(
z(t)

)
–

(
 – ḋ(t)

)
ḡ
(
z
(
t – d(t)

))T Gḡ
(
z
(
t – d(t)

))]
dx

+
∫

�

n∑
j=

qj

∫ ∞


Kj(θ )h̄

j
(
zj(t)

)
dθ dx

–
∫

�

n∑
j=

qj

∫ ∞


Kj(θ )h̄

j
(
zj(t – θ )

)
dθ dx. ()

From (A), we have

f̄
(
z(t)

)T MLf z(t) – f̄
(
z(t)

)T M f̄
(
z(t)

) ≥ ,

z
(
t – d(t)

)T LgMLgz
(
t – d(t)

)
– ḡ

(
z
(
t – d(t)

))T Mḡ
(
z
(
t – d(t)

)) ≥ ,
()

where M and M are positive definite diagonal matrices.
Considering the situation that the information of transition probabilities is not accessi-

ble completely, the following equalities are satisfied for arbitrary matrices �i = �T
i : due to
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∑N
j= γij = 

–z(t)T
N∑
j=

γij�iz(t) = . ()

By (), (), and (), we can conclude

LV
(
t, z(t), i

)
≤ 

∫
�

{
z(t)T Pi

{ n∑
l=

∂

∂xl

(
Dl

∂z(t)
∂xl

)
– α

(
z(t), i

)[
A

(
z(t), i

)
– Bif̄

(
z(t)

)

– Ciḡ
(
z
(
t – d(t)

))
– Ei

(∫ t

–∞
K(t – s)h̄

(
z(s)

)
ds

)]}
+ z(t)T

∑
j∈i

k

γij(Pj – �i)z(t)

+ z(t)T
∑

j∈i
uk

γij(Pj – �i)z(t) + ρiz(t)T�T
i�iz(t)

+ ρiz
(
t – d(t)

)T
�T

i�iz
(
t – d(t)

)
+ ρi

(∫ t

–∞
K(t – s)h̄

(
z(s)

)
ds

)T

�T
i�i

(∫ t

–∞
K(t – s)h̄

(
z(s)

)
ds

)}
dx

+
∫

�

[
z(t)T Qz(t) – ( – μ)z

(
t – d(t)

)T Qz
(
t – d(t)

)]
dx

+
∫

�

[
z(t)T LgGLgz(t) – ( – μ)ḡ

(
t – d(t)

)T Gḡ
(
t – d(t)

)]
dx

+
∫

�

[
z(t)T LhQ̃Lhz(t) –

(∫ t

–∞
K(t – s)h̄

(
z(s)

)
ds

)T

× Q̃
(∫ t

–∞
K(t – s)h̄

(
z(s)

)
ds

)]
dx

+ 
∫

�

[
f̄
(
z(t)

)T MLf z(t) – f̄
(
z(t)

)T M f̄
(
z(t)

)]
dx

+
∫

�

[
z
(
t – d(t)

)T LgMLgz
(
t – d(t)

)
– ḡ

(
z
(
t – d(t)

))T Mḡ
(
z
(
t – d(t)

))]
dx. ()

According to Green’s formula and the Dirichlet boundary condition, we get

∫
�

m∑
l=

zi(t)
∂

∂xl

(
Dil

∂zi(t)
∂xl

)
dx = –

m∑
l=

∫
�

Dil

(
∂zi(t)
∂xl

)

dx. ()

Furthermore, from Lemma , we have

–
m∑

l=

∫
�

Dil

(
∂zi(t)
∂xl

)

dx ≤ –
∫

�

m∑
l=

Dil

d
l

(
zi(t)

) dx

≤ –
∫

�

m∑
l=

mini∈N (Di)
d

l

(
zi(t)

) dx, ()

where Di = min≤l≤m{Dil}.
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From (A), (A), and Lemma , we have

–z(t)T Piα
(
z(t), i

)
A

(
z(t), i

)
= –

n∑
j=

zj(t)Pijαj
(
zj(t), i

)
Aj

(
zj(t), i

)

≤ –ᾱj(i)
n∑

j=

Pijδj(i)z
j (t) = –ᾱj(i)z(t)T PiUiz(t), ()

z(t)T Piα
(
z(t), i

)
Bif̄

(
z(t)

)
≤ z(t)T Piα

(
z(t), i

)
α
(
z(t), i

)
Piz(t) + f̄

(
z(t)

)T BT
i Bif̄

(
z(t)

)
≤ α̂(i)z(t)T P

i z(t) + f̄
(
z(t)

)T BT
i Bif̄

(
z(t)

)
, ()

where Ui = diag{δ(i), δ(i), . . . , δn(i)}.
As in the proof of the above inequality, we obtain

z(t)T Piα
(
z(t), i

)
Ciḡ

(
z
(
t – d(t)

))
≤ α̂(i)z(t)T P

i z(t) + ḡ
(
z
(
t – d(t)

))T CT
i Ciḡ

(
z
(
t – d(t)

))
, ()

z(t)T Piα
(
z(t), i

)
Ei

∫ t

–∞
K(t – s)h̄

(
z(s)

)
ds

≤ α̂(i)z(t)T P
i z(t) +

(∫ t

–∞
K(t – s)h̄

(
z(s)

)
ds

)T

× ET
i Ei

(∫ t

–∞
K(t – s)h̄

(
z(s)

)
ds

)
. ()

From ()-(), we have

LV
(
t, z(t), i

)
≤

∫
�

z(t)T
(

–PiAi – AiPi – PiD∗ + Q + LgGLg +
∑
j∈i

k

γij(Pj – �i)

– ᾱj(i)PiUi + LhQ̃Lh + ρi�
T
i�i

)
z(t) dx +

∫
�

z(t)T
∑

j∈i
uk

γij(Pj – �i)z(t) dx

+
∫

�

z(t)T Lf MT
 f̄

(
z(t)

)
dx +

∫
�

f̄
(
z(t)

)T MLf z(t) dx

+
∫

�

z
(
t – d(t)

)T[
–( – μ)Q + LgMT

 Lg + ρi�
T
i�i

]
z
(
t – d(t)

)
dx

–
∫

�

ḡ
(
z
(
t – d(t)

))T[
( – μ)G + M – CT

i Ci
]
ḡ
(
z
(
t – d(t)

))
dx

+
∫

�

f̄
(
z(t)

)T(
BT

i Bi – M
)
f̄
(
z(t)

)
dx

+
∫

�

(∫ t

–∞
K(t – s)h̄

(
z(s)

)
ds

)T(
ET

i Ei – Q̃ + ρi�
T
i�i

)
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×
(∫ t

–∞
K(t – s)h̄

(
z(s)

)
ds

)
dx

=
∫

�

(
ηTη + α̂(i)z(t)T P

i z(t)
)

dx +
∫

�

z(t)T
∑

j∈i
uk

γij(Pj – �i)z(t) dx, ()

where

η =
(
z(t)T z(t – d(t))T f̄ (z(t))T ḡ(z(t – d(t)))T (

∫ t
–∞ K(t – s)h̄(z(s)) ds)T

)T ,

D∗ = diag

( m∑
l=

Dl

d
l

, . . . ,
m∑

l=

Dnl

d
l

)
.

By the conditions of Theorem , note that γii = –
∑N

j=,j �=i γij and γij ≥  for all j �= i, that is,
γii <  for all i ∈ S. Hence, when i ∈ i

k , from ()-() and η �= , we can derive

LV
(
t, z(t), i

)
< . ()

On the other hand, if i ∈ i
uk , according to ()-() and η �= , we have () holds.

For t �= tk , in view of () and (), by using the mathematical induction, we know that
() is true for all i, j, r() = i ∈ S and k ∈ N∗, k ≥ .

EV
(
tk , z(tk), j

)
< EV

(
t–
k , z

(
t–
k
)
, i
)

< EV
(
tk–, z(tk–), r(tk–)

)
< EV

(
t–
k–, z

(
t–
k–

)
, r

(
t–
k–

))
< · · · < EV

(
t, z(t), r()

)
. ()

Then system ()-() is asymptotic stability in the mean square sense. This completes the
proof. �

Remark  In proof of above Theorem , the new Lyapunov functional to construct is
more general. The criteria in [, ] are independent on the measure of the space and
diffusion effects. However, in this paper, the obtained results are dependent on the mea-
sure of the space and diffusion effects. The idea of free-connection weighting matrix is
introduced, these methods mentioned above are not considered in other literature and
may lead to derive an improved feasible region for delay-dependent and space-dependent
stability criteria. Therefore, it is shown that the newly obtained results are less conserva-
tive and more applicable than the existing corresponding ones.

Remark  It is noted that the authors in [, , ] do not take impulsive phenomena and
the distributed time-varying delay into account on studying the stability of RDNNs with
Markovian jumping. When Markovian jumping occurs at the impulsive time instants, the
stability analysis approach for Markovian jump impulsive stochastic delayed CGRDNNs
with partially known transition probabilities is derived in Theorem . In fact, Markovian
jumping could occur at any moment. If Markovian jumping does not occur at the impul-
sive time instants, the Lyapunov parameter Pj should be rewritten as Pi in ().

Remark  It is well known that time delays inevitably exist in electronic NNs due to the
finite switching speed of amplifiers. Since a NN usually has a spatial nature due to the pres-
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ence of an amount of parallel pathways of a variety of axon sizes and lengths, it is desired
to model them by introducing continuously distributed delays over a certain duration of
time, such that the distant past has less influence compared to the recent behavior of the
state [, , ]. In [], the authors investigated the robust stochastic exponential sta-
bility for RDCGNNs with Markovian jumping parameters and mixed delays. It is noted
that [] investigated RDCGNNs with bounded distributed delays. Though delays arise
frequently in practical applications, it is difficult to measure them precisely. In most sit-
uations, delays are variable, and in fact unbounded. That is, the entire history affects the
present. Such delay terms, more suitable to practical neural nets, are called unbounded
delays [, ]. So delay terms with time-varying and distributed delays are more suit-
able for practical NNs. [] studied the problem of global exponential stability for a class
of impulsive NNs with bounded and unbounded delays. To the best of our knowledge,
few authors have considered stability of Markovian jump impulsive stochastic RDCGNNs
with partially known transition probabilities and unbounded distributed delays described
by the stochastic non-linear integro-differential equations.

Consider globally robustly asymptotic stability in the mean square sense of the following
Markovian jump impulsive stochastic delayed CGRDNNs with unknown parameters and
partially known transition probabilities:

dz(t) =
n∑

l=

∂

∂xl

(
Dl

∂z(t)
∂xl

)
dt – α

(
z(t), i

)[
A

(
z(t), i

)
–

(
Bi + �Bi(t)

)
f̄
(
z(t)

)

–
(
Ci + �Ci(t)

)
ḡ
(
z
(
t – d(t)

))
–

(
Ei + �Ei(t)

)∫ t

–∞
K(t – s)h̄

(
z(t)

)
ds

]
dt

+ σi

(
t, x, z(t) + u∗, z

(
t – d(t)

)
+ u∗,

∫ t

–∞
K(t – s)h

(
z(s) + u∗)ds

)
dw(t), ()

where some parameters and variables are introduced in system ()-(), the perturbed ma-
trices �Bi(t), �Ci(t), and �Ei(t) are unknown matrices denoting time-varying parameter
uncertainties and such that

[
�Bi(t) �Ci(t) �Ei(t)

]
= MF(t)[Ni Ni Ni], ()

where M, Ni, Ni, and Ni are known real constant matrices and F(t) is the unknown real
time-varying matrix-valued function satisfying

F(t)T F(t) ≤ I, for all t ≥ .

Definition  For the uncertain Markovian jump impulsive stochastic delayed CGRDNNs
() with ()-() and initial functions ϕ ∈ L

F
((–∞, ] × �; Rn), the equilibrium point is

said to be globally robustly asymptotically stable in the mean square sense, if for all ad-
missible uncertainties holds () and every network mode the following relation is satis-
fied:

lim
t→∞ E

∥∥u(t, x) – u∗∥∥
 = .
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Theorem  Under assumptions (A)-(A), if there exist positive definite diagonal matrices
Pi, Q̃, positive definite symmetry matrices Q, G, positive definite diagonal matrices M, M

with appropriate dimensions and scalar ρi > , such that the following LMIs hold:

IT
k PjIk – Pi < , ()

and

Pi ≤ ρiI, ()[
̃i Ỹi

∗ –[/(
√

α̂(i))]I

]
< , ()

where

Ỹi =
[
Pi(I + M)      

]T ,

̃i =

⎡
⎢⎢⎢⎢⎢⎢⎣

α  α  
∗ α   
∗ ∗ α̃  
∗ ∗ ∗ α̃ 
∗ ∗ ∗ ∗ α̃

⎤
⎥⎥⎥⎥⎥⎥⎦

< ,

Pj – �i ≤ , j ∈ i
uk , j �= i, ()

Pi – �i ≥ , j ∈ i
uk , j = i, ()

where

α̃ = BT
i Bi – M + NT

i Ni,

α̃ = –( – μ)G – M + CT
i Ci + NT

iNi,

α̃ = ET
i Ei – Q̃ + ρi�

T
i�i + NT

iNi,

the other notations are the same as those in Theorem , then system () with ()-() is
globally robustly asymptotical stability in the mean square sense.

Proof We use the same Lyapunov-Krasovskii functional as defined in () to derive the
stability result. From the Itô formula, we can calculate LV (t, z(t), i) along the trajectories
of the system () with ()-(). To end this, by Theorem , we only need to estimate the
following inequalities:

z(t)T Piα
(
z(t), i

)
�Bi(t)f̄

(
z(t)

)
= z(t)T Piα

(
z(t), i

)
MF(t)Nif̄

(
z(t)

)
≤ z(t)T Piα

(
z(t), i

)
MF(t)F(t)T MTα

(
z(t), i

)
Piz(t) + f̄

(
z(t)

)T NT
i Nif̄

(
z(t)

)
≤ α̂(i)z(t)T PiMMT Piz(t) + f̄

(
z(t)

)T NT
i Nif̄

(
z(t)

)
,



Zhang Advances in Difference Equations  (2015) 2015:102 Page 15 of 18

and as in the proof of the above inequality, we obtain

z(t)T Piα
(
z(t), i

)
�Ci(t)ḡ

(
z
(
t – d(t)

))
≤ α̂(i)z(t)T PiMMT Piz(t) + ḡ

(
z
(
t – d(t)

))T NT
iNiḡ

(
z
(
t – d(t)

))
,

z(t)T Piα
(
z(t), i

)
�Ei(t)

∫ t

–∞
K(t – s)h̄

(
z(s)

)
ds

≤ α̂(i)z(t)T PiMMT Piz(t)

+
(∫ t

–∞
K(t – s)h̄

(
z(s)

)
ds

)T

NT
iNi

(∫ t

–∞
K(t – s)h̄

(
z(s)

)
ds

)
.

Therefore, under condition ()-(), system () with ()-() is globally robustly asymp-
totical stability in the mean square sense with respect to the uncertain parameters �Bi(t),
�Ci(t) and �Ei(t). �

Remark  In [, , , , ], the authors discussed the stability problem for delayed
RDNNs. It should be noted that delayed RDNNs studied in these papers noise distur-
bances and Markovian jump parameters were also not considered. It is known that the
noise disturbance is a major source of instability and poor performances in RDNNs. Fur-
thermore, noise disturbances are ubiquitous in real neural networks. On the other hand,
it is recognized that Markovian jump systems with partly unknown transition probabil-
ities are more reasonable to model many practical systems where they may experience
abrupt changes in their structure and accepted manuscript parameters than systems with-
out Markovian jump parameters. In addition, systems with Markovian jump parameters
can be regarded as an extension of systems without Markovian jump parameters. Thus,
the model discussed in this paper is more general and meaningful than the ones in [, ].
The proposed systems are more general and include the cases of systems with completely
known or unknown transition probabilities.

4 An illustrative example
In this section, we provide the effectiveness of the proposed stability criterion through
solving a numerical example. Here, we consider the system ()-() with three modes on
� = {(x, x)T | < xl < /, l = , }. These parameters are described as

a(u, ) =

[
 .

. 

]
u, a(u, ) =

[
 .
. 

]
u, a(u, ) =

[
 .
. 

]
u,

B =

[
. .
. .

]
, B =

[
. .
. .

]
,

B =

[
. .
. .

]
, Ci =

[
. 
 .

]
,

α(u, i) = I, E = E = E =

[
. 
 .

]
, � = � = � = .I,

� = � = � = .I, � = � = � = .I, τ = d = ., ρi = ,
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μ = d = ., Di = D∗
i = , R = –I,

I = I = .I, ρi = , i = , , .

Let f (η) = g(η) = h(η) = (ĝ(η), . . . , ĝn(η))T , ĝj(η) = 
 (|η + | + |η – |), j = , , .

Clearly, we get Lf = Lg = Lh = I .
The transition probability matrices of the form () are given by

� =

⎡
⎢⎣

–. ? ?
? . ?
? ? .

⎤
⎥⎦ .

In ()-(), by applying the MATLAB LMI Control Toolbox, we obtain the feasible solu-
tion as follows:

P =

[
. 

 .

]
, P =

[
. 

 .

]
, P =

[
. 

 .

]
,

Q̃ =

[
. 

 .

]
, Q =

[
. 

 .

]
, G =

[
. .
. .

]
,

� =

[
. .
. .

]
, � =

[
. –.

–. .

]
,

� =

[
. .
. .

]
,

M =

[
. 

 .

]
, M =

[
. 

 .

]
.

Therefore, it follows from Theorem  that system ()-() has asymptotic stability in the
mean square sense.

5 Conclusions
In this paper, we have dealt with an interesting and important problem of globally robustly
asymptotical stability in the mean square sense for a class of Markovian jump impulsive
stochastic delayed CGRDNNs with unknown parameters and partially known transition
probabilities. By applying the Lyapunov stability analysis approach, some novel stability
criteria for the system were proposed. The obtained criteria are dependent on delays and
reaction-diffusion terms. The results of this paper are new and they complement previ-
ously known results. Therefore, it is shown that the newly obtained results are less con-
servative and more applicable than the corresponding existing ones.
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