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Abstract
In this paper, rank one strange attractor in a periodically kicked time-delayed system
is investigated. It is shown that rank one strange attractors occur when the delayed
system under a periodic forcing undergoes Hopf bifurcation. Our discussion is based
on the theory of rank one maps formulated by Wang and Young. As an example,
periodically kicked Chua’s system with time-delay is considered, conditions for rank
one chaos along with the results of numerical simulations are presented.
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1 Introduction
Recently, a chaos theory on rank one maps has been developed by Wang and Young. In
, Wang and Oksasoglu [] gave simple conditions that guarantee the existence of
strange attractors with a single direction of instability and certain controlled behaviors.
In , Wang and Young accomplished a more comprehensive understanding of the
complicated geometric and dynamical structures of a specific class of non-uniformly hy-
perbolic homoclinic tangles. For certain differential equations, through their well-defined
computational process, the existence of the indicated phenomenon of rank one chaos was
verified []. In , Chen and Han studied the existence of rank one chaos in a periodi-
cally kicked planar equation with heteroclinic cycle []. In , Fang studied the synchro-
nization between rank-one chaotic systems without and with delay using linear delayed
feedback control method [].

In , Jackson et al. studied Chua’s circuit as follows []:

⎧
⎪⎨

⎪⎩

C
dvC

dt = G(vC – vC ) – g(vC ),
C

dvC
dt = G(vC – vC ) + iL,

L diL
dt = –vC ,

()

where vC , vC , iL denote voltage across C, C and current through L, respectively. They
reported that a chaotic attractor has been observed in Eq. (). In [], Wang et al. considered
Eq. () as the following form:

⎧
⎪⎨

⎪⎩

dv
dt = 

C
(G(v – v) – f (v)),

dv
dt = 

C
(i – (G(v – v)),

di
dt = – 

L (v + Ri + ε sin(σv(t – τ ))).
()
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They studied this time-delay Chua’s circuit by theoretical analysis, computer simulations
and circuit experiments. In [], Wang and Oksasoglu considered Chua’s system of the
following form:

⎧
⎪⎨

⎪⎩

ẋ = a[y – f (x)] + εPT x,
ẏ = x – y + z,
ż = –by,

()

where f (x) is chosen to be a cubic function of the form f (x) = cx + dx. They researched
rank one strange attractors in this periodically kicked Chua’s circuit.

In this paper, we first try to develop rank one theory from an ordinary differential equa-
tion to a time-delayed system, then consider Chua’s system () as the following form:

⎧
⎪⎨

⎪⎩

ẋ(t) = a[y(t) – (cx(t) + dx(t))],
ẏ(t) = x(t) – y(t) + z(t) + εPT y(t),
ż(t) = –by(t – τ ),

()ε

where a, b, c, d and τ are real parameters, εPT y(t) is a time-periodic forcing term with
PT =

∑∞
n=–∞ δ(t – nt). The stability of equilibria, the bifurcating of periodic solutions and

the rank one chaos of the periodically kicked delayed system are investigated.
This paper is organized as follows. In Section , we give preliminaries about the rank

one chaotic theory. In Section , we derive the rank one chaotic theory for a time-delayed
system. In Section , we take Chua’s system as an example. In Section , numerical simu-
lations are presented. Conclusions are given in Section .

2 Preliminaries
To properly motivate the studies presented in this paper, we first give a brief overview on
the studies of rank one strange attractors, which can be constructed in the following way.

Following the work done by Wang and Young in [], we let u ∈ Rm, m ≥  be the phase
variable and t ∈ R be the time. Consider the following system of equations:

du
dt

= Aμu + fμ(u) + εPT�(u), ()ε

where Aμ is a real m by m matrix, and fμ(u) is a vector-valued real analytic function in
u defined on a given neighborhood of u =  such that f () = , Duf () = . Both Aμ and
fμ(u) are smooth dependents of parameter μ around μ = . ε is a parameter that controls
the magnitude of the forcing, �(u) is a real vector-valued function of u that represents the
shape of the forcing and PT =

∑∞
n=–∞ δ(t – nT). When ε = , the undisturbed system is

du
dt

= Aμu + fμ(u). ()

Firstly, we give several definitions.

Definition  [] Let f : M → M be a diffeomorphism of a compact Riemannian manifold
onto itself. We say that f is an Anosov diffeomorphism if the tangent space at every x ∈ M
is split into Eu(x) ⊕ Es(x), where Eu and Es are Df -invariant subspaces, Df |Eu is uniformly
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expanding and Df |Es is uniformly contracting. A compact f -invariant set � ⊂ M is called
an attractor if there is a neighborhood U of � called its basin such that f nx → � for every
x ∈ U . � is called an Axiom A attractor if the tangent bundle over � is split into Eu ⊕ Es

as above.

Definition  [] Let f be a C diffeomorphism with an Axiom A attractor �. Then there
is a unique f -invariant Borel probability measure μ on � that is characterized by each of
the following (equivalent) conditions:

(i) μ has absolutely continuous conditional measures on unstable manifolds;
(ii)

hμ(f ) =
∫
∣
∣det(Df |Eu )

∣
∣dμ,

where hμ(f ) is the metric entropy of f ;
(iii) there is a set V ⊂ U having full Lebesgue measure such that for every continuous

observable ϕ : U → R, we have, for every x ∈ V ,


n

n–∑

i=

ϕ
(
f ix
)→

∫

ϕ dμ;

(iv) μ is the zero-noise limit of small random perturbations of f .
Then the invariant measure μ is called the Sinai-Ruelle-Bowen measure, or SRB mea-

sure, of f .

Definition  Given a map f , the Lyapunov exponent is defined at x as follows:

λ(x) = lim
N→+∞


N

ln

∣
∣
∣
∣
∣

N–∏

i=

f ′(xi)

∣
∣
∣
∣
∣

= lim
N→+∞


N

N–∑

i=

ln
∣
∣f ′(xi)

∣
∣,

where xi = f (xi–) (i = , , . . . , N – ).

Now, we consider ()ε . Assume the following:
(A) Let {λi}m

i= be the eigenvalues of Aμ. There is a conjugated pair,

λ, = α(μ) ± iω(μ), ()

such that α() = , w() 	= , (d/dμ)α() 	= , and there exists c >  such that Re(λi) < –c,
i ≥ .

Then the flow on the central manifold Wc of system () can be explicitly written by
using a complex variable z in the following normal form:

dz
dt

=
(
α(μ) + iω(μ)

)
z + k(μ)zz̄ + k(μ)zz̄ + · · · . ()

Write that

k(μ) = –E(μ) + iF(μ), ()

and assume that
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(A) E() > .
Assume that a real linear coordinate change u → Lμu := (ξ ,η, w)T transfers Eq. ()ε into

⎧
⎪⎨

⎪⎩

dξ

dt = αξ + ωη + fξ + ε�ξ PT (t),
dη

dt = –ωξ + αη + fη + ε�ηPT (t),
dw
dt = A(s)w + ωη + fw + ε�wPT (t),

()

where ξ , η are scalars, w is an m–-vector, A(s) is an (m–) by (m–) matrix of eigenvalues
with negative real parts, and

(fξ , fη, fw)T = Lμfμ
(
L–

μ (ξ ,η, w)T),

(�ξ ,�η,�w)T = Lμ�
(
L–

μ (ξ ,η, w)T).

Let (r̂, ŝ) ∈ R+ × Sm– be such that (ξ ,η, w)T = r̂ŝ, and define

(
�ξ (r̂, ŝ),�η(r̂, ŝ),�w(r̂, ŝ)

)T = (�ξ ,�η,�w)T .

Further let {ŝ = (cos θ , sin θ , ) ∈ Sm–, θ ∈ [, π )} be the unit circle in (ξ ,η)-plane in
(ξ ,η, w)-space, and define

ϕ(θ ) = cos θ�ξ (, ŝ) + sin θ�η(, ŝ). ()

The time-T map of Eq. ()ε is denoted by Fμ,ε,T , where μ is the bifurcation parameter
of the unperturbed Eq. () and ε, T are the parameters of forcing. Assume that

(a) (A)-(A) hold for Eq. ()ε ;
(b) ϕ(θ ) in Eq. () is a Morse function; and
(c) μ, ε are such that  < μ 
 ,  < ε 
 .
The following theorem is obtained by Wang and Oksasoglu [].

Theorem  Let the values of μ and ε be fixed and assume that (a)-(c) hold. Regard the pe-
riod T of the forcing as a parameter and define FT = Fμ,ε,T . Then there exists a constant K,
determined exclusively by ϕ(θ ), such that if

∣
∣
∣
∣ε

F()
E()

∣
∣
∣
∣ > K,

then there exists a positive measure set � ⊂ (μ–,∞) for T so that for T ∈ �, FT has a
strange attractor � admitting no periodic sinks. This is to say that there exists an open
neighborhood U of � in Rm such that FT has a positive Lyapunov exponent for Lebesgue
almost every point in U . Furthermore, FT admits an ergodic SRB measure, with respect to
which almost every point of U is generic.

3 Rank one strange attractors of a delayed system
In this section we consider the nonlinear delayed differential equation

du
dt

= Lμut + fμ(ut) + εPT�(ut), ()ε
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where ut(θ ) = u(t + θ ), θ ∈ [–r, ] for r > , Lμ : C[–r, ] → Rn is a linear operator, fμ :
C[–r, ] → Rn is a nonlinear term satisfying fμ() = , Dufμ() = . fμ and Lμ depend on
μ analytically for |μ| is sufficiently small, and PT =

∑∞
n=–∞ δ(t – nT). When ε = , the

undisturbed system is

du
dt

= Lμut + fμ(ut). ()

For the linear system u̇ = Lμut , there is an n × n matrix η(·,μ) : [–r, ] → Rn such that
for any ϕ ∈ C[–r, ]

Lμφ =
∫ 

–r
dη(θ ,μ)φ(θ ). ()

Let the spectral set of Lμ

σ (μ) =
{
λ | det

(
λI – Lμeλθ I

)
= 
}

,

satisfy the following:
(B) There is a simple conjugated pair

λ, = a(μ) ± iω(μ),

such that a() = , ω() = ω > , (d/dμ)a() 	= , and there exists c >  such that for any
λ ∈ σ (μ), λ 	= λ,, Re(λi) < –c, i ≥ .

Then the flow on the central manifold Wc of system () can be written by using Has-
sard’s method [] in the following normal form:

ż = iwz + g(z, z̄) = iwz +
g


z + gzz̄ +

g


z̄ +

g


zz̄ + · · · ()

at μ = . Assume that g = g = g = . We write g
 as

g


= –E() + iF(). ()

Suppose that
(B) E() > .
Then we know that system () has a supercritical Hopf bifurcation near the equilib-

rium.
We define for φ ∈ C[–r, ]

A(μ)φ =

{
dφ

dθ
, θ ∈ [–r, ),

∫ 
–r dη(s,μ)φ(s) = Lμφ, θ = ,

()

and

Rφ =

{
, θ ∈ [–r, ),
fμ(φ) + εPT�(φ), θ = .

()
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Since dut
dθ

= dut
dt , Eq. ()ε becomes

u̇t = A(μ)ut + Rut . ()

For θ =  Eq. () is Eq. ()ε .
Following Hassard’s method, we know that z satisfies the equation

z(t) =
〈
q∗(θ ), ut(θ )

〉
,

where q∗(θ ) is an eigenvector corresponding to the eigenvalue –iω of A∗ which is the
adjoint operator of A().

When μ = , let A = A() and we define

W (t, θ ) = ut(θ ) – z(t)q(θ ) – z̄(t)q̄(θ )

= ut(θ ) –  Re
{

z(t)q(θ )
}

= W
(
z(t), z̄(t), θ

)
. ()

Then from Eq. ()ε and the definitions of A, A∗ we obtain

ż =
〈
q∗(θ ), u̇t(θ )

〉

=
〈
q∗(θ ), Aut(θ ) + Rut(θ )

〉

=
〈
q∗(θ ), Aut(θ )

〉
+
〈
q∗(θ ), Rut(θ )

〉

=
〈
A∗q∗(θ ), ut(θ )

〉
+
〈
q∗(θ ), Rut(θ )

〉

= iω
〈
q∗(θ ), ut(θ )

〉
+
〈
q∗(θ ), Rut(θ )

〉
. ()

At θ = ,

ż = iωz + q̄∗()f
(
W (z, z̄, ) +  Re zq()

)
+ εPT q̄∗()�

(
W (z, z̄, ) +  Re zq()

)

= iωz + g(z, z̄) + εPT q̄∗()�
(
W (z, z̄, ) +  Re zq()

)

= iωz +
(
–E() + iF()

)
zz̄ + · · · + εPT q̄∗()�

(
W (z, z̄, ) +  Re zq()

)
. ()

We can calculate

Ẇ = u̇t – żq – ˙̄zq̄ = AW + H(z, z̄, ).

Then Eq. () can be written as

{
ż = iωz + (–E() + iF())zz̄ + · · · + εPT q̄∗()�(W (z, z̄, ) +  Re zq()),
Ẇ = AW + H(z, z̄, ).

()

Let W ∈ B, where B is a Banach space, let z = x + iy in (), and define

�x(x, y) = Re
{

q̄∗()�
(
W (x, y, ) +  Re (x + iy)q()

)}
,

�y(x, y) = Im
{

q̄∗()�
(
W (x, y, ) +  Re (x + iy)q()

)}
.

()
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We further let x = cos θ , y = sin θ , W =  in (), then {ŝ = (cos θ , sin θ , ) ∈ S × B, θ ∈
[, π )} is the unit circle in (x, y)-plane in (x, y, W)-space. Define

φ(θ ) = cos θ�x(ŝ) + sin θ�y(ŝ). ()

The time-T map of Eq. ()ε is denoted by Fμ,ε,T , where μ is the bifurcation parameter
of the unperturbed Eq. () and ε, T are the parameters of forcing. Assume that

(a) (B)-(B) hold for Eq. ()ε ;
(b) φ(θ ) in Eq. () is a Morse function; and
(c) μ, ε are such that  < μ 
 ,  < ε 
 .
Then we obtain the following.

Theorem  Let the values of μ and ε be fixed and assume that (a)-(c) hold. Regard the pe-
riod T of the forcing as a parameter and define FT = Fμ,ε,T . Then there exists a constant K,
determined exclusively by φ(θ ), such that if

∣
∣
∣
∣ε

F()
E()

∣
∣
∣
∣ > K,

then there exists a positive measure set � ⊂ (μ–,∞) for T so that for T ∈ �, FT has a
strange attractor � admitting no periodic sinks. This is to say that there exists an open
neighborhood U of � such that FT has a positive Lyapunov exponent for Lebesgue almost
every point in U . Furthermore, FT admits an ergodic SRB measure, with respect to which
almost every point of U is generic.

Proof We can easily see that (B), (B) in Theorem  correspond to (A), (A) in Theo-
rem . After transformations, Eq. () in (x, y)-plane corresponds to Eq. () in (ξ ,η)-plane,
they are on the central manifolds. Obviously the conditions in Theorem  are satisfied.

�

4 Analysis of rank one strange attractors in delayed Chua’s system
In this section, we consider Eq. ()ε . The corresponding undisturbed system is as follows:

⎧
⎪⎨

⎪⎩

ẋ(t) = a[y(t) – (cx(t) + dx(t))],
ẏ(t) = x(t) – y(t) + z(t),
ż(t) = –by(t – τ ).

()

It always has equilibria E∗
i (x∗

i , y∗
i , z∗

i ), i = , , , where

x∗
 = , y∗

 = , z∗
 = ,

x∗
 =
√

–c
d

, y∗
 = , z∗

 = –x∗
,

x∗
 = –

√
–c
d

, y∗
 = , z∗

 = –x∗
.

Let E∗ = (x∗, y∗, z∗) be an arbitrary equilibrium, and let x̄(t) = x(t) – x∗, ȳ(t) = y(t) – y∗,
z̄(t) = z(t) – z∗, still denote x̄(t), ȳ(t), z̄(t) by x(t), y(t), z(t), respectively, then the linearized
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system of the corresponding equation at E∗ is as follows:

u̇ = Au(t) + Bu(t – τ ), ()

where u(t) = [x(t), y(t), z(t)]T ,

A =

⎡

⎢
⎣

–ac – adx∗ a 
 – 
  

⎤

⎥
⎦ , B =

⎡

⎢
⎣

  
  
 –b 

⎤

⎥
⎦ .

We consider the following cases.
() E∗ = E∗



The characteristic equation of system () is

λ + αλ
 + αλ + be–λτ (λ + β) = , ()

where α = ac + , α = ac – a, β = ac.
When τ = , Eq. () becomes

λ + αλ
 + (α + b)λ + bβ = . ()

The Routh-Hurwitz criterion implies that if

(H) ac > –, abc > , and b + a(c – )(ac + ) > ,

then all roots of Eq. () have negative real parts.
Suppose that iω (ω > ) is a root of Eq. () in the imaginary axis. Substituting it to

Eq. () and separating the real and imaginary parts, we have

{
bω cos(ωτ ) – bβ sin(ωτ ) = ω – αω,
bω sin(ωτ ) + bβ cos(ωτ ) = αω

,
()

which is equivalent to

ω + eω
 + eω

 + e = . ()

Let z = ω, then Eq. () becomes

G(z) = z + ez + ez + e = , ()

where e = α
 – α, e = α

 – b, e = –bβ
 .

Since G() = –bβ
 < , G(+∞) = +∞, we immediately obtain the following.

Lemma  Eq. () has at least one positive root since e < .

We assume that Eq. () has three positive roots, z, z, z, and ω = √z, ω = √z,
ω = √z.
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According to (), we have

τ
(j)
k =


ωk

{

arcsin
ω

k + αβωk

b(ω
k + β

 )
+ jπ

}

, ()

where k = , ,  and j = , , . . . , then ±iωk is a pair of imaginary roots of Eq. () with τ
(j)
k .

Define

τ = τ
()
k

= min
k=,,

{
τ

()
k
}

, ω = ωk . ()

In order to investigate the distribution of the roots of Eq. (), we need to introduce the
following lemma [].

Lemma  Consider the exponential polynomial

P
(
λ, e–λτ , . . . , e–λτm

)
= λn + p()

 λn– + · · · + p()
n–λ + p()

n

=
[
p()

 λn– + · · · + p()
n–λ + p()

n
]
e–λτ + · · ·

+
[
p(m)

 λn– + · · · + p(m)
n–λ + p(m)

n
]
e–λτm ,

where τi ≥ , i = , , . . . , m, and p(i)
j (i = , , . . . , m; j = , , . . . , n) are constants. As

(τ, τ, . . . , τm) vary, the sum of the order of the zeros of P(λ, e–λτ , . . . , e–λτm ) on the open
right half plane can change if and only if there are zeros crossing the imaginary axis.

Let λ(τ ) = α(τ ) + iω(τ ) be the root of Eq. () near τ = τ
(j)
k satisfying

α
(
τ

(j)
k
)

= , ω
(
τ

(j)
k
)

= ωk .

Then the following transversality condition holds.

Lemma  Suppose that zk = ω
k and G′(zk) 	= , then Reλ(τ (j)

k )
dτ

has the same sign as G′(zk).

Proof Substituting λ(τ ) into Eq. () and taking the derivative with respect to τ , we obtain

{
λ + αλ + α + be–λτ

[
 – τ (λ + β)

]}dλ

dτ
= bλe–λτ (λ + β).

Therefore,

[
dλ

dτ

]–

=
(λ + αλ + α)eλτ

bλ(λ + β)
+


λ(λ + β)

–
τ

λ
. ()

When τ = τ
(j)
k , λ = iωk , k = , , , we have

[(
λ + αλ + α

)
eλτ
]

τ=τ
(j)
k

=
((

α – ω
k
)

cos
(
ωkτ

(j)
k
)

– αωk sin
(
ωkτ

(j)
k
))

+
(
αωk cos

(
ωkτ

(j)
k
)

+
(
α – ω

k
)

sin
(
ωkτ

(j)
k
))

i, ()
[
λ(λ + β)

]

τ=τ
(j)
k

= –ω
k + iβωk .
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According to (), () and (), we have

[
d Re(λ)

dτ

]–

τ=τ
(j)
k

= Re

[
(λ + αλ + α)eλτ

bλ(λ + β)

]

τ=τ
(j)
k

+ Re

[
b

bλ(λ + β)

]

τ=τ
(j)
k

=

�

{[
ω

k + ω
k (αβ – α)

]
cos
(
ωkτ

(j)
k
)

+
[
ω

k (α – β) + αβωk
]

sin
(
ωkτ

(j)
k
)

– bω
k
}

=

�

{
ω

k + 
(
α

 – α
)
ω

k +
(
α

 – b)ω
k
}

=
[

zk(z
k + ezk + e)

�

]–

τ=τ
(j)
k

=
zkG′(zk)

�
,

where � = bω
k (ω

k + β
 ) > . Therefore,

sign

[
Re d(λ(τ (j)

k ))
dτ

]

= sign

[
Re d(λ(τ (j)

k ))
dτ

]–

= sign
zkG′(zk)

�
	= . �

Now we apply the Hopf bifurcation theorem for functional differential equations []
and obtain the following results.

Theorem  Suppose that (H) holds. Then
(i) when τ ∈ [, τ), the equilibrium E∗

 of system () is locally asymptotically stable,
(ii) when τ > τ, the equilibrium E∗

 of system () is unstable,
(iii) when τ = τ, system () undergoes Hopf bifurcation at E∗

 .

() E∗ = E∗
, or E∗



When E∗ = E∗
, or E∗

 , the coefficients of Eq. () are α = –ac, α = –ac–a, β = –ac.
Under condition (H), Eq. () has at least one positive real root, so E∗

 and E∗
 are unstable

equilibria.
From above, we have obtained the conditions under which E∗

 undergoes Hopf bifur-
cation at τ = τ. Now, we will derive the explicit formulae determining the direction and
the stability of the periodic solutions bifurcating from the equilibrium E∗

 . Let τ = τ + μ,
t = τ t̄ and omit ‘-’ above t, we rewrite ()ε as

u̇(t) = Lμut + f (μ, ut) + εPT�(φ),

where

Lμφ = (τ + μ)A

⎡

⎢
⎣

φ()
φ()
φ()

⎤

⎥
⎦ + (τ + μ)B

⎡

⎢
⎣

φ(–)
φ(–)
φ(–)

⎤

⎥
⎦ ,

fμ(φ) = (τ + μ)

⎡

⎢
⎣

–adφ
 ()




⎤

⎥
⎦ , �(φ) = (τ + μ)

⎡

⎢
⎣


φ()



⎤

⎥
⎦ ,
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A, B are as in (). We write Lμφ as the form Lμφ =
∫ 

– dη(θ ,μ)φ(μ), where

dη(θ ,μ) = (τ + μ)Aδ(θ ) + (τ + μ)Bδ(θ + ), ()

δ(θ ) is the Dirac delta function. Then Eq. ()ε can be written as

u̇(t) = A(μ)ut + Rut ,

where

A(μ)φ =

{
dφ(θ )

dθ
, θ ∈ [–, ),

∫ 
– dη(s,μ)φ(s), θ = ,

and

Rφ =

{
, θ ∈ [–, ),
fμ(φ) + εPT�(φ), θ = .

Assume that q(θ ) is the eigenvector of A() corresponding to iωτ, then A()q(θ ) =
iτωq(θ ). It follows from the definition of A() that

⎛

⎜
⎝

iω + ac –a 
– iω +  –
 be–iωτ iω

⎞

⎟
⎠q(θ ) =

⎛

⎜
⎝





⎞

⎟
⎠ . ()

Thus, we can easily compute q(θ ) = (,α,β)eiωτθ , where

α =
ac + iω

a
, β =

be–iωτ (–ω + iac)
aω

.

We can verify that q∗(θ ) = D(,α∗,β∗)eiωτθ is the eigenvector of A∗ corresponding to
–iωτ, where

α∗ = ac – iω, β∗ =
ω + iac

ω
.

In order to assure the bilinear inner product 〈q∗(θ ), q(θ )〉 = , we have

〈
q∗(θ ), q(θ )

〉

= D̄
(
, ᾱ∗, β̄∗)(,α,β)T –

∫ 

–

∫ θ

ξ=
D̄
(
, ᾱ∗, β̄∗)e–i(ξ–θ )ωτ dη(θ )(,α,β)T eiξωτ dξ

= D̄
(

 + αᾱ∗ + ββ̄∗ –
∫ 

–

(
, ᾱ∗, β̄∗)θeiθωτ dη(θ )(,α,β)T

)

= D̄
(
 + αᾱ∗ + ββ̄∗ + bαβ̄∗τe–iωτ

)
.

Therefore, we can choose D̄ as

D̄ =
[
 + αᾱ∗ + ββ̄∗ + bαβ̄∗τe–iωτ

]– =
aω


a + ia + be–iωτ (a + ia)

=
aω

(d – id)
d

 + d


,



Yang et al. Advances in Difference Equations  (2015) 2015:75 Page 12 of 16

Figure 1 The trajectories and phase graphs of system (41) with T = 72.3, ε = 0, τ = 0.01, E∗ is
asymptotically stable.

where a = aω
 + acω

 – ω
, a = acω

, a = ac – ω
 + acτω

, a = acω + τω

 –

τωac, d = a + ba cos(ωτ) + ba sin(ωτ), d = a + ba cos(ωτ) – ba sin(ωτ).
We can get 〈q∗(s), q̄(θ )〉 = .
In what follows, we will obtain the coordinates to describe the center manifold C at

μ = . Notice that ut(θ ) = (xt(θ ), yt(θ ), zt(θ ))T = zq(θ ) + z̄q̄(θ ) + W (t, θ ), then we have

xt() = z + z̄ + W ()
 ()

z


+ W ()

 ()zz̄ + W ()
 ()

z̄



+ W ()
 ()

z


+ W ()

 ()
zz


+ · · · ,

yt() = zα + z̄ᾱ + W ()
 ()

z


+ W ()

 ()zz̄ + W ()
 ()

z̄



+ W ()
 ()

z


+ W ()

 ()
zz


+ · · · ,

zt() = zβ + z̄β̄ + W ()
 ()

z


+ W ()

 ()zz̄ + W ()
 ()

z̄



+ W ()
 ()

z


+ W ()

 ()
zz


+ · · · .

()

Thus, from Eq. () we have

q̄∗()f(ut) = D̄τ
(
, ᾱ∗, β̄∗)

⎛

⎜
⎝

–adx
t ()




⎞

⎟
⎠ = –adτD̄x

t (), ()
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Figure 2 The trajectories and phase graphs of system (41) with T = 72.3, ε = 0, τ = 0.04, E∗ is
unstable, and a stable periodic solution bifurcates from the equilibrium E∗ .

then

g = g = g = , g = –adτD̄. ()

Thus, we can compute the following values:

c() =
g


, μ = –

Re{c()}
Re{λ′(τ)} , β =  Re

{
c()

}
,

which determine the quantities of bifurcating periodic solutions in the center mani-
fold at the critical value τ, i.e., μ determines the directions of a Hopf bifurcation: if
Re{λ′(τ)} > , μ >  (resp. μ < ), then the Hopf bifurcation is supercritical (resp. sub-
critical) and the periodic solutions exist for τ > τ (τ < τ). If Re{λ′(τ)} < , however, the
bifurcating periodic solutions are on the opposite direction. β determines the stability
of the bifurcation periodic solutions: the bifurcating periodic solutions are stable (unsta-
ble) if β <  (β > ). Furthermore, we can get E() = adτω

d
d

 +d


, and F() = adτω
d

d
 +d


. Let

W = , from Eq. () and Eq. (), we have

�x(x, y) = Re
{

q̄∗()�
(
 Re (x + iy)q()

)}

= Re

⎧
⎪⎨

⎪⎩
D̄τ
(
, ᾱ∗, β̄∗)

⎛

⎜
⎝


(x + iy)α + (x – iy)ᾱ



⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
()
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Figure 3 The trajectories and phase graphs of system (41) with T = 69.3, ε = 0.55, τ = 0.04, a rank one
strange attractor occurs.

= Re
{

D̄τᾱ
∗((x + iy)α + (x – iy)ᾱ

)}

= τω

(acx – ωy)

d

d
 + d


,

�y(x, y) = Im
{

q̄∗()�
(
 Re zq()

)}
= τω


(acx – ωy)

d

d
 + d


,

where d = acd + ωd, d = ωd – acd. Let x = cos θ , y = sin θ , then

φ(θ ) = cos θ�x(ŝ) + sin θ�y(ŝ)

=
τω




d
 + d



[
acd cos θ + (acd – ωd) sin θ cos θ – ωd sin θ

]
. ()

Thus, if adτω

d > , then we have E() >  and φ(θ ) is easy to be verified to be a Morse

function. So, according to Theorem , there is a constant K such that if |ε F()
E() | > K, we

can get an observable rank one chaos.

5 Numerical simulations
Now we move to the parameters for which rank one attractors are observable. We consider
the following system:

⎧
⎪⎨

⎪⎩

ẋ(t) = .(y(t) – .x(t) + x(t)),
ẏ(t) = x(t) – y(t) + z(t) + εPT y(t),
ż(t) = –.y(t – τ ).

()
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Figure 4 The trajectories and phase graphs of system (41) with T = 72.3, ε = 0.55, τ = 0.04, a rank one
strange attractor occurs.

Figure 5 Largest Lyapunov exponents λ versus ε for system (41) with T = 69.3 (left), T = 72.3 (right),
τ = 0.04 and ε varying from 0 to 1.0.

From the discussion of Section , we have ω
.= ., τ

.= ., Re{λ′()} .= .,
Re{c()} .= –., μ

.= ., β
.= –., T

.= ., so we know that the equi-
librium E∗

 is asymptotically stable when ε =  and τ ∈ [, .) (see Figure ). Further, we
know that the bifurcation is supercritical and the stable periodic solution emerges from
the equilibrium E∗

 (see Figure ).
We also get E() .= . > , | F()

E() | .= .. We choose T in interval (, ), which
is quite ‘large’ to afford a long relaxation period between consecutive kicks of the ex-
ternal force, and choose ε in (, ). In Figure , we present a rank one strange attrac-
tor at (τ , ε, T) = (., ., .). In Figure , a rank one strange attractor at (τ , ε, T) =
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(., ., .) is shown. In Figure , the largest Lyapunov exponents λ versus ε for sys-
tem () with T = . and T = . are given. The results of our numerical simulations
are in perfect agreement with the predictions of the rank one theory in Section .

6 Conclusions
We have developed rank one theory from an ordinary differential equation to a time-
delayed system and considered the existence of rank one chaos in time-delayed Chua’s
system. It is shown that rank one strange attractors occur when the delayed system under
a periodic kick undergoes supercritical Hopf bifurcation. We also show some results of
numerical simulations to support the rank one theory.
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