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Abstract
This paper investigates the approximate controllability and optimal controls of
fractional dynamical systems of order 1 < q < 2 in Banach spaces. We research a class
of fractional dynamical systems governed by fractional integrodifferential equations
with nonlocal initial conditions. Using the Krasnosel’skii fixed point theorem and the
Schauder fixed point theorem, the approximate controllability results are obtained
under two cases of the nonlinear term. We also present the existence results of
optimal pairs of the corresponding fractional control systems with a Bolza cost
function. Finally, an application is given to illustrate the effectiveness of our main
results.
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1 Introduction
During the past two decades, fractional differential equations have been proved to be one
of the most effective tools in the modeling of numerous fields of science, physics, engineer-
ing and so on. Since fractional differential equations efficiently describe many practical
dynamical phenomena, they have attracted the attention of many researchers in the past
years. Many authors investigated the existence of mild solutions of fractional differential
equations by using semigroup theory and fixed point theorems (see [–]). Controllabil-
ity is one of the most important issues in mathematical control theory and engineering,
however, controllability of fractional dynamical systems is still in the initial stage [–].
Shu and Wang [] considered the existence of mild solutions for a class of fractional inte-
grodifferential equations of order  < q <  in a Banach space:

{
CDq

t x(t) = Ax(t) + f (t, x(t)) +
∫ t

 G(t – s)g(s, x(s)) ds,  < t < T ,
x() + m(x) = x ∈X, x′() + n(x) = x ∈ X,

where CDq
t is Caputo’s fractional derivative of order  < q < . The existence results of mild

solutions are obtained by the Krasnosel’skii fixed point theorem combined with solution
operator theorem. Li et al. [] studied controllability of the following differential systems
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of order α ∈ (, ] with nonlocal conditions in an infinite dimensional Banach space:

{
CDα

t x(t) = Ax(t) + F(t, x(t)) + Bu(t), t ∈ [, b],
x() + g(x) = x, x′() = y,

where A is the infinitesimal generator of a strongly continuous α-order cosine family
{Cα(t)}t≥ on a Banach space X. The controllability results are obtained by using the
Sadovskill fixed point theorem and vector-valued operator theory.

Recently, Sakthivel et al. [] established the controllability results for a class of non-
linear fractional differential equations of order  < q <  with nonlocal conditions. They
also extended the main results to approximate controllability results for nonlocal frac-
tional control systems with infinite delay. Wang et al. [] obtained some existence and
uniqueness results, and further existence conditions of optimal pairs for a class of frac-
tional integrodifferential control systems were presented. Under the assumption that the
associated linear system is approximately controllable, the approximate controllability of
a class of semilinear fractional differential control systems are obtained in []. Since ap-
proximately controllable systems are more prevalent and practical than exact controllable
ones, it is important to investigate the approximate controllability of semilinear differen-
tial systems that consists of a linear part and a nonlinear part.

However, to the best of our knowledge, most of the previous papers about fractional
differential systems are concerned with the fractional derivative whose order is between
zero and one, the approximate controllability problems for fractional integrodifferential
equations in Caputo derivative sense of order  < q <  have not been investigated exten-
sively [–]. Especially, few researchers study the optimal control problems of fractional
systems of order  < q <  in Banach spaces. Liu et al. [] investigated the existence and
uniqueness of mild solutions and optimal controls for some fractional impulsive equations
of order  < q < . But the system under consideration does not include a Volterra oper-
ator in nonlinear term and the boundary conditions are local. What is more, the optimal
control results are only applicable to Lagrange problems.

Motivated by [, –, , , –], we discuss the approximate controllability and
optimal controls of fractional dynamical systems of order  < q <  in a Banach space.
Consider the following fractional system:

{
CDq

t x(t) = Ax(t) + f (t, x(t), (Hx)(t)) + Bu(t), t ∈ I = [, b],
x() + g(x) = x ∈X, x′() + g(x) = x ∈ X,

(.)

where CDq
t is the Caputo fractional derivative of order  < q < . A : D(A) ⊂ X → X is

sectorial operator of type (M, θ , q,μ) on a Banach space X, endowed with the norm ‖ · ‖.
H : I × I × X → X represents a Volterra-type operator, (Hx)(t) =

∫ t
 h(t, s, x(s)) ds. B is a

bounded linear operator from U into X, the control u(·) is given in L(I, U), U is a Banach
space. The nonlinear term f : I ×X×X →X is continuous, and nonlocal terms g and g

are continuous functions.
The rest of the paper is organized as follows. In Section , we show some preliminaries

and lemmas that are to be used later to prove our main results. In Section , we discuss
approximate controllability of system (.). In Section , The existence of optimal controls
of a class of semilinear fractional integrodifferential control systems are presented. Finally,
an application is provided to illustrate the effectiveness of our main results in Section .
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2 Preliminaries and lemmas
Definition . (see []) The fractional integral of order q with the lower limit zero for a
function f is defined as

Iqf (t) =


�(q)

∫ t



f (s)
(t – s)–q ds, t > , q > , (.)

provided that the right side is point-wise defined on [, +∞), where �(·) is the gamma
function.

Definition . (see []) The Riemann-Liouville derivative of the order q with the lower
limit zero for a function f : [,∞] →R can be written as

LDq
t f (t) =


�(n – q)

dn

dtn

∫ t



f (s)
(t – s)–n+q ds, t > , n –  < q < n. (.)

Definition . (see []) The Caputo derivative of the order q for a function f : [,∞] →
R can be written as

CDq
t f (t) = LDq

t

(
f (t) –

n–∑
k=

tk

k!
f (k)()

)
, t > , n –  < q < n. (.)

Remark .
() For f : [, +∞) →R,

CDq
t f (t) =


�(n – q)

∫ t



f (n)(s)
(t – s)–n+q ds = In–qf (n)(t), t > , n –  < q < n. (.)

() The Caputo derivative of a constant equals zero.
() If f is an abstract function with values in X, then the integrals which appear in

Definitions ., ., and . are taken in Bochner’s sense.

Definition . (see []) Let A : D ⊆ X → X be a closed and linear operator. A is said to
be a sectorial operator of type (M, θ , q,μ) if there exists μ ∈ R,  < θ < π

 , and M >  such
that the q-resolvent of A exists outside the sector μ + Sθ = {μ + λq : λ ∈C, |Arg(–λq)| < θ}
and ‖R(λq, A)‖ ≤ M

|λq–μ| , λ
q /∈ μ + Sθ .

Further, if A is a sectorial operator of type (M, θ , q,μ), then it is not difficult to see that
A is the infinitesimal generator of a q-resolvent family {Tq(t)}t≥ in a Banach space, where
Tq(t) = 

π i
∫

c eλtR(λq, A) dλ.

Lemma . (see []) Let A be a sectorial operator of type (M, θ , q,μ). If f satisfies a uni-
form Hölder condition with exponent β ∈ (, ], the unique solution of linear fractional
differential equation

{
CDq

t x(t) = Ax(t) + f (t), t ∈ I = [, b],  < q < ,
x() = x ∈X, x′() = x ∈X,

(.)



Qin et al. Advances in Difference Equations  (2015) 2015:73 Page 4 of 17

is given by

x(t) = Sq(t)x + Kq(t)x +
∫ t


Tq(t – s)f (s) ds, (.)

where

Sq(t) =


π i

∫
c

eλtλq–R
(
λq, A

)
dλ, Kq(t) =


π i

∫
c

eλtλq–R
(
λq, A

)
dλ,

Tq(t) =


π i

∫
c

eλtR
(
λq, A

)
dλ,

(.)

with c being a suitable path such that λq /∈ μ + Sθ for λ ∈ c.

Definition . (see []) System (.) is said to be approximately controllable on I if for
every x, x ∈X, there is some control u ∈ L(I, U), the closure of the reachable set R(b) is
dense in X, i.e., R(b) = X, where R(b) = {x(b; u) : u(·) ∈ L(I, U)}.

Consider the linear fractional control system

{
CDq

t x(t) = Ax(t) + Bu(t), t ∈ [, b],  < q < ,
x() = x ∈X, x′() = x ∈X.

(.)

Let us now introduce the following operators. Define the operator �b
 : X →X associated

with (.) as

�b
 =

∫ b


Tq(b – s)BB∗T ∗

q (b – s) ds : X →X,

R
(
λ,�b


)

=
(
λI + �b


)– : X →X, λ > ,

(.)

where B∗ denotes the adjoint of B and T ∗
q (t) is the adjoint of Tq(t). It is straightforward

that the operator �b
 : X→X is a linear bounded operator.

Lemma . (see []) The linear system (.) is approximately controllable if and only if
λR(λ,�b

) := λ(λI + �b
)– →  as λ → + in the strong operator topology.

In order to define the concept of mild solutions for problem (.), by the comparison with
the fractional differential equation given in [], we associate problem (.) to an integral
problem.

Definition . A functional x ∈ C(I,X) is called a mild solution for system (.) if for each
u ∈ L(I, U), the integral equation

x(t) = Sq(t)
(
x – g(x)

)
+ Kq(t)

(
x – g(x)

)
+

∫ t


Tq(t – s)

(
f
(
s, x(s), (Hx)(s)

)
+ Bu(s)

)
ds (.)

is satisfied.
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Lemma . (Krasnosel’skii theorem; see []) Let X be a Banach space and E be a
bounded, closed, and convex subset of X. Let Q, Q be maps of E into X such that
Qx + Qy ∈ E, for every x, y ∈ E. If Q is contraction and Q is compact and continuous,
then the equation Qx + Qx = x has a solution on E.

Lemma . (Sadovskill theorem; see []) Let Q be a condensing operator on a Banach
spaceX, i.e. Q is continuous and takes bounded sets into bounded sets, and ∂(Q(D)) < ∂(D)
for every bounded set D of X with ∂(D) > . If Q(E) ⊂ E for a convex, closed, and bounded
set E of X, then Q has a fixed point in E, where ∂(·) denotes the Kuratowski measure of
noncompactness.

3 Approximate controllability
From Theorems . and . in [], it is easy to see that Sq(t), Kq(t), and Tq(t) are bounded.
Define k∗ = supt∈I

∫ b
 m(t, s) ds < ∞. For any r > , Br := {x ∈ C(I,X) | ‖x‖ ≤ r}, C(I,X) de-

notes a Banach space with the norm ‖x‖ = supt∈I ‖x(t)‖. ‖B‖ ≤ MB. Here we impose the
following assumptions:

(H) The operators Sq(t), Kq(t), Tq(t) generated by A are compact in D(A) when t ≥  such
that

sup
t∈I

∥∥Sq(t)
∥∥ ≤ M, sup

t∈I

∥∥Kq(t)
∥∥ ≤ M, sup

t∈I

∥∥Tq(t)
∥∥ ≤ M.

(H) The nonlinearity f : I ×X×X →X is continuous, there exist positive functions μi ∈
L∞(I,R+) (i = , , ) such that

∥∥f (t, x, y)
∥∥ ≤ μ(t) + μ(t)‖x‖ + μ(t)‖y‖.

(H′
) The nonlinearity f : I × X × X → X is continuous and compact, there exist positive

constants α, α such that

∥∥f (t, x, Hx) – f (t, y, Hy)
∥∥ ≤ α‖x – y‖ + α‖Hx – Hy‖.

(H) The functions g, g : X → D(A) are completely continuous and there exist positive
constants β, β such that

∥∥g(x) – g(y)
∥∥ ≤ β‖x – y‖,

∥∥g(x) – g(y)
∥∥ ≤ β‖x – y‖, x, y ∈ X.

(H) h : 	 ×X →X, there exists a function m(t, s) ∈ C(	,R+) such that

∥∥h
(
t, s, x(s)

)∥∥ ≤ m(t, s)‖x‖

for each (t, s) ∈ 	 and x, y ∈X, where 	 = {(t, s) ∈R
 |  ≤ s, t ≤ b}.

Theorem . Assume that conditions (H), (H), and (H)-(H) hold and, in addition, the
functions f (t, x, Hx) and h(t, s, x) are bounded for t ∈ [, b], x ∈ X. The linear system (.)
is approximately controllable. Then the fractional control system (.) is approximately
controllable on [, b] provided that M(β + β) < .
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Proof Define the operators Q and Q on Br as follows:

(Qx)(t) = Sq(t)
(
x – g(x)

)
+ Kq(t)

(
x – g(x)

)
,

(Qx)(t) =
∫ t


Tq(t – s)Bu(s) ds +

∫ t


Tq(t – s)f

(
s, x(s), (Hx)(s)

)
ds.

(.)

From [], system (.) is approximately controllable, if for any λ > , there exists a contin-
uous function x(·) ∈ C(I,X) such that

x(t) = Sq(t)
(
x – g(x)

)
+ Kq(t)

(
x – g(x)

)
+

∫ t


Tq(t – s)Bu(s) ds

+
∫ t


Tq(t – s)f

(
s, x(s), (Hx)(s)

)
ds, (.)

u(t) = B∗T ∗
q (b – t)R

(
λ,�b


)
p
(
x(·)), (.)

where

p
(
x(·)) = xb – Sq(b)

(
x – g(x)

)
– Kq(b)

(
x – g(x)

)
–

∫ b


Tq(b – s)f

(
s, x(s), (Hx)(s)

)
ds. (.)

For any λ > , we choose r > ( + 
λ

M
BMb)(C + C). Next, we shall show that Q + Q

has a fixed point on Br , which is then a solution of system (.). In view of assumptions
(H), (H), and (H)-(H), we have

∥∥u(t)
∥∥ ≤ 

λ
MBM

(
‖xb‖ +

∥∥Sq(b)
∥∥∥∥x – g(x)

∥∥ +
∥∥Kq(b)

∥∥∥∥x – g(x)
∥∥

+
∫ b



∥∥Tq(b – s)
∥∥∥∥f

(
s, x(s), (Hx)(s)

)∥∥ds
)

≤ 
λ

MBM
[‖xb‖ + M

(‖x‖ +
∥∥g(x)

∥∥ + ‖x‖ +
∥∥g(x)

∥∥)
+ Mb

(‖μ‖L∞[I,R+] + r‖μ‖L∞[I,R+] + k∗r‖μ‖L∞[I,R+]
)]

≤ 
λ

MBM(C + C), (.)

where C = ‖xb‖+M‖x‖+Mβr+Mg()+M‖x‖+Mβr+Mg(), C = Mb(‖μ‖L∞[I,R+] +
r‖μ‖L∞[I,R+] + k∗r‖μ‖L∞[I,R+]).

For any x ∈ Br , we obtain

∥∥(Qx)(t) + (Qx)(t)
∥∥ ≤ M‖x‖ + M

∥∥g(x)
∥∥ + M‖x‖ + M

∥∥g(x)
∥∥ + MMBb

∥∥u(t)
∥∥

+ Mb
(‖μ‖L∞[I,R+] + r‖μ‖L∞[I,R+] + k∗r‖μ‖L∞[I,R+]

)
≤

(
 +


λ

M
BMb

)
(C + C), (.)

Hence, we conclude that ‖(Qx)(t) + (Qx)(t)‖ ≤ r.
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Using assumptions (H) and (H), for any x, y ∈ Br and t ∈ [, b], we have

∥∥(Qx)(t) – (Qy)(t)
∥∥ ≤ ∥∥Sq(t)

∥∥∥∥g(x) – g(y)
∥∥ +

∥∥Kq(t)
∥∥∥∥g(x) – g(y)

∥∥
≤ M(β + β)‖x – y‖. (.)

Since M(β + β) < , it follows that Q is a contraction mapping.
Let {xn} be a sequence in Br , and xn → x ∈ Br . Because f , g, and g are continuous, i.e.,

for all ε > , there exists a positive integer N , when n > N , we obtain

∥∥f
(
s, xn(s), (Hxn)(s)

)
– f

(
s, x(s), (Hx)(s)

)∥∥ ≤ ε,
∥∥g(xn) – g(x)

∥∥ ≤ ε,∥∥g(xn) – g(x)
∥∥ ≤ ε.

(.)

Now, for all t ∈ [, b], we infer that

∥∥(Qxn)(t) – (Qx)(t)
∥∥

≤
∫ t



∥∥Tq(t – τ )
∥∥∥∥BB∗T ∗

q (b – τ )R
(
λ,�b


)∥∥

×
(∥∥Sq(b)

(
g(xn) – g(x)

)∥∥ +
∥∥Kq(b)

(
g(xn) – g(x)

)∥∥
+

∫ b



∥∥Tq(b – s)
∥∥∥∥f

(
s, xn(s), (Hxn)(s)

)
– f

(
s, x(s), (Hx)(s)

)∥∥ds
)

dτ

+
∫ t


Tq(t – s)

(
f
(
s, xn, (Hxn)(s)

)
– f

(
s, x(s), (Hx)(s)

))
ds

≤
(


λ

M
BMb(M + Mb) + Mb

)
ε. (.)

This implies that Q is continuous.
Now, we prove that compactness of Q. To prove this, we first prove that the set

{(Qx)(t) : x ∈ Br} is relatively compact in C(I,X).
By the assumptions of this theorem, it is easy to see that

∥∥(Qx)(t)
∥∥ ≤ MMBb + Mb

(‖μ‖L∞[I,R+] + r‖μ‖L∞[I,R+] + k∗r‖μ‖L∞[I,R+]
)
, (.)

so we know that {(Qx)(t) : x ∈ Br} is uniformly bounded. Then we show that Q(Br) is
equicontinuous. The functions {(Qx)(t) : x ∈ Br} are equicontinuous at t = . For any x ∈
Br and  < t < t ≤ b, we have

∥∥(Qx)(t) – (Qx)(t)
∥∥

≤
∥∥∥∥
∫ t



[
Tq(t – s) – Tq(t – s)

]
Bu(s) ds

∥∥∥∥ +
∥∥∥∥
∫ t

t

Tq(t – s)Bu(s) ds
∥∥∥∥

+
∥∥∥∥
∫ t



[
Tq(t – s) – Tq(t – s)

]
f
(
s, x(s), (Hx)(s)

)
ds

∥∥∥∥
+

∥∥∥∥
∫ t

t

Tq(t – s)f
(
s, x(s), (Hx)(s)

)
ds

∥∥∥∥
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≤ MB

∫ t



∥∥Tq(t – s) – Tq(t – s)
∥∥ds‖u‖ + MMB(t – t)‖u‖

+ M(t – t)
∥∥f

(
s, x(s), (Hx)(s)

)∥∥ +
∫ t



∥∥Tq(t – s) – Tq(t – s)
∥∥ds

× (‖μ‖L∞[I,R+] + r‖μ‖L∞[I,R+] + k∗r‖μ‖L∞[I,R+]
)
. (.)

By the continuity of the function t → ‖Tq(t)‖, the right hand side of the above inequal-
ity tends to zero as t → t. Therefore, {(Qx)(t) : x ∈ Br} is a family of equicontinuous
functions.

According to the infinite dimensional version of the Ascoli-Arzela theorem, it remains
to prove that for any t ∈ [, b], the set V (t) := {(Qx)(t) : x ∈ Br} is relatively compact in
C(I,X). The case t =  is trivial, V () = {(Qx)() : x(·) ∈ Br} is compact in C(I,X). Let
t ∈ (, b] be a fixed real number, and let h be a given real number satisfied  < h < t, define
Vh(t) = {(Qh

x)(t) : x ∈ Br},

(
Qh

x
)
(t) =

∫ t–h


Tq(t – s)Bu(s) ds +

∫ t–h


Tq(t – s)f

(
s, x(s), (Hx)(s)

)
ds

= Tq(h)
∫ t–h


Tq(t – s – h)Bu(s) ds

+ Tq(h)
∫ t–h


Tq(t – s – h)f

(
s, x(s), (Hx)(s)

)
ds

= Tq(h)y(t, h). (.)

Since Tq(h) is compact in C(I,X) and y(t, h) is bounded on Br , then the set Vh(t) is relatively
compact in C(I,X). Since

∥∥(Qx)(t) –
(
Qh

x
)
(t)

∥∥
≤

∫ t

t–h
Tq(t – s)Bu(s) ds +

∫ t

t–h
Tq(t – s)f

(
s, x(s), Hx(s)

)
ds

≤ 
λ

MM
B(C + C)

∫ t

t–h
ds

+ M
(‖μ‖L∞[I,R+] + r‖μ‖L∞[I,R+] + k∗r‖μ‖L∞[I,R+]

)∫ t

t–h
ds, (.)

if h is small enough, it implies that there are relatively compact sets arbitrarily close to the
set V (t) for each t ∈ (, b]. Then V (t), t ∈ (, b] is relatively compact in C(I,X). Since it
is compact at t = , we have the relatively compactness of V (t) in C(I,X) for all t ∈ [, b].
Hence, by the Arzela-Ascoli theorem, we obtain the result that Q is compact. In view of
Lemma ., we can conclude that the control system (.) has at least one mild solution
on [, b].

Without loss of generality, we assume that xλ(·) is a fixed point of Q + Q in Br . Then
from [], any fixed point of Q + Q is a mild solution of (.) on [, b] under the control

uλ(t) = B∗T ∗
q (b – t)R

(
λ,�b


)
p(xλ), t ∈ I, (.)

and satisfies xλ(b) = xb – λR(λ,�b
)p(xλ).
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The functions f (t, x, Hx) and h(t, s, x) are bounded for t ∈ [, b] and x ∈ X, thus there
exists a constant N >  such that

∫ b



∥∥f
(
s, xλ(s), (Hxλ)(s)

)∥∥ ds ≤ bN. (.)

Consequently, there is a sequence, still denoted by {f (s, xλ(s), (Hxλ)(s))}, that weakly con-
verges to say {f (s)} in L[I,X]. Denote

w = xb – Sq(b)
(
x – g(xλ)

)
– Kq(b)

(
x – g(xλ)

)
–

∫ b


Tq(b – s)f (s) ds. (.)

From (.) and (.), we know that

∥∥p(xλ) – w
∥∥ =

∥∥∥∥
∫ b


Tq(b – s)

[
f
(
s, xλ, (Hxλ)(s)

)
– f (s)

]
ds

∥∥∥∥
≤ sup

t∈[,b]

∥∥∥∥
∫ t


Tq(t – s)

[
f
(
s, xλ, (Hxλ)(s)

)
– f (s)

]
ds

∥∥∥∥. (.)

By using the infinite dimensional version of the Ascoli-Arzela theorem, one can show that
the operator l(·) → ∫ ·

 Tq(· – s)l(s) ds : L[I,X] → C(I,X) is compact. Therefore, for all t ∈
[, b], we obtain ‖p(xλ) – w‖ →  as λ → +.

∥∥xλ(b) – xb
∥∥ ≤ ∥∥λR

(
λ,�b


)
(w)

∥∥ +
∥∥λR

(
λ,�b


)∥∥∥∥p(xλ) – w

∥∥
≤ ∥∥λR

(
λ,�b


)
(w)

∥∥ +
∥∥p(xλ) – w

∥∥. (.)

It follows that ‖xλ(b) – xb‖ →  as λ → +. From Lemma ., we know that the fractional
control system (.) is approximately controllable on [, b]. The proof is completed. �

Theorem . Assume that conditions (H), (H′
), and (H)-(H) hold. The functions

f (t, x, Hx) and h(t, s, x) are bounded for t ∈ [, b], x ∈X. The linear system (.) is approxi-
mately controllable. Then the fractional control system (.) is approximately controllable
on [, b] provided that ( + 

λ
M

BMb)(Mβ + Mβ + αbM + αbk∗M) < .

Proof Define the operators Q′
 and Q′

 on Br as follows:

(
Q′

x
)
(t) = Sq(t)

(
x – g(x)

)
+ Kq(t)

(
x – g(x)

)
+

∫ t


Tq(t – s)Bu(s) ds,

(
Q′

x
)
(t) =

∫ t


Tq(t – s)f

(
s, x(s), (Hx)(s)

)
ds.

(.)

By the definition, it is easy to see that Br is a bounded, closed, and convex set in C(I,X).
We shall prove that there exists a constant r >  such that (Q′

 + Q′
)(Br) ⊂ Br . If this is not

true, then for each r > , there exists xλ ∈ Br , but (Q′
 + Q′

)(Br) does not belong to Br , i.e.,
‖(Q′

 + Q′
)(xλ)(t)‖ > r for some t ∈ [, b].
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In view of assumptions (H), (H′
), and (H)-(H), we have

∥∥u(t)
∥∥ ≤ 

λ
MBM

(
‖xb‖ + M

(‖x‖ +
∥∥g(xλ)

∥∥ + ‖x‖ +
∥∥g(xλ)

∥∥)

+ M
∫ b



∥∥f
(
s, xλ(s), (Hxλ)(s)

)∥∥ds
)

≤ 
λ

MBM
(

‖xb‖ + M
(‖x‖ + β‖xλ‖ + g() + ‖x‖ + β‖xλ‖ + g()

)

+ M
∫ b



∥∥f
(
s, xλ(s), (Hxλ)(s)

)∥∥ds
)

≤ 
λ

MBM
(

‖xb‖ + M
(‖x‖ + β‖xλ‖ + g() + ‖x‖ + β‖xλ‖ + g()

)

+ αbM‖xλ‖ + αbk∗M‖xλ‖ + M
∫ b



∥∥f (s, , )
∥∥ds

)
. (.)

From (.), we get

∥∥(
Q′

xλ

)
(t)

∥∥ ≤ M‖x‖ + M
∥∥g(xλ)

∥∥ + M‖x‖ + M
∥∥g(xλ)

∥∥ + M
∫ b



∥∥Bu(s)
∥∥ds

≤ M
(‖x‖ + β‖xλ‖ + g() + ‖x‖ + β‖xλ‖ + g()

)
+ MMB

∫ b



∥∥u(s)
∥∥ds, (.)

(
Q′

xλ

)
(t) ≤ αbM‖xλ‖ + αbk∗M‖xλ‖ + M

∫ b



∥∥f (s, , )
∥∥ds. (.)

From (.)-(.) and xλ ≤ r, it follows that

r <
∥∥(

Q′
 + Q′


)
xλ(t)

∥∥
≤ M

(‖x‖ + β‖xλ‖ + g() + ‖x‖ + β‖xλ‖ + g()
)

+ MMB

∫ b



∥∥u(s)
∥∥ds

+ αbM‖xλ‖ + αbk∗M‖xλ‖ + M
∫ b



∥∥f (s, , )
∥∥ds. (.)

Dividing both sides of (.) by r and taking the limit as r → ∞, we obtain

(
 +


λ

M
BMb

)(
Mβ + Mβ + αbM + αbk∗M

) ≥ . (.)

This contradicts the assumption in this theorem. Thus we can deduce that (Q′
 + Q′

)(Br) ⊂
Br .

Next, we show that Q′
 is a contraction operator, and Q′

 is a completely continuous
operator. Assume that x, y ∈ Br , we conclude that

∥∥(
Q′

x
)
(t) –

(
Q′

y
)
(t)

∥∥
≤ Mβ‖x – y‖ + Mβ‖x – y‖
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+

λ

MM
Bb

(
β‖x – y‖ + β‖x – y‖ + αb‖x – y‖ + αbk∗‖x – y‖)

≤
(

(Mβ + Mβ) +

λ

MM
Bb

(
Mβ + Mβ + αMb + αMbk∗))‖x – y‖

≤
(

 +

λ

M
BMb

)(
Mβ + Mβ + αMb + αMbk∗)‖x – y‖. (.)

By the assumptions in this theorem, we know that Q′
 is a contraction operator.

Let xn ∈ Br with xn → x in Br . By (H′
), it follows that

f
(
s, xn(s), (Hxn)(s)

) → f
(
s, x(s), (Hx)(s)

)
, n → ∞, (.)

and

∥∥f
(
s, xn(s), (Hxn)(s)

)
– f

(
s, x(s), (Hx)(s)

)∥∥ ≤ α‖xn – x‖ + α‖Hxn – Hx‖. (.)

From (.) and the dominated convergence theorem, it is easy to see that Q′
 is continuous

on Br .
For any x ∈ Br and h > , we have

∥∥(
Q′

x
)
(t + h) –

(
Q′

x
)
(t)

∥∥
≤

∫ t+h


Tq(t + h – s)f

(
s, x(s), (Hx)(s)

)
ds –

∫ t


Tq(t – s)f

(
s, x(s), (Hx)(s)

)
ds

≤
∫ t



[
Tq(t + h – s) – Tq(t – s)

]
f
(
s, x(s), (Hx)(s)

)
ds

+
∫ t+h

t
Tq(t + h – s)f

(
s, x(s), (Hx)(s)

)
ds

≤
∫ t



[
Tq(t + h – s) – Tq(t – s)

]
f
(
s, x(s), (Hx)(s)

)
ds

+ M
∫ t+h

t

∥∥f (s, , )
∥∥ds + Mh

(
αr + αk∗r

)
. (.)

Since Tq(t) is strongly continuous for t ≥  and f is compact, it follows that Q′
(Br) ⊂ Br is

equicontinuous, and the set {Tq(t – s)f (s, x(s), (Hx)(s)) : s, t ∈ [, b], x ∈ Br} is precompact.
It is easy to have

Q′
(Br)(t) ⊂ tconv

{
Tq(t – s)f

(
s, x(s), (Hx)(s)

)
: s, t ∈ [, b], x ∈ Br

}
. (.)

Thus we have Q′
(Br)(t) ⊂ X is precompact. Then Q′ = Q′

 + Q′
 is a condensing operator

on Br . By Lemma ., Q′ has a fixed point x on Br . It is easy to prove that x is a mild
solution of system (.) Similar to the proof of Theorem ., it is easy to see that system
(.) is approximately controllable on [, b]. The proof is completed. �

4 Existence of optimal controls
In this section, we suppose that Y is a separable Banach space. wf (Y) represents a class
of nonempty, closed, and convex subsets of Y. The multifunction w : I → wf (Y) is a
measurable and w(·) ⊂ E, where E is a bounded set of Y, the admissible control set
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Uad = {u ∈ L(E) | u(t) ∈ w(t) a.e.}. Then u(t) is nonempty. Consider the following frac-
tional control system:⎧⎪⎨

⎪⎩
CDq

t x(t) = Ax(t) + f (t, x(t), (Hx)(t)) + C(t)u(t),
t ∈ I = [, b],  < q < , u ∈ Uad,

x() + g(x) = x ∈X, x′() + g(x) = x ∈X,
(.)

where C ∈ L∞(I, L(Y,X)). It is easy to see that Cu ∈ L(I,X) for all u ∈ Uad .
Let xu be a mild solution of system (.) corresponding to a control u ∈ Uad . We consider

the Bolza problem (P): find a optimal pair (x, u) ∈ C(I,X) × Uad such that

J
(
x, u) ≤ J

(
xu, u

)
, for all u ∈ Uad, (.)

where

J
(
xu, u

)
= φ

(
xu(b)

)
+

∫ b


l
(
t, xu(t), u(t)

)
dt. (.)

Here, we introduce the following assumptions:
(HL) The functional l : I ×X×Y →R∪ {∞} is Borel measurable.

l(t, ·, ·) is sequentially lower semicontinuous on X×Y for almost all t ∈ I .
l(t, ·, ·) is convex on Y for each x ∈X and almost all t ∈ I .

There exist constants d ≥ , e > , ϕ is nonnegative, and ϕ ∈ L(I,R) such that

l(t, x, u) ≥ ϕ(t) + d‖x‖ + e‖u‖p
Y

. (.)

Theorem . Let A be the infinitesimal generator of an analytic compact semigroup
{T(t), t ≥ }. In addition to the assumptions of Theorem ., we suppose that condition
(HL) holds. Then the Bolza problem (P) admits at least one optimal pair on C(I,X) × Uad .

Proof If inf{J(xu, u) | u ∈ Uad} = +∞, there is nothing to prove. So we assume that
inf{J(xu, u) | u ∈ Uad} = η < +∞. Since condition (HL) holds, we have

J
(
xu, u

) ≥ φ
(
xu(b)

)
+

∫ b


ϕ(t) dt + d

∫ b



∥∥xu(t)
∥∥dt + e

∫ b



∥∥u(t)
∥∥p
Y

dt

≥ –σ > –∞. (.)

Here, σ >  is a constant, so η ≥ –σ > –∞.
By the definition of infimum there exists a minimizing sequence of feasible pair

{(xm, um)} ⊂ Aad , where Aad ≡{(x, u) | x is a mild solution of system (.) correspond-
ing to u ∈ Uad}, such that J(xn, un) → η as n → +∞. Since {un} ⊆ Uad , {un} is bounded in
L(I,Y), there exists a subsequence, relabeled as {un}, and u ∈ L(I,Y) such that un weakly
converges to u in L(I,Y). Since the admissible control set Uad is convex and closed, we
have u ∈ Uad .

Suppose that xn is a mild solution of system (.) corresponding to un, and xn satisfies

xn(t) = Sq(t)
(
x – g

(
xn)) + Kq(t)

(
x – g

(
xn)) +

∫ t


Tq(t – s)Bun(s) ds

+
∫ t


Tq(t – s)f

(
s, xn(s),

(
Hxn)(s)

)
ds. (.)
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From (H), we find that f (s, xn(s), (Hxn)(s)) is a bounded continuous operator from I to X.
Because f (s, xn(s), (Hxn)(s)) ∈ L(I,X) is bounded, there exists a subsequence, relabeled as
{f (s, xn, (Hxn)(s))} and f̂ (s, x, (Hx)(s)) ∈ L(I,X) such that f (s, xn, (Hxn)(s)) weakly converges
to f̂ (s, x, (Hx)(s)).

We denote

(
Q′′

 x
)
(t) =

∫ t


Tq(t – s)f

(
s, x(s), (Hx)(s)

)
ds,

(
Q′′

x
)
(t) =

∫ t


Tq(t – s)Bu(s) ds. (.)

By (H) and (H), we can see that ‖(Q′′
 x)(t)‖ is bounded. It is not difficult to see that

‖(Q′′
 x)(t)‖ is compact and equicontinuous in X. Then by the Ascoli-Arzela theorem,

{(Q′′
 x)(t)} is relatively compact in C(I,X). Since Q′′

 is linear and continuous, Q′′
 is a

strongly continuous operator. Thus we see that Q′′
 xn strongly converges to Q′′

 x in C(I,X).
Similarly, we can conclude that Q′′

 is a strongly continuous operator. Next, we consider
the following controlled system:

{
CDq

t x(t) = Ax(t) + f̂ (t, x(t), (Hx)(t)) + C(t)u(t), t ∈ [, b],  < q < , u ∈ Uad,
x() + g(x) = x ∈X, x′() + g(x) = x ∈ X.

(.)

Similar to Theorem ., it is easy to prove that system (.) has a mild solution,

x̂(t) = Sq(t)
(
x – g(̂x)

)
+ Kq(t)

(
x – g(̂x)

)
+

∫ t


Tq(t – s)C(s)u(s) ds

+
∫ t


Tq(t – s)̂f

(
s, x(s), (Hx)(s)

)
ds. (.)

For each t ∈ I , xn(·), x̂(·) ∈X, we get

∥∥xn(t) – x̂(t)
∥∥ ≤Sq(t)

∥∥g
(
xn) – g(̂x)

∥∥ + Kq(t)
∥∥g

(
xn) – g(̂x)

∥∥
+

∫ t


Tq(t – s)C(s)

(
un(s) – u(s)

)
ds denoted by P

+
∫ t


Tq(t – s)

(
f
(
s, xn(s),

(
Hxn)(s)

)
– f̂

(
s, x(s), (Hx)(s)

))
ds

denoted by P, (.)

which implies that

∥∥xn – x̂
∥∥ ≤ P + P

 – M(β + β)
. (.)

Therefore we can infer that xn strongly converges to x̂ in C(I,X) as n → ∞.
From (H)-(H), f (s, xn(s), (Hxn)(s)) strongly converges to f (s, x̂(s), (Hx̂)(s)) in C(I,X) as

n → ∞. From the uniqueness of the limit, we obtain f̂ (s, x(s), (Hx)(s)) = f (s, x̂(s), (Hx̂)(s)).
Then

x̂(t) = Sq(t)
(
x – g(̂x)

)
+ Kq(t)

(
x – g(̂x)

)
+

∫ t


Tq(t – s)C(s)u(s) ds

+
∫ t


Tq(t – s)f

(
s, x̂(s), (Hx̂)(s)

)
ds. (.)



Qin et al. Advances in Difference Equations  (2015) 2015:73 Page 14 of 17

From assumption (HL) and Balder’s theorem, we can infer that

η = φ
(
xn(b)

)
+ lim

n→∞ +
∫ b


l
(
t, xn(t), un(t)

)
dt

≥ φ
(̂
x(b)

)
+

∫ b


l
(
t, x̂, u(t)

)
dt = J

(̂
x, u) ≥ η, (.)

which implies that J attains its minimum at (̂x, u) ∈ C(I,X) × Uad . The proof is com-
pleted. �

5 Applications
Example . Consider optimal controls for fractional control system of order q = 

 as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂



∂t



x(t, y) = ∂

∂y x(t, y) + e–t

et+e–t cos[x(t, y) +
∫ 

 x(s, y) ds +
∫ t

 h(t, s)x(s, y) ds]

+
∫ 

 k(t, s)u(s, y) ds, y ∈ [, ], t ∈ [, ], u ∈ Uad,
x(t, ) = x(t, ) = , t > ,
x(, y) =

∑σ
i=

∫ 
 k(t, s)x(si, y) dy +

∑σ
i=

∫ 
 k(t, s) ∂

∂y x(si, y) dy,
x′(, y) =

∑σ
i=

∫ 
 k(t, s)x(si, y) dy +

∑σ
i=

∫ 
 k(t, s) ∂

∂y x(si, y) dy,

(.)

with a cost function

J(x, u) =
∫ 



∫ 



∣∣x(t, y)
∣∣ dy dt +

∫ 



∫ 



∣∣u(t, y)
∣∣ dy dt +

∫ 



∣∣x(b, y)
∣∣ dy, (.)

where σi ∈N,  < s < s < · · · < sσi < , h, k ∈ C([, ] × [, ],R+), ki ∈ L([, ] × [, ],R+),
i = , .

As a similar method to the example of the example in [], let X = Y = (L([, ]),‖ · ‖).
Operator A : D(A) → X is defined by D(A) = {x ∈ X | x′, x′′ ∈ X, x() = x() = } with Ax =
–x′′, then A generates a compact, analytic semigroup T(·) of uniformly bounded linear
operator, and assumption (H) is satisfied. Moreover, the eigenvalues of A are nπ and
the corresponding normalized eigenvectors are en(u) =

√
 sin(nπu), n = , , . . . .

Here, we take the control function u : Tx([, ]) → R such that u ∈ L(Tx([, ])). Then
t → u(t, ·) going from [, ] into Y is measurable. Set U(t) = {u ∈ Y | ‖u‖Y ≤ ϑ} where
ϑ ∈ L(I,R+). We also restrict the admissible controls Uad to be all the u ∈ L(Tx([, ]))
such that ‖u(t, ·)‖ ≤ ϑ(t), a.e.

Let us denote C(I,X) a Banach space equipped with supnorm ‖ · ‖. Let x(t)(y) = x(t, y),
(Hx)(t)(y) = (

∫ t
 h(t, s)x(s) ds)(y), C(t)u(t)(y) = (

∫ 
 k(t, s)u(s) ds)(y). Define f : [, ] × X ×

X →X by

f
(
t, x(t), (Hx)(t)

)
(y) =

e–t

et + e–t cos

(
x(t) +

∫ 


x(s) ds +

∫ t


h(t, s)x(s) ds

)
(y) (.)

and g, g: C(I,X) →X by

g(x)(y) =

(
σ∑
i=

(Kx)(ti)

)
(y) for x ∈ C(I,X), (.)
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g(x)(y) =

(
σ∑
i=

(Kx)(ti)

)
(y) for x ∈ C(I,X), (.)

where K : X →X are defined by

(Kx)(s) =
∫ 


k(t, s)x(s) ds +

∫ 


k(t, s)x′(s) ds, for all x ∈X. (.)

It is easy to see that

(
K(x – y)

)
(s) =

∫ 


k(t, s)(x – y)(s) ds +

∫ 


k(t, s)

(
x′ – y′)(s) ds, for all x ∈ X. (.)

The system (.) can be transformed into the following type:

{
CDq

t x(t) = Ax(t) + f (t, x(t), (Hx)(t)) + C(t)u(t), t ∈ I, u ∈ Uad,
x() + g(x) = x ∈X, x′() + g(x) = x ∈ X,

(.)

with a cost function

J(x, u) =
∥∥x(b)

∥∥ +
∫ b



(∥∥x(t)
∥∥ +

∥∥u(t)
∥∥
Y

)
dt, (.)

we can verify (HL) is satisfied. It is also not difficult to know

∥∥f
(
t, x(t), (Hx)(t)

)∥∥ ≤ e–t

et + e–t = ϕ(t), ϕ(t) ∈ L∞(
I,R+)

. (.)

Then there exist μ(t) = ϕ(t), μ(t) = μ(t) ≡  such that condition (H) holds.
Meanwhile, one finds from example in [] that g and g are completely continuous

operators from C(I,X) to X and satisfy

∥∥g(x) – g(y)
∥∥ ≤ σ(c + c)‖x – y‖, (.)∥∥g(x) – g(y)
∥∥ ≤ σ(c + c)‖x – y‖, (.)

where the definitions of constants c and c are the same as that in []. Let β = σ(c +
c) and β = σ(c + c), it is easy to verify that (H) holds. Since the operator H in
the nonlinear term f is linear, condition (H) is satisfied automatically. By Theorem .,
we can conclude that the system (.) has at least one optimal pair, while the condition
M(σ + σ)(c + c) <  holds.

Remark . In order to describe various problems in nature and science which undergo
abrupt changes at certain instants during the evolution process, impulsive fractional dif-
ferential equations are emerging as an important class of system models. Among the pre-
vious and known results, few people have discussed the control problems for impulsive
differential equations of order  < q < . Using the same methods and ideas in this paper,
one can obtain the approximate controllability and optimal controls results of fractional
impulsive differential equations with nonlocal conditions of order  < q < .
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