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Abstract
A case of steady-case heat flow through a plane wall, which can be formulated as
ut(x, y, t) – div(k(x, y)∇u(x, y, t)) = F(x, y, t) with Robin boundary condition
–k(1, y)ux(1, y, t) = ν1[u(1, y, t) – T0(t)], –k(x, 1)uy(x, 1, t) = ν2[u(x, 1, t) – T1(t)], where
ω := {F(x, y, t); T0(t); T1(t)} is to be determined, from the measured final data
μT (x, y) = u(x, y, T ) is investigated. It is proved that the Fréchet gradient of the cost
functional J(ω) = ‖μT (x, y) – u(x, y, T ;ω)‖2 can be found via the solution of the adjoint
parabolic problem. Lipschitz continuity of the gradient is derived. The obtained
results permit one to prove the existence of a quasi-solution of the inverse problem.
A steepest descent method with line search, which produces a monotone iteration
scheme based on the gradient, is formulated. Some convergence results are given.

Keywords: two dimensional determination; cost functional; steepest descent
method

1 Introduction
Consider the one dimensional physical system in Figure , where the left of the solid is
full of hot gas. Whenever a temperature gradient exists in the solid medium, heat will
flow from the higher-temperature region to the lower-temperature region. According to
Fourier’s law, for a homogeneous, isotropic solid, the following equation holds:

q(x, t) = –kuxx(x, t), (.)

where q(x, t) represents heat flow per unit time, per unit area of the isothermal surface
in the direction of decreasing temperature, u(x, t) is the temperature distribution in the
solid, and k is called the thermal conductivity.

However, in practice, the thermal conductivity may depend on x, namely, k := k(x). Be-
sides, there may be a heat source g(x, t) in the solid. Under these conditions, the physical
system can be formulated as

⎧
⎪⎨

⎪⎩

ut = (k(x)ux(x, t))x + g(x, t), (x, t) ∈ �̃T ,
u(x, ) = μ(x), x ∈ (, L),
ux(, t) = , –k(L)ux(L, t) = σ [u(L, t) – T(t)], t ∈ (, T],

(.)
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Figure 1 The one dimensional physical model.

where �̃T := { < x < L,  < t ≤ T}, and T(t) is the temperature of the cold gas on the
right of the solid. –k(L)ux(L, t) = σ [u(L, t) – T(t)] represents the convection at x = L

according to Newton’s law, and the constant σ is called the convection coefficient.
It is desired to find the pair ω := {g(x, t); T(t)} from the final state observation

μT (x) = u(x, T). (.)

The mathematical model (.) can also arise in hydrology [], material sciences [], and
transport problems []. In [] a tsunami model based on shallow water theory is studied.
The authors treat the inverse problem of determining an unknown initial tsunami source
q(x, y) by using measurements fm(t) of the height of a passing tsunami wave at a finite
number of given points (xm, ym), m = , , . . . , M, of the coastal area. These are nonlinear
inverse problems, and it is well known that they are generally ill posed, i.e. the existence,
uniqueness, and stability of their solutions are not always guaranteed []. There are many
contributions for the linear parabolic equations with final overdetermination (see, for in-
stance [–]). The time-dependent heat source H(t) of the separable sources of the form
g(x, t) = F(x)H(t) is investigated in []. For g(x, t) = p(x)u, in [], the author proved the
existence and uniqueness of p(x), and the local well-posedness of the inverse problem was
discussed in []. The simultaneous reconstruction of the initial temperature and heat ra-
diative coefficient was investigated in [] by using the measurement of temperature given
at a fixed time and the measurement of the temperature in a subregion of the physical do-
main. A determination of the unknown function p(x) in the source term g = p(x)f (u), via
fixed point theory, was given in []. Based on the optimal control framework, [] con-
sidered the determination of a pair (p, u) in the nonlinear parabolic equation

ut – uxx + p(x)f (u) = ,

with initial and homogeneous Dirichlet boundary conditions:

u(x, ) = φ(x), u|x= = u|x=L = ,

from the overspecified data u(x, T) = μT (x). The local uniqueness and stability of the so-
lution were proved. In [], a weak solution approach for the pair ω(x, t) := {g(x, t); T(t)}
was given via a steepest descent method on minimizing the cost functional

J(ω) =
∥
∥μT (x) – u(x, T ;ω)

∥
∥

L[,L]. (.)
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Figure 2 The two dimensional physical model.

In this contribution, we consider the corresponding two dimensional problem (see Fig-
ure ) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ut(x, y, t) – div(k(x, y)∇u(x, y, t)) = F(x, y, t), in �T ,
ux(, y, t) = uy(x, , t) = , x, y ∈ (, ), t ∈ (, T],
–k(, y)ux(, y, t) = ν[u(, y, t) – T(t)], x, y ∈ (, ), t ∈ (, T],
–k(x, )uy(x, , t) = ν[u(x, , t) – T(t)], x, y ∈ (, ), t ∈ (, T],
u(x, y, ) = u(x, y), (x, y) ∈ �,

(.)

where �T = � × (, T) = (, ) × (, ) × (, T) and ν,ν > . The inverse problem here is
to determine ω := {F(x, y, t); T(t); T(t)} from the final state observation (the overspecified
data)

uT (x, y) = u(x, y, T). (.)

In this work, based on a weak solution approach we will show how the inverse problem
can be formulated and solved for ω := {F(x, y, t); T(t); T(t)}. Moreover, we will prove that
the gradient J ′(w) of the cost (auxiliary) functional

J(ω) =
∥
∥μT (x, y) – u(x, y, T ;ω)

∥
∥

can be expressed via the solution ϕ = ϕ(x, y, t;ω) of the appropriate adjoint problem.
This paper is organized as follows. In Section , we give an analysis of the two dimen-

sional problem and prove the Fréchet-differentiability of J(ω). In Section , we present the
framework of a steepest descent iterate with line search of the two dimensional inverse
problem, where J ′(ω) can be found via an adjoint parabolic problem. The convergence of
the sequence is analyzed in Section . Conclusions are stated in Section .

2 The analysis of the two dimensional problem
The direct problem (.) is to get the solution from a given pair w. Firstly, we define W :=
F × T × T, the set of admissible unknown sources F(x, y, t), T(t), T(t) with

F(x, y, t) ∈ L(�T ), T(t), T(t) ∈ L[, T],

 < T∗ ≤ T(t), T(t) ≤ T∗
 < +∞,

(.)

k(x, y) > , k(x, y) ∈ L∞(�), u(x, y), uT (x, y) ∈ L(�). (.)
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It is obvious that the set W is a closed and convex subset in L(�T )×L[, T]×L[, T].
The scalar product in W is defined as

(ω,ω)W :=
∫

�T

F(x, y, t)F(x, y, t) dx dy dt +
∫ T


T ()

 (t)T ()
 (t) dt

+
∫ T


T ()

 (t)T ()
 (t) dt, ∀ω,ω ∈ W ,

where ωm := {Fm; T (m)
 ; T (m)

 }, m = , . We can prove that this kind of problem has a quasi-
solution u ∈ H,(�T ) satisfying the identity

∫

�

u(x, y, T)v(x, y, T) dx dy –
∫

�

u(x, y)v(x, y, ) dx dy

–
∫

�T

(uvt – kuxvx – kuyvy) dx dy dt

= ν

∫ T



∫ 



[
u(, y, t) – T(t)

]
v(, y, t) dy dt

+ ν

∫ T



∫ 



[
u(x, , t) – T(t)

]
v(x, , t) dx dt +

∫ T



∫

�

F(x, y, t)v(x, y, t) dx dt, (.)

for all v ∈ H,(�T ). Here H,(�T ) is the Sobolev space with the norm

‖u‖ :=
{∫

�T

[
u + u

x + u
y
]

dx dy dt
}/

.

It is also known that, under conditions (.) and (.), the weak solution u(x, y, t) ∈
H,(�T ) of the direct problem (.) exists and is unique [].

2.1 Method discussion
To solve the inverse problem (.)-(.), we introduce a cost functional

J(ω) =
∫

�

[
u(x, y, T ;ω) – uT (x, y)

] dx dy.

We are going to give an iterative solution to this kind of problem. To begin, we study the
derivative of the cost functional. Let us consider the first variation of the cost functional:


J(ω) := J(ω + 
ω) – J(ω)

=
∫

�

[
u(x, y, T ;ω + 
ω) – uT (x, y)

] dx dy –
∫

�

[
u(x, y, T ;ω) – uT (x, y)

] dx dy

=
∫

�


u(x, y, T ;ω)
(
u(x, y, T ;ω) + 

(
u(x, y, T ;ω) – uT (x, y)

))
dx dy

= 
∫

�

(
u(x, y, T ;ω) – uT (x, y)

)
u(x, y, T ;ω) dx dy

+
∫

�

(
u(x, y, T ;ω)
) dx dy, (.)
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where

ω + 
ω := {F + 
F ; T + 
T; T + 
T} ∈ W ,


u(x, y, t;ω) := u(x, y, t;ω + 
ω) – u(x, y, t;ω) ∈ H,(�T ).

Furthermore, the function 
u := 
u(x, y, t;ω) is the solution of the following parabolic
problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩


ut – div(k(x, y)∇
u) = 
F(x, y, t), in �T ,

ux(, y, t) = 
uy(x, , t) = , x, y ∈ (, ), t ∈ (, T],
–k(, y)
ux(, y, t) = ν(
u(, y, t) – 
T(t)), x, y ∈ (, ), t ∈ (, T],
–k(x, )
uy(x, , t) = ν(
u(x, , t) – 
T(t)), x, y ∈ (, ), t ∈ (, T],

u(x, y, ) = , (x, y) ∈ �.

(.)

Now, we are ready to estimate the derivative of the cost functional J(ω). Firstly, we esti-
mate the first term in (.), i.e. 

∫

�
(u(x, y, T ;ω) – uT (x, y))
u(x, y, T ;ω) dx dy.

Lemma . Let ω,ω + 
ω ∈ W be given elements. If u(x, y, t;ω) is the corresponding so-
lution of the direct problem (.), and ϕ(x, y, t) ∈ H,(�T ) is the solution of the backward
parabolic problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕt(x, y, t) + div(k(x, y)∇ϕ(x, y, t)) = , in �T ,
ϕx(, y, t) = ϕy(x, , t) = , x, y ∈ (, ), t ∈ (, T],
–k(, y)ϕx(, y, t) = νϕ(, y, t), x, y ∈ (, ), t ∈ (, T],
–k(x, )ϕy(x, , t) = νϕ(x, , t), x, y ∈ (, ), t ∈ (, T],
ϕ(x, y, T) = u(x, y, T ;ω) – uT (x, y), (x, y) ∈ �,

(.)

then, for all ω ∈ W , the following integral identity holds:

∫

�

(
u(x, y, T ;ω) – uT (x, y)

)
u(x, y, T ;ω) dx dy

= ν

∫ T



T(t)

∫ 


ϕ(, y, t;ω) dy dt + ν

∫ T



T(t)

∫ 


ϕ(x, , t;ω) dx dt

+
∫

�T


F(x, y, t)ϕ(x, y, t) dx dy dt. (.)

Proof Taking the final condition at t = T in (.) and the boundary conditions in (.) and
(.) into account, we can deduce that

∫

�

(
u(x, y, T ;ω) – uT (x, y)

)
u(x, y, T ;ω) dx dy

=
∫

�

ϕ(x, y, T ;ω)
u(x, y, T ;ω) dx dy

=
∫

�

∫ T



(
ϕ(x, y, t;ω)
u(x, y, t;ω)

)

t dt dx dy

=
∫

�T

ϕt(x, y, t;ω)
u(x, y, t;ω) + ϕ(x, y, t;ω)
ut(x, y, t;ω) dx dy dt
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=
∫

�T

– div
(
k(x, y)∇ϕ(x, y, t)

)
u(x, y, t;ω)

+ ϕ(x, y, t;ω) div
(
k(x, y)∇
u

)
dx dy dt +

∫

�T

ϕ(x, y, t)
F(x, y, t) dx dy dt

= –
∫ T



∫ 


k(, y)ϕx(, y, t)
u(, y, t;ω) dy dt

–
∫ T



∫ 


k(x, )ϕy(x, , t)
u(x, , t;ω) dx dt

+
∫ T



∫ 


k(, y)
ux(, y, t)ϕ(, y, t;ω) dy dt

+
∫ T



∫ 


k(x, )
uy(x, , t)ϕ(x, , t;ω) dx dt +

∫

�T

ϕ(x, y, t)
F(x, y, t) dx dy dt

= ν

∫ T



T(t)

∫ 


ϕ(, y, t;ω) dy dt + ν

∫ T



T(t)

∫ 


ϕ(x, , t;ω) dx dt

+
∫

�T


F(x, y, t)ϕ(x, y, t) dx dy dt.

This completes the proof of Lemma .. �

Remark We define the parabolic problem (.) as an adjoint problem corresponding to
the inverse problem (.)-(.). It is easy to see that the parabolic problem (.) is a back-
ward one, and this problem is well posed.

Next, we show that the second term in (.), i.e.
∫

�
(
u(x, y, T ;ω)) dx dy, is of order

O(‖
ω‖
W ).

Lemma . Let 
u = 
u(x, t;ω) ∈ H,(�T ) be the solution of the parabolic problem (.)
with respect to a given ω ∈ W . Then the following estimate holds:

∫

�

(
u(x, y, T)
) dx dy ≤ max{ν,ν, }

ε
‖
ω‖

W ,

where

‖
ω‖W :=
(∫ T



(
T(t)
) dt +

∫ T



(
T(t)
) dt +

∫

�T

(
F(x, y, t)
) dx dy dt

)/

is the H-norm of the function 
ω ∈ W , and the constant ε is defined as follows:

k∗ = min
x,y∈[,]

k(x, y) > , ε = min

{

k∗;
ν

ν + 

}

.

Proof Multiplying 
u on both sides of (.) and integrating on �T , we obtain

 =
∫

�T

(
ut – div
(
k(x, y)∇
u

)
– 
F(x, y, t)

)
u dx dy dt

=
∫

�T

(



u

)

t
dx dy dt –

∫

�T

(
k(x, y)
uxu

)

x dx dy dt
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–
∫

�T

(
k(x, y)
uyu

)

y dx dy dt +
∫

�T

k(x, y)
(
(
ux) + (
uy))dx dy dt

–
∫

�T


F(x, y, t)
u(x, y, t) dx dy dt

=



∫

�

(
u(x, y, T)
) dx dy –

∫ T



∫ 


k(, y)
ux(, y, t)
u(, y, t) dy dt

–
∫ T



∫ 


k(x, )
uy(x, , t)
u(x, , t) dx dt –

∫

�T


F(x, y, t)
u(x, y, t) dx dy dt

+
∫

�T

k(x, y)
((
ux(x, y, t)

) +
(
uy(x, y, t)

))dx dy dt

=



∫

�

(
u(x, y, T)
) dx dy –

∫

�T


F(x, y, t)
u(x, y, t) dx dy dt

+ ν

∫ T



∫ 



(
u(, y, t)
) dy dt + ν

∫ T



∫ 



(
u(x, , t)
) dx dt

– ν

∫ T



∫ 



T(t)
u(, y, t) dy dt – ν

∫ T



∫ 



T(t)
u(x, , t) dx dt

+
∫

�T

k(x, y)
((
ux(x, y, t)

) +
(
uy(x, y, t)

))dx dy dt;

here, the initial and boundary conditions are used.
This implies the following identity:




∫

�

(
u(x, y, T)
) dx dy

+ ν

∫ T



∫ 



(
u(, y, t)
) dy dt + ν

∫ T



∫ 



(
u(x, , t)
) dx dt

+
∫

�T

k(x, y)
((
ux(x, y, t)

) +
(
uy(x, y, t)

))dx dy dt

= ν

∫ T



∫ 



T(t)
u(, y, t) dy dt + ν

∫ T



∫ 



T(t)
u(x, , t) dx dt

+
∫

�T


F(x, y, t)
u(x, y, t) dx dy dt. (.)

By the ε-Young inequality we make an estimate on the right-hand side integrals of (.):

ν

∫ T



∫ 



T(t)
u(, y, t) dy dt + ν

∫ T



∫ 



T(t)
u(x, , t) dx dt

+
∫

�T


F(x, y, t)
u(x, y, t) dx dy dt

≤ νε



∫ T



∫ 



(
u(, y, t)
) dy dt +

ν

ε

∫ T



(
T(t)
) dt

+
νε



∫ T



∫ 



(
u(x, , t)
) dx dt +

ν

ε

∫ T



(
T(t)
) dt

+
ε



∫

�T

(
u(x, y, t)
) dx dy dt +


ε

∫

�T

(
F(x, y, t)
) dx dy dt. (.)
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Besides, by the Cauchy-Schwarz inequality the term (
u(x, y, t)) can be estimated as

(
u(x, y, t)
) =

(


u(, y, t) –
∫ 

x

uζ (ζ , y, t) dζ

)

≤ 
(
u(, y, t)

) + 
(∫ 

x

uζ (ζ , y, t) dζ

)

≤ 
(
u(, y, t)

) + 
∫ 



ux(x, y, t) dx.

By integrating both sides of the above inequality on �T , we obtain

∫

�T

(
u(x, y, t)
) dx dy dt ≤ 

∫ T



∫ 



(
u(, y, t)
) dy dt

+ 
∫

�T


ux(x, y, t) dx dy dt. (.)

So, it follows from (.)-(.) that




∫

�

(
u(x, y, T)
) dx dy +

[

ν

(

 –
ε



)

– ε

]

×
∫ T



∫ 



(
u(, y, t)
) dy dt + ν

(

 –
ε



)∫ T



∫ 



(
u(x, , t)
) dx dt

+
∫

�T

(
k(x, y) – ε

)(
ux(x, y, t)
) + k(x, y)

(
uy(x, y, t)
) dx dy dt

≤ ν

ε

∫ T



(
T(t)
) dt +

ν

ε

∫ T



(
T(t)
) dt +


ε

∫

�T

(
F(x, y, t)
) dx dy dt.

Therefore, if we set k∗ = minx,y∈[,] k(x, y) >  and ε = min{k∗; ν
ν+ }, then we deduce that




∫

�

(
u(x, y, T)
) dx dy

≤ ν

ε

∫ T



(
T(t)
) dt +

ν

ε

∫ T



(
T(t)
) dt +


ε

∫

�T

(
F(x, y, t)
) dx dy dt

≤ max{ν,ν, }
ε

‖
ω‖
W .

This completes the proof. �

With the arguments above we are in a position to give the Fréchet derivative of J(ω).

Theorem . Let conditions (.)-(.) hold. Then the cost functional is Fréchet-differen-
tiable, i.e., J(ω) ∈ C(W ). Moreover, the Fréchet derivative of J(ω) at ω ∈ W can be defined,
by the solution ϕ ∈ H,(�T ) of the adjoint problem (.), as follows:

J ′(ω) =
{

ϕ(x, y, t;ω);ν

∫ 


ϕ(, y, t;ω) dy;ν

∫ 


ϕ(x, , t;ω) dx

}

. (.)
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Corollary . Let J(ω) ∈ C(W ) and W∗ ⊂ W be the set of quasi-solutions of the inverse
problem (.)-(.). Then ω∗ ∈ W∗ is a strict solution of the inverse problem (.)-(.) if
and only if ϕ(x, y, t;ω∗) ≡ , a.e. on �T .

By the well-known theory of convex analysis [], we can get the relationship between
the minimization problem and the corresponding variational inequality in the following
theorem.

Theorem . Let conditions of Theorem . hold; W ∈ H(�T ) × H[, T] × H[, T] is a
closed convex set of unknown sources and ϕ = ϕ(x, t;ω) is the solution of the adjoint problem
(.), for a given ω ∈ W . Then the element w∗ := {F∗(x, y, t); T∗(t); T∗(t)} ∈ W is a quasi-
solution of the inverse problem (.)-(.) if and only if the following variational inequality
holds:

(
J ′(ω∗),ω – ω∗

)

W ≥ , ∀ω ∈ W ,

where
(
J ′(ω∗),ω – ω∗

)

W =
∫

�T

ϕ(x, y, t;ω∗)
[
F(x, y, t) – F(x, y, t)

]
dx dy dt

+ ν

∫ T



[
T(t) – T∗(t)

]
∫ 


ϕ(, y, t;ω) dy dt

+ ν

∫ T



[
T(t) – T∗(t)

]
∫ 


ϕ(x, , t;ω) dx dt.

3 A steepest descent method with line search
An iteration process, known as the steepest descent method in the optimization theory,
can thus be implemented

ωn+ = ωn – αnJ ′(ωn), (.)

with some appropriate chosen parameter αn.
The details of the algorithm are written as follows.

Algorithm . A steepest descent method with line search
Step  Initialization
• Choose an initial approximation ω = {F()(x, y, t); T ()

 (t); T ()
 (t)}.

• Set the stop tolerance ε > , n = .
Step  Stopping check
• Solve direct problem (.) with ωn to get u(x, y, T ;ωn), then solve (.), and get J ′(ωn)

as (.).
• If ‖J ′(ωn)‖ ≤ ε or ‖ωn+ – ωn‖ ≤ ε, then stop and get ωn as the solution.
Step  Update ωn.
• Solve

min
α>

J
(
ωn – αJ ′(ωn)

)
(.)

with line search and set αn=arg minα> J(ωn – αJ ′(ωn)).
• Set ωn+ = ωn – αnJ ′(ωn), n := n + , go to Step .
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Different choices of the parameter αn correspond to various gradient methods. Here we
discuss both the exact and the inexact ones.

3.1 Exact line search
One of the exact line searches is the golden section method. It is adapted to solve (.)
when the object function is a unimodal function. The main idea of this method is to con-
struct a sequence of closed intervals {[ak , bk]}, which satisfies ᾱ ∈ [ak , bk] ⊂ [ak–, bk–] and
makes [ak , bk] scaling down as k increases. If the gradient J ′(ω) has Lipschitz continuity,
the parameter can be estimated as follows (see Lemma .):

 < δ ≤ αn ≤ /(L + δ), (.)

where δ, δ >  are arbitrary parameters. We can choose the initial interval as a = δ,
b = /(L + δ).

3.2 Inexact line search
There are two famous techniques, the Armijo line search and the Wolfe-Powell line search.
If we denote φ(α) := J(ωn –αJ ′(ωn)), the Armijo line search can be stated thus: to find αn > 
such that

φ(αn) ≤ φ() + cαnφ
′(), (.)

where  < c <  is constant. While the step length αn found by (.) may be quite small or
cannot converge to the exact minimum point of (.), this situation can be prevented by
imposing the curvature condition,

φ′(αn) ≥ cφ
′(), (.)

where  < c < c < . Equations (.) and (.) are known collectively as the Wolfe-Powell
line search.

4 Convergence analysis
Lemma . Let the conditions of Theorem . hold. Then the functional J(ω) is of Hölder
class C,(W ) and

∥
∥J ′(ω + 
ω) – J ′(ω)

∥
∥

W ≤ L‖
ω‖W , ∀ω,ω + 
ω ∈ W , (.)

where

∥
∥J ′(ω + 
ω) – J ′(ω)

∥
∥

W =
∫

�T

(
ϕ(x, y, t;ω)
) dx dy dt

+ ν


∫ T



(∫ 



ϕ(, y, t;ω) dy

)

dt

+ ν


∫ T



(∫ 



ϕ(x, , t;ω) dx

)

dt,
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and L is defined as

L =

√
max{ν,ν, }

ε

(


min{ν,ν} +

k∗

+ ν + ν

)

.

Proof It is easy to check that the function 
ϕ(x, y, t;ω) := ϕ(x, y, t;ω + 
ω) – ϕ(x, y, t;ω) is
the solution of the following backward parabolic problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩


ϕt(x, y, t) + div(k(x, y)∇
ϕ(x, y, t)) = , in �T ,

ϕx(, y, t) = 
ϕy(x, , t) = , x, y ∈ (, ), t ∈ (, T],
–k(, y)
ϕx(, y, t) = ν
ϕ(, y, t), x, y ∈ (, ), t ∈ (, T],
–k(x, )
ϕy(x, , t) = ν
ϕ(x, , t), x, y ∈ (, ), t ∈ (, T],

ϕ(x, y, T) = 
u(x, y, T ;ω), (x, y) ∈ �.

(.)

Multiplying both sides of (.) by 
ϕ(x, y, t;ω), integrating on �T , and using the initial
and boundary conditions, we can obtain the following energy identity:




∫

�

(
ϕ(x, y, ;ω)
) dx dy + ν

∫ T



∫ 



(
ϕ(, y, t;ω)
) dy dt

+ ν

∫ T



∫ 



(
ϕ(x, , t;ω)
) dx dt

+
∫

�T

k(x, y)
[(
ϕx(x, y, t;ω)

) +
(
ϕy(x, y, t;ω)

)]dx dy

=



∫

�

(
u(x, y, T ;ω)
) dx dy. (.)

This identity implies the following two inequalities:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k∗
∫

�T
[(
ϕx(x, y, t;ω)) + (
ϕy(x, y, t;ω))] dx dy

≤ 

∫

�
(
u(x, y, T ;ω)) dx dy,

min{ν,ν}[
∫ T


∫ 

 (
ϕ(, y, t;ω)) dy dt +
∫ T


∫ 

 (
ϕ(x, , t;ω)) dx dt]
≤ 


∫

�
(
u(x, y, T ;ω)) dx dy.

(.)

Dealing with (
ϕ(x, y, t;ω)) as (.) in the proof of Lemma ., we have

∫

�T

(
ϕ(x, y, t;ω)
) dx dy dt

≤
∫ T



∫ 



(
ϕ(, y, t;ω)
) dy dt +

∫ T



∫ 



(
ϕ(x, , t;ω)
) dx dt

+
∫

�T

[(
ϕx(x, y, t;ω)
) +

(
ϕy(x, y, t;ω)
)]dx dy. (.)

The above three inequalities imply

∫

�T

(
ϕ(x, y, t;ω)
) dx dy dt ≤ 



(


min{ν,ν} +

k∗

)∫

�

(
u(x, y, T ;ω)
) dx dy.
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According to the energy identity (.), using the Cauchy-Schwarz inequality, we can also
conclude

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ν

∫ T

 (
∫ 

 
ϕ(x, , t;ω) dx) dt ≤ ν

∫ T


∫ 

 (
ϕ(x, , t;ω)) dx dt
≤ 

ν
∫

�
(
u(x, y, T ;ω)) dx dy,

ν

∫ T

 (
∫ 

 
ϕ(, y, t;ω) dy) dt ≤ ν

∫ T


∫ 

 (
ϕ(, y, t;ω)) dy dt
≤ 

ν
∫

�
(
u(x, y, T ;ω)) dx dy.

(.)

Thus, from the above estimates, we deduce that

∫

�T

(
ϕ(x, y, t;ω)
) dx dy dt + ν



∫ T



(∫ 



ϕ(, y, t;ω) dy

)

dt

+ ν


∫ T



(∫ 



ϕ(x, , t;ω) dx

)

dt

≤ 


(


min{ν,ν} +

k∗

+ ν + ν

)∫

�

(
u(x, y, T ;ω)
) dx dy.

It follows from this inequality and Lemma . that we can set

L =

√
max{ν,ν, }

ε

(


min{ν,ν} +

k∗

+ ν + ν

)

,

which completes the proof. �

Now we analyze the convergence of the sequence {J(ωn)}, where the iterations ωn ∈ W
(n = , , , . . .) are produced by Algorithm ..

Theorem . Let W be a closed convex set and J(ω) ∈ C,(W ). If ωn ∈ W (n = , , , . . .) is
generated by Algorithm ., then J(ωn) is a monotone decreasing convergent sequence and

lim
n→∞

∥
∥J ′(ωn)

∥
∥ = . (.)

Proof Set dn := –J ′(ωn). By using Lemma ., for all α > , we have

J(ωn + αdn) – J(ωn) =
∫ 



(
J ′(ωn + θαdn),αdn

)
dθ

=
∫ 



(
J ′(ωn + θαdn) – J ′(ωn),αdn

)
dθ + α

(
J ′(ωn), dn

)

≤
∫ 


θα‖dn‖ dθ + α

(
J ′(ωn), dn

)

≤
(

α


L – α

)
∥
∥J ′(ωn)

∥
∥.

Especially, this inequality holds for α̂ = /L, i.e.

J(ωn) – J(ωn + α̂dn) ≥ 
L

∥
∥J ′(ωn)

∥
∥.
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If an exact line search is used in (.), one has J(ωn+) = J(ωn +αndn) ≤ J(ωn + α̂dn). Thus,
the following inequality holds:

J(ωn) – J(ωn+) ≥ 
L

∥
∥J ′(ωn)

∥
∥. (.)

This implies that J(ωn) is a monotone decreasing convergent sequence and then (.)
holds.

For the case of the inexact line search, we consider the Wolfe-Powell line search. By
using Lemma ., (.) implies

–( – c)
(
J ′(ωn), dn

) ≤ (
J ′(ωn + αndn) – J ′(ωn), dn

) ≤ αnL‖dn‖.

Thus

αn ≥  – c

L
.

Besides, it follows from (.) that

J(ωn) – J(ωn+) ≥ αn
∥
∥J ′(ωn)

∥
∥ ≥  – c

L
∥
∥J ′(ωn)

∥
∥.

This completes the proof. �

Denote by

J∗ := J(ω∗) = lim
n→∞ J(ωn), ω∗ ∈ W ,

the limit of the sequence J(ωn). Let us remark that if W is a closed convex set in L(�) ×
L[, T] × L[, T] and the conditions (.)-(.) hold, then, for any initial data ω ∈ W ,
the sequence of iteration {ωn} ⊂ W , given by Algorithm ., weakly converges to a quasi-
solution ω∗ ∈ W of the inverse problem (.)-(.).

5 Conclusions
This paper presents a theoretical study of a case of steady-case heat flow through a plane
wall with the two dimensional Robin boundary condition. The inverse problem consists of
determining the source terms ω := {F(x, y, t); T(t); T(t)} by using observational measure-
ments of the final state uT (x, y) = u(x, y, T). The proposed approach is based on the weak
solution theory for parabolic PDEs and the adjoint problem method for minimization of
the corresponding cost functional. The adjoint problem is defined to obtain an explicit
gradient formula for the cost functional J(ω) = ‖μT (x, y) – u(x, y, T ;ω)‖. A steepest de-
scent algorithm based on an explicit gradient formula is presented and its convergence is
analyzed.
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