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Abstract
In this paper viability results for nonlinear fractional differential equations with the
Caputo derivative are proved. We give a necessary condition for fractional viability of
a locally closed set with respect to a nonlinear function. A specific sufficient condition
is also provided.
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1 Introduction
Fractional calculus deals with fractional derivatives and integrals of any order, and it is
a field of mathematics that grows out of the traditional definitions of calculus integral
and derivative operators. Hence, fractional differential equations are generalizations of
ordinary differential equations to equations with an arbitrary order.

In recent years, fractional differential equations have been investigated by many authors
[–]. However, the problem of viability of fractional differential equations, which con-
sists in finding at least one solution to the equation starting and staying in a constrained
set, has not been well developed so far. The classical viability theory has its origin in the
Nagumo theorem [] and is widely exploited starting from ordinary differential equations
and reaching differential inclusions based on set-valued maps with a wide range of applica-
tions [–]. In this paper we continue the subject of the Nagumo theorem for a fractional
differential equation with the Caputo derivative. In [] we showed a sufficient condition
for solutions to be viable with respect to a constrained set. In the present paper a neces-
sary condition of viability of a fractional differential equation with the Caputo derivative is
proved. It is not trivial to show a necessary condition of viability of a fractional differential
equation with the Caputo derivative. Thus we implement the idea that we used in [] for
a fractional differential equation with the Riemann-Liouville derivative, i.e., the initializa-
tion problem that leads to a modification of the problem, namely we consider viability of
solutions in the memory domain. Then we employ the formula that joins these two types
of fractional derivatives. This idea allows us to prove the necessity of the Nagumo theorem
going through the classical tools as Bouligand cone, contingent vectors, etc.

The paper is organized as follows. In Section  we gather preliminary definitions, no-
tations and some results. Section  includes the initialization problem. We formulate the
inner value problem with the Caputo derivative on the basis of a similar problem with the
Riemann-Liouville derivative. The key result is given in Proposition . The last section
concerns the viability problem. Theorem  and corollaries give necessary conditions of
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viability of a fractional differential equation with the Caputo derivative. Then an illustra-
tive example is provided. Finally Theorem  gives a base to formulate a sufficient condi-
tion of viability for an equation involving the Caputo derivative that is, however, slightly
different from the one that we formulated in []. We finish the paper with a block scheme
that shows relations among viability conditions presented in the paper.

2 Preliminaries
In this section we make a review of notations, definitions, and some preliminary facts,
which are useful for the paper. We recall definitions of fractional integrals of arbitrary
order, the Caputo and Riemann-Liouville derivatives of order q ∈ (, ), and a description
of special functions in the fractional calculus.

Definition  ([, , ]) Let ϕ ∈ L([, t],R). The integral

(
Iq

+ϕ
)
(t) =


�(q)

∫ t


ϕ(s)(t – s)q– ds,  < t ≤ t,

where � is the gamma function and q > , is called the left-sided fractional Riemann-
Liouville integral of order q. Additionally we define I

+ := III (identity operator).

Remark  ([]) Note that Iq
+f (t) = (f ∗ ϕq)(t), where ϕq(t) = tq–

�(q) for t > , ϕq(t) =  for
t ≤ , and ϕq → δ(t) as q → , with δ the delta Dirac pseudo function.

Moreover, fractional integration has the following property:

Iq
+

(
Ip

+ϕ
)

= Iq+p
+ ϕ, q ≥ , p ≥ . ()

The best known fractional derivatives are the Riemann-Liouville and the Caputo ones.

Definition  ([, ]) Let ϕ be defined on the interval [, t] and n be the natural number
satisfying n = �q� +  with �q� denoting the integer part of q. The left-sided Riemann-
Liouville derivative of order q and the lower limit  is defined through the following:

(
Dq

+ϕ
)
(t) =


�(n – q)

(
d
dt

)n ∫ t


ϕ(s)(t – s)n–q– ds.

The left-sided Caputo derivative of order q and the lower limit  is defined through the
following:

(CDq
+ϕ

)
(t) =


�(n – q)

∫ t


ϕ(n)(s)(t – s)n–q– ds.

Remark  If q ∈ (, ), then the left-sided Riemann-Liouville fractional derivative of order
q takes the form

(
Dq

+ϕ
)
(t) =


�( – q)

d
dt

∫ t


ϕ(s)(t – s)–q ds =

d
dt

((
I–q

+ ϕ
)
(t)

)
,
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and the left-sided Caputo fractional derivative of order q takes the form

(CDq
+ϕ

)
(t) =


�( – q)

∫ t


ϕ′(s)(t – s)–q ds =

(
I–q

+
d
ds

(
ϕ(s)

)
)

(t).

If q ∈ (, ], then the following comparison formula of the Caputo and Riemann-
Liouville derivatives holds.

(CDq
+ϕ

)
(t) =

(
Dq

+ϕ
)
(t) –

t–q

�( – q)
ϕ
(
+)

, ()

where ϕ(+) = limt→+ ϕ(t).
From [], Lemmas . and ., we have the following properties.

Proposition  If q > , then Dq
+(Iq

+ϕ)(t) = ϕ(t) for any ϕ ∈ L(, t), while

(
Iq

+Dq
+ϕ

)
(t) = ϕ(t)

is satisfied for ϕ ∈ Iq
+(L(, t)) with

Iq
+

(
L(, t)

)
=

{
ϕ(t) : ϕ(t) =

(
Iq

+ψ
)
(t),ψ ∈ L(, t)

}
.

For q ∈ (, ] we have

(
Iq

+Dq
+ϕ

)
(t) = ϕ(t) –

tq–

�(q)
(
I–q

+ ϕ
)
(t)

∣
∣∣
t=

.

The following formulas are useful:

Iq
+tp =

�(p + )
�(p + q + )

tp+q and Dq
+tp =

�(p + )
�(p – q + )

tp–q,

in particular,

Iq
+ =

tq

�(q + )
, Dq

+ =
t–q

�( – q)
, CDq

+ = .

3 The inner value problem
Let us consider the fractional differential equations with the Caputo fractional derivative

(CDq
+x

)
(t) = f

(
t, x(t)

)
,  < q < , t ∈ (, T], ()

with x : (, T] →R
n, satisfying the inner condition

x(t) = x ∈ R
n, ()

where t ∈ (, T). By () equation () can be rewritten with the Riemann-Liouville frac-
tional derivative as follows:

(
Dq

+x
)
(t) = f

(
t, x(t)

)
+

t–q

�( – q)
x
(
+)

, ()

where for  < q < , t ∈ (, T].
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Let us define the function g : (, T]×R
n →R

n as g(t, x(t)) := f (t, x(t)) + t–q

�(–q) x(+). Then
we get

(
Dq

+x
)
(t) = g

(
t, x(t)

)
, t ∈ (, T]. ()

Assume that () satisfies the boundary inner condition

x(t) = x ∈ R
n,  < t < T . ()

From [] we know the form of the Volterra fractional integral for q ∈ (, )

x(t) =
(
Iq

+g
(
s, x(s)

))
(t) +

(
t

t

)–q

· (x –
(
Iq

+g
(
s, x(s)

))
(t)

)
. ()

Then

x(t) =
(
Iq

+f
(
s, x(s)

))
(t) +

(
t

t

)–q

· (x –
(
Iq

+f
(
s, x(s)

))
(t)

)

+ x
(
+)(

 –
(

t

t

)–q)
. ()

Remark  Since for x(+) =  we have f ≡ g , we look for the solutions of () in the set of
functions x(·) such that x(+) �= .

Using the fractional integral I–q
+ for both sides of () and applying formula (), we get

(
I–q

+ x
)
(t) =

(
I

+f
(
s, x(s)

))
(t)

+
(

I–q
+

(
t

s

)–q)
(t) · (x –

(
Iq

+f
(
s, x(s)

))
(t)

)

+ x
(
+)

(
I–q

+

(
 –

(
t

s

)–q))
(t). ()

Moreover, as (I–q
+ ( t

s )–q)(t) = t–q


�(q)
�(–q+q) tq+–q– = �(q)t–q

 , then from () we have that

(
I–q

+ x
)
(t) =

∫ t


f
(
s, x(s)

)
ds + �(q)t–q


(
x –

(
Iq

+f
(
s, x(s)

))
(t)

)

+ x
(
+)( t–q

�( – q)
– �(q)t–q



)
. ()

Let us put m(t, t) := (I–q
+ x)(t), then d

dt m(t, t) = g(t, x(t)), d
dt m(t, t)|t=t = (Dq

+x)(t) =
g(t, x(t)).

In formulas ()-() we have the value x(+) as an additional parameter. As we are going
to consider the initialization process and its viability in the memory domain, it is impor-
tant to consider assumptions connected with the memory function m(t, ·). We claim that
limt→+ m(t, t) = . Further, we observe that taking the limit of () with t tending to zero
one gets the following:

(
Iq

+ f
(
s, x(s)

))
(t) = x(t) – x

(
+)

. ()
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Calculating values of f (s, x(s)) for s ∈ (, t] one finds some difficulties in predicting val-
ues of the memory in the light of viability, thus we consider the modification of the problem
that leads to the main results.

Let us consider a new inner value problem

Dq
+x(t) = g̃

(
t, x(t)

)
,  < q < , t ∈ (, T], ()

satisfying the inner condition

x(t) = x ∈ R
n,  < t < T , ()

where

g̃
(
t, x(t)

)
=

{
g(t, x), t ∈ [, t),
g(t, x(t)), t ≥ t.

()

Function g̃ is still continuous if g is continuous. Let us denote by x̃(·) the solution of the in-
ner value problem ()-(), and let m̃(t, t) := (I–q

+ x̃)(t). For t ∈ (, t] we have the formula
of the solution:

x̃(t) =
tq – t · tq–

�(q + )

(
f (t, x) +

t–q


�( – q)
x
(
+))

+
(

t

t

)–q

· x

and

m̃(t, t) =
(

t –
t

q

)
·
(

f (t, x) +
t–q


�( – q)
x
(
+)

)
+ �(q)t–q

 x.

Then (Dq
+̃x)(t) = g(t, x), x̃(t) = x and

m̃(t, t) =
q – 

q
tf (t, x) + �(q)t–q

 x +
q – 

q�( – q)
t–q
 x

(
+)

. ()

Observe that limt→+ m̃(t, t) = , limq→ m̃(t, t) = x. The steps presented for the new
function g̃ are useful if we need to know the value of m := m(t, t) = (I–q

+ x)(t).

Proposition  Let f be bounded on [, T]. For any ε > , there is  < t < T such that

∥
∥m̃(t, t) – m(t, t)

∥
∥ ≤ ε, t ∈ [t, T].

Proof Let us take ε >  and ‖f (t, x(t))‖ ≤ M for t ∈ [, T]. Then for  < t ≤ t < T we have
‖g(t, x(t))‖ = ‖f (t, x(t)) + t–q

�(–q) x(+)‖ ≤ ‖f (t, x(t))‖+ t–q

�(–q)‖x(+)‖ ≤ M + t–q


�(–q)‖x(+)‖ and

∥∥m̃(t, t) – m(t, t)
∥∥ =

∥
∥∥
∥

∫ t



(
g(t, x) – g

(
s, x(s)

))
ds

– �(q)t–q


(
Iq

+g(t, x)
)
(t) + �(q)t–q


(
Iq

+g
(
s, x(s)

))
(t)

∥∥
∥∥

≤ ∥∥tg(t, x) – �(q)t–q


(
Iq

+g(t, x)
)
(t)

∥∥
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+
∥
∥∥
∥�(q)t–q


(
Iq

+g
(
s, x(s)

))
(t) –

∫ t


g
(
s, x(s)

)
ds

∥
∥∥
∥

= t
 – q

q
∥∥g(t, x)

∥∥

+
∥
∥∥∥�(q)t–q


(
Iq

+g
(
s, x(s)

))
(t) –

∫ t


g
(
s, x(s)

)
ds

∥
∥∥∥

≤ t
 – q

q

(
M +

t–q


�( – q)
∥∥x

(
+)∥∥

)

+
(

M +
t–q


�( – q)
∥∥x

(
+)∥∥

)
·
∣∣∣
∣�(q)t–q


tq


�( + q)
– t

∣∣∣
∣

= t
 – q

q

(
M +

t–q


�( – q)
∥
∥x

(
+)∥∥

)
.

Then for

t ≤ min

(
qε

( – q)M
,
[

q�( – q)ε
( – q)‖x(+)‖

] 
–q

)

we get

∥∥m̃(t, t) – m(t, t)
∥∥ ≤ ( – q)M

q
t +

( – q)‖x(+)‖
q�( – q)

t–q
 ≤ ε. �

4 Viability problem
Before going to viability terms, we set some notations. For ε > , by ε-neighborhood of a
set K ⊂R

n we mean the following:

K ε :=
{

x ∈R
n : dist(x, K) < ε

}
.

Let us define the distance between two sets A ⊂R
n and B ⊂R

n as �(A, B) := sup{dist(q, B) :
q ∈ A}. Note that �(A, B) is not the usual symmetric distance between two sets. Indeed, if
A ⊂ B then �(A, B) =  while �(B, A) �= .

By definitions of m, m̃ and Proposition  the following proposition is obvious.

Proposition  Let f be bounded on [, T]. Let us take ε >  and t ∈ (, T] such that

∥
∥m̃(t, t) – m(t, t)

∥
∥ < ε.

Then

�(
Graph

(
m(t, ·)), [t, T] × K

)
=  ⇔ �(

Graph
(
m̃(t, ·)), [t, T] × K

)
< ε,

which we can write equivalently

m(t, t) ∈ K ⇔ m̃(t, t) ∈ K ε for all t ∈ [t, T].

Similarly as for the ordinary differential equations (see []), one can define the viability
of a subset with respect to the fractional differential equation ().

Let us denote by I an open interval in R.
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Definition  Let K ⊂R
n be a nonempty locally closed set and f : I × K →R

n. The subset
K is fractionally memo-viable with respect to f if for any (t, x) ∈ I × K equation () has
at least one solution x : [t, T] →R

n satisfying m(t, t) ∈ K for t ∈ [t, T], where t > .

The idea of viability of fractional differential equations can be expressed using the con-
cept of tangent cone. There are many notions of tangency of a vector to a set (see, for
example, [], Section .). We will follow the concept of contingent vectors (see []).

Let us recall that for K ⊂ R
n and x ∈ K one can define the vector tangent to the set K

as follows.

Definition  The vector η ∈ R
n is contingent to the set K at the point x if

lim inf
h↓


h

dist(x + hη; K) = . ()

The set of all vectors that are contingent to the set K at point x is a closed cone, see
[], Proposition ... This cone, denoted by TK (x), is called contingent cone (Bouligand
cone) to the set K at x ∈ K . From [], Proposition .., we know that η ∈ TK (x) if and
only if for every ε >  there exist h ∈ (, ε) and ph ∈ B(, ε) such that x + h(η + ph) ∈ K ,
where B(, ε) denotes the closed ball in R

n centered at  and of radius ε > .

Theorem  Let K ⊂ R
n be nonempty and f : I × K → R

n. If the subset K is fraction-
ally memo-viable with respect to f , then g(t, x) ∈ TK (m), where x = x(t) and m =
m(t, t) = (I–q

+ x)(t).

Proof Let (t, m) ∈ I × K and K be fractionally viable of order q with respect to f .
Then there is T ∈ I , T > t, and a function x : [t, T] → K satisfying (I–q

+ x)(t) = m and
Dq

+x(t) = f (t, x(t)) for every t ∈ [t, T]. Moreover we have

lim
h↓


h
∥∥(

I–q
+ x

)
(t) + hg(t, x) – I–q

+ x(t + h)
∥∥

= lim
h↓

∥
∥∥
∥g(t, x) –

(I–q
+ x)(t + h) – (I–q

+ x)(t)
h

∥
∥∥
∥

=
∥∥g(t, x) – Dq

+x(t)
∥∥ = .

The above calculation shows that, for every (t, m) ∈ I × K , g(t, x) ∈ TK (m) and the
proof is complete. �

Note that it is difficult to check the condition g(t, x) ∈ TK (m) in Theorem . The
above theorem is still true for the initial inner value problem with the right-hand side of g̃
given by (). Let

f̃
(
t, x(t)

)
=

{
f (t, x), t ∈ [, t),
f (t, x(t)), t ≥ t.

()

Then the following is true.
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Corollary  Let K ⊂ K ε ⊂ R
n and f : I × K → R

n. If the subset K is fractionally memo-
viable with respect to f , then g(t, x) ∈ TKε (m̃).

From Theorem  we get the following weaker result.

Corollary  Let K ⊂ R
n be nonempty and f : I × K → R

n. If the subset K is fractionally
memo-viable with respect to f , then f (t, x) ∈ TK (m) or x(+) ∈ TK (m), where x = x(t)
and m = m(t, t) = (I–q

+ x)(t).

Example  Let us consider a one-dimensional problem with the set K = R+ ∪ {} and
f (t, x(t)) = c = const. Then g(t, x(t)) = c + t–q

�(–q) x(+) for  < t < T and

g̃
(
t, x(t)

)
=

⎧
⎨

⎩
c + t–q


�(–q) x(+) for  < t < t,

c + t–q

�(–q) x(+) for t ≤ t < T .

Moreover, for x = x(t), we have

x(t) =
c

�( + q)
tq

(
 –

t

t

)
+ x

(
t

t

)–q

+ x
(
+)

[
 –

(
t

t

)–q]

and m = m(t, t) = ct( – 
q ) + t–q

 �(q)[x + x(+)( 
�(q)�(–q) – )]. Let us take m ≥ , then

TK (m) =

⎧
⎨

⎩
R for m > ,

[, +∞) for m = .

We will show that if g(t, x) /∈ TK (m), then K is not memo-viable. Since for m >  we
have TK (m) = R, it is nothing to show then.

Let m = , then g(t, x) < , i.e., c + t–q


�(–q) x(+) < . Let us notice that the term t–q


�(–q) is
positive.

Let x(+) = , then obviously c < , and we get

x(t) = c
tq

�( + q)

(
 – q

t

t

)
<  if only t ≤ t.

Integrating the last term, on the basis of monotonicity of integral one gets

m(t, t) =
(
I–q

+ x
)
(t) = c(t – t) < .

Now let x(+) >  and since g(t, x) < , which means that c < –t–q


�(–q) x(+), thus c < .
Therefore one can show the following:

m(t, t) = ct + x
(
+)(

 – q
t

t

)
t–q
 < 

provided t > x(+)
c ( 

�(q)�(–q) – )t–q
 .
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Finally, let us assume x(+) < , and since g(t, x) < , we get c < –t–q


�(–q) x(+). Again one
can show the following:

m(t, t) = ct + x
(
+)

(
 – q

t

t

)
t–q
 < 

if only t < t < ( – 
�(q)�(–q) )�( – q)t. Since m(t, t) < , it follows that K is not memo-

viable with respect to f .

Finally, in order to prove the sufficient condition of viability, we need the following def-
inition and proposition.

Definition  ([]) Let K ⊂ R
n be nonempty and f : I × K → R

n. The subset K is frac-
tionally viable with respect to f if for any (t, x) ∈ I × K equation () has at least one
solution x : [t, T] → K satisfying x(t) = x. Such a solution we call viable with respect
to f .

Proposition  ([]) Let K ⊂R
n be a nonempty and locally closed set, and let f : I ×K →

R
n be a vector-valued continuous function. If f (t, x) ∈ TK (x) for every (t, x) ∈ I × K ,

then K is fractionally viable with respect to f .

Let us re-scale and shift the set K ε in such a way that elements of this set are again from
the domain of f , namely

K̃ ε =
tq–


�(q)
K ε +

 – q
�(q + )

tq
f (t, x) +

 – q
�(q + )�( – q)

x
(
+)

. ()

To formulate next theorem, which is a middle step in getting a certain sufficient condition
of viability, we use the notion ().

Theorem  Let K ⊂ K ε ⊂ R
n be nonempty and f : I × K → R

n. If the subset K is frac-
tionally memo-viable with respect to f , then g(t, x) ∈ TK̃ε (x), where x = x(t).

Proof Let (t, m) ∈ I × K and K be fractionally memo-viable with respect to f . Then
Corollary  gives g(t, x) ∈ TKε (m̃). The latter means that

lim inf
h↓


h

dist
(
m̃ + hg(t, x), K ε

)
= .

By formula () we can rewrite the above equation in the following way:

min
y∈Kε


h

∣∣
∣∣
q – 

q
tf (t, x) + �(q)t–q

 x +
q – 

q�( – q)
t–q
 x

(
+)

+ hg(t, x) – y
∣∣
∣∣ −→ .

Let K̃ ε be as it is given in (), i.e.,

K̃ ε =
tq–


�(q)
K ε +

 – q
�(q + )

tq
f (t, x) +

 – q
�(q + )�( – q)

x
(
+)

,
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Figure 1 Block scheme concerning the viability conditions.

then for ỹ = q–
�(q+) tq

f (t, x) + q–
�(q+)�(–q) x(+) – tq–


�(q) y and h̃ = �(q)t–q


h , we get ỹ ∈ K̃ ε and

h̃ →  when h → , thus

min
ỹ∈K̃ε


h̃

∣
∣x + h̃g(t, x) – y

∣
∣ −→ ,

while h̃ → . Therefore we get g(t, x) ∈ TK̃ε (x). �

The next corollary gives, in fact, a sufficient condition of viability for an equation involv-
ing the Caputo derivative that is, however, slightly different from the one that we formu-
lated in [].

Corollary  Let K ⊂ K ε ⊂ R
n be nonempty and f : I × R

n → R
n. Let K̃ ε = tq–


�(q) K ε +

–q
�(q+) tq

f (t, x) + –q
�(q+)�(–q) x(+). If g(t, x) ∈ TK̃ε (x), where x = x(t), then K̃ ε is viable

with respect to g .

Proof The thesis is a simple consequence of Proposition  and Theorem . �

5 Conclusions
As a conclusion we propose a block scheme (see Figure ) that shows relations among

viability conditions for sets K , K ε and K̃ ε , where K ⊂ K ε ⊂ R
n and K̃ ε = tq–


�(q) K ε +

–q
�(q+) tq

f (t, x) + –q
�(q+)�(–q) x(+) for f and g being the right-hand sides of equations ()

and (), respectively.
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