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1 Introduction
The study of the existence of periodic solutions to differential equations is one of the most
important topics in the qualitative theory, due both to its mathematical interest and its ap-
plications in many scientific fields, such as mathematical biology, control theory, physics,
etc. However, some phenomena in the real world are not periodic, but approximately pe-
riodic or asymptotically periodic. As a result, in the past several decades many authors
proposed and developed several extensions of the concept of periodicity, such as almost
periodicity, almost automorphy, pseudo almost periodicity, pseudo almost automorphy,
etc., and the same concept in the Stepanov sense (cf. [–] and references therein).

In this paper, R+ is the interval [,∞) and X is a complex Banach space. Let Cb(R+, X)
denote the space consisting of bounded and continuous functions from R

+ into X, en-
dowed with the uniform convergence norm ‖ · ‖∞. Set C(R+, X) = {f ∈ Cb(R+, X) :
limt→∞ ‖f (t)‖ = }, and Pω(R+, X) = {f ∈ Cb(R+, X) : f is ω periodic}. A function f ∈
Cb(R+, X) is said to be asymptotically ω-periodic if it can be expressed as f = g + h, where
g ∈ Pω(R+, X) and h ∈ C(R+, X). The collection of such functions will be denoted by
APω(R+, X). Let f = g + h ∈ APω(R+, X). Since g ∈ Pω(R+, X), one gets

lim
t→∞

(
f (t + ω) – f (t)

)
= lim

t→∞
(
h(t + ω) – h(t)

)
= . (.)

The converse is not true. The authors in [] provided two examples to show that there
exist bounded continuous functions which satisfy (.), but are not asymptotically ω-
periodic. At the same time, (.) leads the authors in [] to propose the notion: a func-
tion f ∈ Cb(R+, X) is said to be S-asymptotically ω-periodic if there exists ω >  such
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that limt→∞(f (t + ω) – f (t)) = . Obviously, S-asymptotic ω-periodicity is more general
than asymptotic ω-periodicity. The authors in [] discussed qualitative properties of such
functions on Banach spaces and gave some conditions under which an S-asymptotically
ω-periodic function is asymptotically ω-periodic. Nowadays, both asymptotically and S-
asymptotically ω-periodic functions have been applied to qualitative analysis for various
kinds of problems. In [], the authors studied the existence of S-asymptotically and asymp-
totically ω-periodic solutions for some class of abstract neutral functional differential
equations with infinite delay. In [], the authors studied the existence and uniqueness of
S-asymptotically and asymptotically ω-periodic solutions to an abstract differential equa-
tion with linear part dominated by a Hille-Yosida operator with nondense domain. Pierri
[] discussed the existence of S-asymptotically and asymptotically ω-periodic solutions
to an abstract integral equation. In the recent paper [], the authors studied the exis-
tence of asymptotically ω-periodic solutions to a class of semilinear nonautonomous evo-
lution equations involving nonlocal initial conditions. For further literature concerning
this topic we refer the reader to [, –]. The concept of S-asymptotic ω-periodicity in
the Stepanov sense was introduced in [], Definition .. For its applications, we refer the
reader to [, ].

With respect to asymptotic periodicity, it is natural to ask: if there exists a necessary and
sufficient condition for asymptotically ω-periodic functions due to both its mathematical
interest and its applications. Furthermore, if we consider asymptotically ω-periodic func-
tions in the Stepanov sense, it is also natural to ask: if there exists a necessary and sufficient
condition for asymptotically ω-periodic functions in the Stepanov sense. We remark that it
is a natural idea to propose the concept of asymptotic ω-periodicity in the Stepanov sense
which extend the one of asymptotic ω-periodicity to include locally integrable functions.
Since the condition of continuity is not required, the concept of asymptotic ω-periodicity
in the Stepanov sense can describe the real world more realistically. However, as far as we
know, there is only a little work which used the concept of asymptotic ω-periodicity in the
Stepanov sense (cf. []).

We will characterize asymptotic ω-periodicity and asymptotic ω-periodicity in the
Stepanov sense, respectively, in Sections  and . Finally in Section  we will apply the
criteria to investigate the existence and uniqueness of asymptotically ω-periodic mild so-
lutions to semilinear fractional integro-differential equations with Stepanov asymptoti-
cally ω-periodic coefficients.

2 Criteria of asymptotically ω-periodic functions
Theorem . Let f ∈ Cb(R+, X) and ω > . Then the following statements are equivalent:

() f ∈ APω(R+, X);
() g(t) = limn→∞ f (t + nω) uniform on R

+;
() g(t) = limn→∞ f (t + nω) uniformly on compact subsets of R+;
() g(t) = limn→∞ f (t + nω) is well defined for each t ∈R

+ and g(t) = limn→∞ f (t + nω)
uniformly on [,ω].

Proof Clearly () implies () and () implies ().
Suppose next that () holds and let f = f + f, where f ∈ Pω(R+, X) and f ∈ C(R+, X).

Now for n ∈N, the periodicity of the function f gives

f (t + nω) = f(t + nω) + f(t + nω) = f(t) + f(t + nω). (.)
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Let ε > . Since f ∈ C(R+, X), there exists a positive integer N such that ‖f(t + nω)‖ < ε

when n ≥ N for every t ∈ R
+. Then, using (.), we conclude that ‖f (t + nω) – f(t)‖ < ε

when n ≥ N for every t ∈R
+, which shows that f(t) = limn→∞ f (t + nω) uniformly on R

+.
Hence () implies ().

Finally, suppose that () holds. It is clear g is bounded on R
+ and g(t + ω) = g(t) for each

t ∈R
+ because g(t + ω) = limn→∞ f (t + ω + (n – )ω) = limn→∞ f (t + nω) = g(t).

Thus, to show the continuity of the function g on R
+ we only need to prove that g is

continuous on [,ω].
Now, take any fixed t ∈ [,ω] and let t ∈ [,ω]. For each n ∈N, we have

∥∥g(t) – g(t)
∥∥ ≤ ∥∥g(t) – f (t + nω)

∥∥ +
∥∥f (t + nω) – f (t + nω)

∥∥

+
∥
∥f (t + nω) – g(t)

∥
∥. (.)

Let ε > . Then, by assumption in (), we conclude that there exists a positive integer N

such that

∥∥g(t) – f (t + nω)
∥∥ <

ε


(.)

for t ∈ [,ω] and n ≥ N.
On the other hand, since f (t + Nω) ∈ Cb(R+, X), then there exists δ >  such that

∥∥f (t + Nω) – f (t + Nω)
∥∥ <

ε


(.)

for |t – t| < δ.
Using (.), (.), and (.), we conclude that ‖g(t) – g(t)‖ < ε when |t – t| < δ, which

shows that g is continuous at t. Moreover, g is continuous on [,ω]. Hence g ∈ Pω(R+, X).
Next, we will show that f – g ∈ C(R+, X). Suppose that ε >  and there exists a posi-

tive integer N such that ‖f (t + nω) – g(t)‖ < ε when n ≥ N uniformly for t ∈ [,ω] by
assumption in () again.

Thus, for n = N +k, k = , , , . . . , we conclude that ‖f (t +(N +k)ω)–g(t)‖ < ε uniformly
for t ∈ [,ω]. Moreover, if we denote t′ = t + kω, where t′ ∈ [kω, (k + )ω] and k = , , , . . . ,
then we obtain

∥∥f
(
t′ + Nω

)
– g

(
t′ + Nω

)∥∥ =
∥∥f

(
t + (N + k)ω

)
– g

(
t + (N + k)ω

)∥∥

=
∥
∥f

(
t + (N + k)ω

)
– g(t)

∥
∥

< ε

for t′ ∈ [kω, (k + )ω], k = , , , . . . . That is ‖f (t) – g(t)‖ < ε (t ≥ Nω), which shows that
f – g ∈ C(R+, X). Hence f ∈ APω(R+, X). This shows that () implies (). �

3 Criteria of Stepanov asymptotically ω-periodic functions
Let p ∈ [,∞) and q denote the conjugate exponent of p.

The Bochner transform f b(t, s), t ∈ R
+, s ∈ [, ] of a function f (t) on R

+ with values in
X is defined by f b(t, s) = f (t + s).
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Let f : R+ → X be a measurable function. We say that f is a Stepanov bounded function,
with the exponent p, if supt∈R+

∫ t+
t ‖f (s)‖p ds < ∞. The collection of such functions will

be denoted by BSp(R+, X).
The space BSp(R+, X) endowed with the norm

‖f ‖Sp =
∥
∥f b∥∥

L∞(R+,Lp(,;X)) = sup
t∈R+

(∫ t+

t

∥
∥f (s)

∥
∥p ds

) 
p

is a Banach space.
Define the subspaces of BSp(R+, X) by

SpPω

(
R

+, X
)

=
{

f ∈ BSp(
R

+, X
)

:
∫ t+

t

∥
∥f (s + ω) – f (s)

∥
∥p ds = , t ∈ R

+
}

and

BSp

(
R

+, X
)

=
{

f ∈ BSp(
R

+, X
)

: lim
t→∞

∫ t+

t

∥
∥f (s)

∥
∥p ds = 

}
.

Now we give the definition of asymptotically ω-periodic functions in the Stepanov sense.

Definition . A function f ∈ BSp(R+, X) is called asymptotically ω-periodic in the
Stepanov sense if it can be expressed as f = g + h, where g ∈ SpPω(R+, X) and h ∈
BSp

(R+, X). The collection of such functions will be denoted by SpAPω(R+, X).

There exists a function a ∈ SpAPω(R+, X), but not in APω(R+, X). For concision, we only
consider the case ω = π . Similarly one can exhibit examples for the general case ω > .

Example . Define the function b : R+ →R by

b(t) =

⎧
⎨

⎩
sin t, t ∈ [kπ , kπ + π

 ], k = , , . . . ;

, otherwise,

and define the function c : R+ → R by e–t . Let the function a : R+ → R defined by a(t) =
b(t) + c(t) for each t ∈R

+.

We have a ∈ SpAPπ (R+,R) because b ∈ SpPπ (R+,R) and c ∈ BSp
(R+,R). However, it is

not in APπ (R+,R) because it is not continuous.
Next we give the criteria of asymptotically ω-periodic functions in the Stepanov sense.

Theorem . Let f ∈ Lp
loc(R+, X) and ω > . Then the following statements are equivalent:

() f ∈ SpAPω(R+, X);
() There exists a function g ∈ SpPω(R+, X) such that

∫ t+
t ‖f (s + nω) – g(s)‖p ds →  as

n → ∞ uniformly for t ∈R
+;

() There exists a function g ∈ Lp
loc(R+, X) such that

∫ t+
t ‖f (s + nω) – g(s)‖p ds →  as

n → ∞ pointwise on R
+.
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Proof Clearly () implies (). Suppose next that () holds. Suppose that f ∈ SpAPω(R+, X)
and let f = g + h, where g ∈ SpPω(R+, X) and h ∈ BSp

(R+, X). Then we have

(∫ t+

t

∥∥f (s + nω) – g(s)
∥∥p ds

) 
p

≤
(∫ t+

t

∥
∥f (s + nω) – g(s + nω)

∥
∥p ds

) 
p

+
(∫ t+

t

∥
∥g(s + nω) – g(s)

∥
∥p ds

) 
p

≤
(∫ t+

t

∥∥f (s + nω) – g(s + nω)
∥∥p ds

) 
p

+
n∑

k=

(∫ t+

t

∥
∥g(s + kω) – g

(
s + (k – )ω

)∥∥p ds
) 

p

=
(∫ t+

t

∥∥h(s + nω)
∥∥p ds

) 
p

+
n∑

k=

(∫ t+(k–)ω+

t+(k–)ω

∥∥g(s + ω) – g(s)
∥∥p ds

) 
p

=
(∫ t+nω+

t+nω

∥∥h(s)
∥∥p ds

) 
p

.

Let ε > . Since h ∈ BSp
(R+, X), we conclude that there exists N ∈ N such that

(∫ t+nω+

t+nω

∥
∥h(s)

∥
∥p ds

) 
p

< ε

when n ≥ N for all t ∈R
+. Therefore,

lim
n→∞

(∫ t+

t

∥
∥f (s + nω) – g(s)

∥
∥p ds

) 
p

= 

uniformly for t ∈ R
+. Hence () implies ().

Now, suppose () holds. Then there exists g ∈ Lp
loc(R+, X) such that

∫ t+

t

∥
∥f (s + nω) – g(s)

∥
∥p ds →  (.)

as n → ∞ pointwise on R
+.

Let ε > . For fixed t ∈ R
+, one has

(∫ t+

t

∥∥g(s + ω) – g(s)
∥∥p ds

) 
p

≤
(∫ t+

t

∥
∥f (s + nω) – g(s)

∥
∥p ds

) 
p

+
(∫ t+

t

∥
∥f

(
(s + ω) + (n – )ω

)
– g(s + ω)

∥
∥p ds

) 
p

=
(∫ t+

t

∥∥f (s + nω) – g(s)
∥∥p ds

) 
p

+
(∫ t+ω+

t+ω

∥∥f
(
s + (n – )ω

)
– g(s)

∥∥p ds
) 

p
.

By (.) there exists N ∈N such that

(∫ t+

t

∥
∥f (s + nω) – g(s)

∥
∥p ds

) 
p

<
ε


(.)
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and

(∫ t+ω+

t+ω

∥
∥f

(
s + (n – )ω

)
– g(s)

∥
∥p ds

) 
p

<
ε


(.)

when n ≥ N. Equations (.) and (.) imply

(∫ t+

t

∥∥g(s + ω) – g(s)
∥∥p ds

) 
p

< ε,

which shows

(∫ t+

t

∥∥g(s + ω) – g(s)
∥∥p ds

) 
p

=  (.)

for every t ∈R
+. It follows from (.) that

(∫ t+mω+

t+mω

∥
∥g(s)

∥
∥p ds

) 
p

=
(∫ t+

t

∥
∥g(s)

∥
∥p ds

) 
p

(.)

for any m ∈N. For,

(∫ t+ω+

t+ω

∥∥g(s)
∥∥p ds

) 
p

=
(∫ t+

t

∥∥g(s + ω)
∥∥p ds

) 
p

≤
(∫ t+

t

∥∥g(s)
∥∥p ds

) 
p

+
(∫ t+

t

∥∥g(s + ω) – g(s)
∥∥p ds

) 
p

=
(∫ t+

t

∥∥g(s)
∥∥p ds

) 
p

.

In the same way, we have

(∫ t+

t

∥∥g(s)
∥∥p ds

) 
p

≤
(∫ t+ω+

t+ω

∥∥g(s)
∥∥p ds

) 
p

.

So

(∫ t+ω+

t+ω

∥
∥g(s)

∥
∥p ds

) 
p

=
(∫ t+

t

∥
∥g(s)

∥
∥p ds

) 
p

and (.) holds.
In the following of the proof, n ∈N is a fixed number such that n ≥ ω. For every t ∈R

+,
we can write t = N(t)ω + s, where N(t) ∈N and s ∈ (,ω). By (.), we have

∫ t+

t

∥∥g(s)
∥∥p ds =

∫ N(t)ω+s+

N(t)ω+s

∥∥g(s)
∥∥p ds

=
∫ s+

s

∥
∥g(s)

∥
∥p ds

≤
∫ n+



∥
∥g(s)

∥
∥p ds.
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Since g ∈ Lp
loc(R+, X), there exists M >  such that

∫ n+
 ‖g(s)‖p ds ≤ M. Then we obtain

sup
t∈R+

∫ t+

t

∥
∥g(s)

∥
∥p ds ≤ M,

which shows g ∈ BSp(R+, X). Combining with (.), we know that g ∈ SpPω(R+, X).
Let h(s) = f (s) – g(s), s ∈R

+. For fixed t ∈R
+ and any ε > , by (.) there exists N(t) ∈N

such that

(∫ t+

t

∥
∥f (s + nω) – g(s)

∥
∥p ds

) 
p

< ε (.)

when n ≥ N(t). Then we have

(∫ t++nω

t+nω

∥∥h(s)
∥∥p ds

) 
p

=
(∫ t+

t

∥∥h(s + nω)
∥∥p ds

) 
p

=
(∫ t+

t

∥∥f (s + nω) – g(s + nω)
∥∥p ds

) 
p

≤
(∫ t+

t

∥∥f (s + nω) – g(s)
∥∥p ds

) 
p

+
(∫ t+

t

∥∥g(s + nω) – g(s)
∥∥p ds

) 
p

.

Note that

(∫ t+

t

∥
∥g(s + nω) – g(s)

∥
∥p ds

) 
p

= .

From (.) we have

(∫ t++nω

t+nω

∥∥h(s)
∥∥p ds

) 
p

< ε (.)

when n ≥ N(t).
Next, we will prove that there exists N ∈N such that for any τ ∈ (,ω)

(∫ τ++nω

τ+nω

∥∥h(s)
∥∥p ds

) 
p

< ε (.)

when n ≥ N.
For τ ∈ (,ω), we have

∫ τ++nω

τ+nω

∥∥h(s)
∥∥p ds ≤

n∑

k=

∫ k++nω

k+nω

∥∥h(s)
∥∥p ds. (.)

Let N = max{N(), N(), . . . , N(n)}. Replace ε in (.) by ε/(n + )

p , then

(∫ k++nω

k+nω

∥
∥h(s)

∥
∥p ds

) 
p

<
ε

(n + )

p

(.)
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when n ≥ N(k) for k = , , , . . . , n. Equations (.) and (.) imply (.). For every t ∈
R

+, again t = N(t)ω + τ , where N(t) ∈N and τ ∈ (,ω). Thus

(∫ t++nω

t+nω

∥∥h(s)
∥∥p ds

) 
p

=
(∫ N(t)ω+τ++nω

N(t)ω+τ+nω

∥∥h(s)
∥∥p ds

) 
p

=
(∫ τ++(N(t)+n)ω

τ+(N(t)+n)ω

∥∥h(s)
∥∥p ds

) 
p

.

Combining with (.), one gets

(∫ t++nω

t+nω

∥∥h(s)
∥∥p ds

) 
p

< ε

when n ≥ N for all t ∈ R
+. That is (

∫ t+
t ‖h(s)‖p ds)


p < ε (t ≥ Nω), which shows h ∈

BSp
(R+, X). Therefore f = g + h, where g ∈ SpPω(R+, X) and h ∈ BSp

(R+, X), that is, f ∈
SpAPω(R+, X). This shows that () implies (). �

4 Asymptotically ω-periodic solutions of semilinear fractional
integro-differential equations

In this section, we will investigate the following semilinear fractional integro-differential
equations:

⎧
⎨

⎩
v′(t) =

∫ t


(t–s)α–

�(α–) Av(s) ds + f (t, v(t)), t ∈R
+,

v() = v ∈ X,
(.)

where  < α < , A : D(A) ⊂ X → X is a linear densely defined operator of sectorial type on
a complex Banach space X and f : R+ ×X → X is an appropriate function. In particular, the
convolution integral in (.) is known as the Riemann-Liouville integral. For more details
we refer the reader to [].

Recently, fractional differential equations have attracted much attention (see [–,
–] and references therein) due to their applications in various fields of science and
engineering. In particular, the authors in [] studied the existence and uniqueness of S-
asymptotically ω-periodic mild solution of the problem (.) when the nonlinear term f is
S-asymptotically ω-periodic. Moreover, if the continuous nonlinear term f satisfies some
stronger conditions (see [], Theorem .), the authors proved that the problem (.) has
a unique asymptotically ω-periodic mild solution. Later, the author in [] studied the ex-
istence and uniqueness of S-asymptotically ω-periodic mild solution of the problem (.)
when the nonlinear perturbation is S-asymptotically ω-periodic in the Stepanov sense.

However, to the best of our knowledge, there is no work reported in literature on condi-
tions under which the problem (.) has a unique asymptotically ω-periodic mild solution
when the nonlinear perturbation is S-asymptotically or asymptotically ω-periodic in the
Stepanov sense. Now we will apply the results obtained in Sections  and  to show that the
problem (.) has a unique asymptotically ω-periodic mild solution as long as the nonlin-
ear perturbation is asymptotically ω-periodic functions in the Stepanov sense and satisfies
a Lipschitz condition.

First let us recall some definitions about sectorial linear operators.

Definition . [] A closed and dense defined linear operator A is called sectorial of
type μ if there exist  < θ < π

 , M > , and μ ∈ R such that its resolvent exists outside the
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sector

μ + Sθ =
{
μ + λ : λ ∈C,

∣∣arg(–λ)
∣∣ < θ

}

and ‖(λI – A)–‖ ≤ M
|λ–μ| , λ /∈ μ + Sθ .

Definition . [] Let A be a closed and linear operator with domain D(A) defined on a
Banach space X. We call A the generator of a solution operator if there exist μ ∈ R and a
strong continuous function Sα : R+ → L(X) such that {λα : Reλ > μ} ⊂ ρ(A) and

λα–(λα – A
)–x =

∫ ∞


e–λtSα(t)x dt, Reλ > μ, x ∈ X.

In this case, Sα(t) is called the solution operator generated by A. In particular, Sα() = I
[], Proposition .. We remark that the power function λα is uniquely defined as λα =
|λ|αeiα arg(λ), with –π < arg(λ) < π .

If A is sectorial of type μ with  < θ < π ( – α
 ), then A is the generator of a solution

operator given by

Sα(t) :=


π i

∫

γ

eλtλα–(λα – A
)– dλ,

where γ is a suitable path lying outside the sector μ+Sθ (cf. [, ]). Cuesta in [] proved
that A is sectorial operator of type μ <  for some  < θ < π ( – α

 ) ( < α < ), M > , then
there exists a constant C >  such that

∥
∥Sα(t)

∥
∥ ≤ CM

 + |μ|tα
, t ∈R

+. (.)

Note that
∫ ∞




 + |μ|tα

dt =
|μ|– 

α π

α sin( π
α

)
(.)

for  < α <  and therefore Sα(t) is integrable on (,∞).
Next we give some necessary basic definitions of fractional calculus.

Definition . [] The fractional order integral of order α >  with the low limit t > 
for a function f is defined as

Iαf (t) =


�(α)

∫ t

t

(t – s)α–f (s) ds,

where t > t, α > , provided the right-hand side is pointwise defined on [t,∞), where �

is the gamma function.

Definition . [] Riemann-Liouville derivative of order α >  with the low limit t > 
for a function f : [t,∞) →R can be written as

Dα
t f (t) =


�(n – α)

dn

dtn

∫ t

t

(t – s)n–α–f (s) ds,

where t > t and n –  < α < n.
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For more details we refer the reader to [, , ]. We remark that a fractional cal-
culus approach to the description of stress and strain localization in fractal media was
introduced in []. If A generates a solution operator, the variation of parameters formula
allows us to write the solution of the problem (.) as v(t) = Sα(t)v +

∫ t
 Sα(t – s)f (s, v(s)) ds,

t ∈R
+. This motivates the authors in [] to propose the following definition.

Definition . ([], Definition .) Suppose A generates an integrable solution operator
Sα(t). A function v ∈ Cb(R+, X) is said to be a mild solution of the problem (.) if

v(t) = Sα(t)v +
∫ t


Sα(t – s)f

(
s, v(s)

)
ds, t ∈R

+.

We need the following lemma.

Lemma . Suppose f ∈ SpAPω(R+, X), f = g + h where g ∈ SpPω(R+, X) and h ∈ BSp
(R+,

X). Let ω = n + θ , where n ∈N and θ ∈ (, ). Then the following statements are true.
()

∫ t+ω

t ‖f (s)‖ds ≤ (n + )‖f ‖Sp for each t ∈R
+;

()
∫ t+ω

t ‖g(s + mω) – g(s)‖ds =  for each t ∈R
+ and any m ∈ N;

() limn→∞
∫ t+ω

t ‖h(s + n)‖ds =  uniformly for t ∈R
+.

Proof First we can estimate

∫ t+ω

t

∥
∥f (s)

∥
∥ds ≤

∫ t+n+

t

∥
∥f (s)

∥
∥ds

=
n∑

k=

∫ t+k+

t+k

∥
∥f (s)

∥
∥ds

≤
n∑

k=

(∫ t+k+

t+k

∥∥f (s)
∥∥p ds

) 
p

≤ (n + )‖f ‖Sp .

This shows (). Similarly we have

∫ t+ω

t

∥
∥g(s + ω) – g(s)

∥
∥ds ≤

n∑

k=

(∫ t+k+

t+k

∥
∥g(s + ω) – g(s)

∥
∥p

) 
p

,

which shows (). We also get

∫ t+ω

t

∥∥h(s + n)
∥∥ds =

∫ t+n+ω

t+n

∥∥h(s)
∥∥ds ≤

n∑

k=

(∫ t+n+k+

t+n+k

∥∥h(s)
∥∥p

) 
p

,

which implies (). �

The next result is the key to proving our main theorems.

Lemma . Let {S(t)}t≥ ⊂ B(X) be a strongly continuous family of bounded and lin-
ear operators such that ‖S(t)‖ ≤ φ(t), t ∈ R

+, where φ ∈ L(R+) is nonincreasing. Let
f ∈ SpAPω(R+, X), then u(t) =

∫ t
 S(t – s)f (s) ds ∈ APω(R+, X).
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Proof First we have u ∈ Cb(R+, X) [], Lemma .. Note that

u(t + nω) =
∫ t+nω


S(t + nω – s)f (s) ds

=
∫ t

–nω

S(t – s)f (s + nω) ds

=
∫ 

–nω

S(t – s)f (s + nω) ds +
∫ t


S(t – s)f (s + nω) ds

=
∫ nω


S(t + s)f (nω – s) ds +

∫ t


S(t – s)f (s + nω) ds

= I(t, n) + I(t, n).

We consider the terms Ii(t, n) (i = , ) separately. First we will prove that I(t, n) is a Cauchy
sequence in X for each t ∈R

+.
For any p ∈N, n ∈N, one has

I(t, n + p) – I(t, n) =
∫ (n+p)ω


S(t + s)f

(
(n + p)ω – s

)
ds –

∫ nω


S(t + s)f (nω – s) ds

=
∫ (n+p)ω

nω

S(t + s)f
(
(n + p)ω – s

)
ds

+
∫ nω


S(t + s)

[
f
(
(n + p)ω – s

)
– f (nω – s)

]
ds

= I(t, n, p) + I(t, n, p).

We see that

∥
∥I(t, n, p)

∥
∥ ≤

∫ pω



∥
∥S(t + s + nω)

∥
∥
∥
∥f (pω – s)

∥
∥ds

≤
∫ pω


φ(t + s + nω)

∥∥f (pω – s)
∥∥ds

=
p–∑

k=

∫ (k+)ω

kω

φ(t + s + nω)
∥∥f (pω – s)

∥∥ds

≤
p–∑

k=

φ(t + kω + nω)
∫ (k+)ω

kω

∥
∥f (pω – s)

∥
∥ds.

Then by Lemma .(), one has

∥
∥I(t, n, p)

∥
∥ ≤ (n + )‖f ‖Sp

p–∑

k=

φ(t + kω + nω)

≤ (n + )‖f ‖Sp

ω

(∫ t+nω

t+(n–)ω
φ(s) ds + · · · +

∫ t+(p–)ω+nω

t+(p–)ω+nω

φ(s) ds
)

≤ (n + )‖f ‖Sp

ω

∫ ∞

t+(n–)ω
φ(s) ds.
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Let ε > . Since φ ∈ L(R+), there exists N ∈N such that
∫ ∞

(N–)ω φ(s) ds < ωε
(n+)‖f ‖Sp . Then

one gets ‖I(t, n, p)‖ < ε when n ≥ N uniformly for t ∈R
+.

For n ≥ N, we see that

I(t, n, p) =
∫ Nω


S(t + s)

[
f
(
(n + p)ω – s

)
– f (nω – s)

]
ds

+
∫ nω

Nω
S(t + s)

[
f
(
(n + p)ω – s

)
– f (nω – s)

]
ds

= I(t, n, p) + I(t, n, p).

Now we estimate the term I(t, n, p):

∥
∥I(t, n, p)

∥
∥ ≤

∫ Nω



∥
∥S(t + s)

∥
∥
∥
∥f

(
(n + p)ω – s

)
– f (nω – s)

∥
∥ds

≤
∫ Nω


φ(t + s)

∥∥f
(
(n + p)ω – s

)
– f (nω – s)

∥∥ds

≤ φ()
N–∑

k=

∫ (k+)ω

kω

∥
∥f

(
(n + p)ω – s

)
– f (nω – s)

∥
∥ds.

Since f ∈ SpAPω(R+, X), it can be expressed as f = g + h, where g ∈ SpPω(R+, X) and h ∈
BSp

(R+, X). Then one has

∥∥I(t, n, p)
∥∥ ≤ φ()

N–∑

k=

[∫ (k+)ω

kω

∥∥g
(
(n + p)ω – s

)
– g(nω – s)

∥∥ds

+
∫ (k+)ω

kω

∥
∥h

(
(n + p)ω – s

)∥∥ds +
∫ (k+)ω

kω

∥
∥h(nω – s)

∥
∥ds

]

= φ()
N–∑

k=

[∫ nω–kω

nω–(k+)ω

∥
∥g(s + pω) – g(s)

∥
∥ds

+
∫ ω



∥∥h
(
s +

(
(n + p) – (k + )ω

))∥∥ds +
∫ ω



∥∥h
(
s +

(
n – (k + )ω

))∥∥ds
]

.

By Lemma .(), we get

∥∥I(t, n, p)
∥∥ ≤ φ()

N–∑

k=

[∫ ω



∥∥h
(
s +

(
n – (k + )ω

))∥∥ds

+
∫ ω



∥
∥h

(
s +

(
(n + p) – (k + )ω

))∥∥ds
]

.

By Lemma .(), we can choose N ∈ N such that N ≥ N and

φ()
N–∑

k=

[∫ ω



∥∥h
(
s +

(
n – (k + )ω

))∥∥ds +
∫ ω



∥∥h
(
s +

(
(n + p) – (k + )ω

))∥∥ds
]

< ε

when n ≥ N. That is ‖I(t, n, p)‖ < ε (n ≥ N) uniformly for t ∈R
+.
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Next we estimate the term I(t, n, p):

∥∥I(t, n, p)
∥∥ ≤

∫ nω

Nω

∥∥S(t + s)
∥∥∥∥f

(
(n + p)ω – s

)
– f (nω – s)

∥∥ds

≤
∫ nω

Nω
φ(t + s)

∥
∥f

(
(n + p)ω – s

)
– f (nω – s)

∥
∥ds

=
n–∑

k=N

∫ (k+)ω

kω

φ(t + s)
∥
∥f

(
(n + p)ω – s

)
– f (nω – s)

∥
∥ds

≤
n–∑

k=N

φ(t + kω)
∫ (k+)ω

kω

∥
∥f

(
(n + p)ω – s

)
– f (nω – s)

∥
∥ds

≤
n–∑

k=N

φ(t + kω)
[∫ (k+)ω

kω

∥∥f
(
(n + p)ω – s

)∥∥ds +
∫ (k+)ω

kω

∥∥f (nω – s)
∥∥ds

]
.

By Lemma .(), we obtain

∥∥I(t, n, p)
∥∥ ≤ (n + )‖f ‖Sp

n–∑

k=N

φ(t + kω)

≤ (n + )‖f ‖Sp

ω

(∫ t+Nω

t+(N–)ω
φ(s) ds + · · · +

∫ t+(n–)ω

t+(n–)ω
φ(s) ds

)

≤ (n + )‖f ‖Sp

ω

∫ ∞

t+(N–)ω
φ(s) ds

< ε

uniformly for t ∈ R
+.

Thus, ‖I(t, n + p) – I(t, n)‖ ≤ ‖I(t, n, p)‖ + ‖I(t, n, p)‖ + ‖I(t, n, p)‖ < ε when n ≥ N.
This shows that I(t, n) is a Cauchy sequence and we denote limn→∞ I(t, n) by F(t) for
each t ∈ R

+. Besides, from the proof we also know that limn→∞ I(t, n) = F(t) uniformly
for t ∈R

+.
Finally, we consider the term I(t, n). Since f ∈ SpAPω(R+, X), f = g + h, where g ∈

SpPω(R+, X) and h ∈ BSp
(R+, X), by Theorem .(), we have

lim
n→∞

(∫ t+

t

∥∥f (s + nω) – g(s)
∥∥p ds

) 
p

=  (.)

uniformly for t ∈ R
+. We also have I(t, n),

∫ t
 S(t – s)g(s) ds ∈ Cb(R+, X), which is like the

case of u.
For m ≤ t < m + , m ∈N, one has

∥∥
∥∥I(t, n) –

∫ t


S(t – s)g(s) ds

∥∥
∥∥

≤
∫ t



∥∥S(t – s)
∥∥∥∥f (s + nω) – g(s)

∥∥ds

≤
∫ t


φ(t – s)

∥
∥f (s + nω) – g(s)

∥
∥ds
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=
∫ m


φ(t – s)

∥∥f (s + nω) – g(s)
∥∥ds +

∫ t

m
φ(t – s)

∥∥f (s + nω) – g(s)
∥∥ds

≤
m–∑

k=

∫ k+

k
φ(t – s)

∥
∥f (s + nω) – g(s)

∥
∥ds + φ()

∫ t

m

∥
∥f (s + nω) – g(s)

∥
∥ds

≤
m–∑

k=

φ
(
t – (k + )

)∫ k+

k

∥∥f (s + nω) – g(s)
∥∥ds + φ()

∫ m+

m

∥∥f (s + nω) – g(s)
∥∥ds.

By the Hölder inequality, we obtain

∥
∥∥
∥I(t, n) –

∫ t


S(t – s)g(s) ds

∥
∥∥
∥

≤
m–∑

k=

φ
(
t – (k + )

)(∫ k+

k

∥
∥f (s + nω) – g(s)

∥
∥p ds

) 
p

+ φ()
(∫ m+

m

∥∥f (s + nω) – g(s)
∥∥p ds

) 
p

≤ (
φ(t – ) + · · · + φ(t – m) + φ()

)
sup
t∈R+

(∫ t+

t

∥∥f (s + nω) – g(s)
∥∥p ds

) 
p

≤
(∫ t–

t–
φ(s) ds + · · · +

∫ t–(m–)

t–m
φ(s) ds + φ()

)

× sup
t∈R+

(∫ t+

t

∥∥f (s + nω) – g(s)
∥∥p ds

) 
p

≤ (‖φ‖L + φ()
)

sup
t∈R+

(∫ t+

t

∥∥f (s + nω) – g(s)
∥∥p ds

) 
p

.

Then from (.), it follows that

lim
n→∞ I(t, n) =

∫ t


S(t – s)g(s) ds

uniformly for t ∈ R
+.

Therefore,

lim
n→∞ u(t + nω) = lim

n→∞ I(t, n) + lim
n→∞ I(t, n) = F(t) +

∫ t


S(t – s)g(s) ds

uniformly for t ∈ R
+. By Theorem ., we have u ∈ APω(R+, X). �

To establish our results we introduce the following definition.

Definition . A function f : R+ × X → X with f (t, x) ∈ Lp
loc(R+, X) for each x ∈ X is said

to be asymptotically ω-periodic in the Stepanov sense uniformly on bounded sets of X if
there exists a function g : R+ × X → X with g(t, x) ∈ SpPω(R+, X) for each x ∈ X such that
for every bounded set K ⊂ X we have

(∫ t+

t

∥
∥f (s + nω, x) – g(s, x)

∥
∥p ds

) 
p

→ 
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as n → ∞ pointwise on R
+ uniformly for x ∈ K . The collection of such functions will be

denoted by SpAPω(R+ × X, X).

Next we present the following lemma.

Lemma . Assume that f ∈ SpAPω(R+ × X, X) and assume further that f satisfies a Lip-
schitz condition in X uniformly in t ∈R

+:

∥∥f (t, x) – f (t, y)
∥∥ ≤ L‖x – y‖

for all x, y ∈ X and t ∈ R
+, where L is a positive constant. Let u ∈ APω(R+, X). Then the

function F : R+ → X defined by F(t) = f (t, u(t)) is asymptotically ω-periodic in the Stepanov
sense.

Proof Since u ∈ APω(R+, X), we can write u = v + l, where v ∈ Pω(R+, X) and l ∈ C(R+, X).
Moreover, u ∈ SpAPω(R+, X), v ∈ SpPω(R+, X), and l ∈ BSp

(R+, X). By Theorem . we ob-
tain

(∫ t+

t

∥∥u(s + nω) – v(s)
∥∥p ds

) 
p

→  (.)

as n → ∞ pointwise on R
+.

Denote K = {v(t) : t ∈R+}; K is a bounded set.
Since f is asymptotically ω-periodic in the Stepanov sense uniformly on bounded sets

of X, there exists a function g : R+ × X → X with g(t, x) ∈ Sp(R+, X) for each x ∈ X such
that

(∫ t+

t

∥∥f (s + nω, x) – g(s, x)
∥∥p ds

) 
p

→  (.)

as n → ∞ pointwise on R
+ uniformly for x ∈ K .

By the Minkowski inequality, we have

(∫ t+

t

∥∥f
(
s + nω, u(s + nω)

)
– g

(
s, v(s)

)∥∥p ds
) 

p

≤
(∫ t+

t

∥
∥f

(
s + nω, u(s + nω)

)
– f

(
s + nω, v(s)

)∥∥p ds
) 

p

+
(∫ t+

t

∥∥f
(
s + nω, v(s)

)
– g

(
s, v(s)

)∥∥p ds
) 

p

≤ L
(∫ t+

t

∥
∥u(s + nω) – v(s)

∥
∥p ds

) 
p

+
(∫ t+

t

∥
∥f

(
s + nω, v(s)

)
– g

(
s, v(s)

)∥∥p ds
) 

p
.

By (.) and (.), we get

(∫ t+

t

∥∥f
(
s + nω, u(s + nω)

)
– g

(
s, v(s)

)∥∥p ds
) 

p
→ 

as n → ∞ pointwise on R
+. By Theorem ., one has F ∈ SpAPω(R+, X). �
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Now we can establish the main results of this paper.

Theorem . Assume that A is sectorial of type μ <  with  < θ < π ( – α
 ). Let f be

asymptotically ω-periodic in the Stepanov sense uniformly on bounded sets of X and assume
that f satisfies a Lipschitz condition in X uniformly in t ∈ R

+:

∥
∥f (t, x) – f (t, y)

∥
∥ ≤ L‖x – y‖

for all x, y ∈ X and t ∈ R
+, where L is a positive constant. If CM|μ|– 

α πL < α sin( π
α

), where
C and M are the constants in (.), then the problem (.) has a unique asymptotically
ω-periodic mild solution.

Proof Define the operator �α on the space APω(R+, X) by

(�αu)(t) = Sα(t)v +
∫ t


Sα(t – s)f

(
s, u(s)

)
ds = Sα(t)v + vα(t). (.)

By (.), we know that Sα(·)v ∈ C(R+, X) ⊂ APω(R+, X). Let u ∈ APω(R+, X). By Lem-
ma . we get f (s, u(s)) ∈ SpAPω(R+, X). Since  < α < , by (.) CM

+|μ|tα ∈ L(R+) and is
nonincreasing. Combining with (.), Lemma . yields vα(t) ∈ APω(R+, X). Therefore,
�α maps the space APω(R+, X) into APω(R+, X).

Finally, for u, v ∈ APω(R+, X), one has

∥
∥(�αu)(t) – (�αv)(t)

∥
∥ ≤

∫ t



∥
∥Sα(t – s)

∥
∥
∥
∥f

(
s, u(s)

)
– f

(
s, v(s)

)∥∥ds

≤ L
∫ t



∥∥Sα(t – s)
∥∥∥∥u(s) – v(s)

∥∥ds

≤ L‖u – v‖∞
∫ t



∥
∥Sα(s)

∥
∥ds

≤ L‖u – v‖∞
∫ t



CM
 + |μ|tα

ds

≤ CM|μ|– 
α πL

α sin( π
α

)
‖u – v‖∞,

which shows that

‖�αu – �αv‖∞ ≤ CM|μ|– 
α πL

α sin( π
α

)
‖u – v‖∞.

Hence �α is a contraction mapping. To complete the proof of the theorem we only need
to invoke the contraction mapping principle. �

Theorem . Assume that A is sectorial of type μ <  with  < θ < π ( – α
 ). Let f be

asymptotically ω-periodic in the Stepanov sense uniformly on bounded sets of X and assume
that f satisfies a Lipschitz condition:

∥∥f (t, x) – f (t, y)
∥∥ ≤ Lf (t)‖x – y‖
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for all x, y ∈ X and t ∈ R
+, where Lf is a bounded measurable function. If CM( +

|μ|– 
α π

α sin( π
α ) )‖Lf ‖Sp < , where C and M are the constants in (.), then the problem (.) has

a unique asymptotically ω-periodic mild solution.

Proof Proceeding as in the proof of Theorem ., we define the operator �α on the space
APω(R+, X) by (.). By Lemmas ., . and a similar consideration in Theorem .,
�α maps APω(R+, X) into APω(R+, X). Next we prove that �α is a contraction. For u, v ∈
APω(R+, X), we have

∥∥(�αu)(t) – (�αv)(t)
∥∥ ≤

∫ t



∥∥Sα(t – s)
∥∥∥∥f

(
s, u(s)

)
– f

(
s, v(s)

)∥∥ds

≤
∫ t



CM
 + |μ|(t – s)α

Lf (s) ds‖u – v‖∞.

Next we estimate the term
∫ t


CM

+|μ|(t–s)α Lf (s) ds. For m ≤ t < m + , m ∈ N, we denote l =
m +  – t. Then one has

∫ t



CM
 + |μ|(t – s)α

Lf (s) ds =
∫ m+–l



CM
 + |μ|(m +  – l – s)α

Lf (s) ds

=
∫ m+

l

CM
 + |μ|(m +  – s)α

Lf (s – l) ds.

Define

L̃f (s) =

⎧
⎨

⎩
,  ≤ s < l;

Lf (s – l), s ≥ l.

We observe that ‖L̃f ‖Sp = ‖Lf ‖Sp . Then we have

∫ t



CM
 + |μ|(t – s)α

Lf (s) ds =
∫ m+



CM
 + |μ|(m +  – s)α

L̃f (s) ds

≤
m∑

k=

∫ k+

k

CM
 + |μ|(m +  – s)α

L̃f (s) ds

≤
m∑

k=

CM
 + |μ|(m – k)α

∫ k+

k
L̃f (s) ds.

By the Hölder inequality, we obtain
∫ k+

k L̃f (s) ds ≤ (
∫ k+

k L̃f
p(s) ds)


p ≤ ‖L̃f ‖Sp . Thus,

∫ t



CM
 + |μ|(t – s)α

Lf (s) ds ≤
m∑

k=

CM
 + |μ|(m – k)α

‖Lf ‖Sp

≤ CM
[

 +
(∫ 


+ · · · +

∫ m

m–

)


 + |μ|tα
dt

]
‖Lf ‖Sp

≤ CM
(

 +
∫ ∞




 + |μ|tα

dt
)

‖Lf ‖Sp

= CM
(

 +
|μ|– 

α π

α sin( π
α

)

)
‖Lf ‖Sp .
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Therefore,

‖�αu – �αv‖∞ ≤ CM
(

 +
|μ|– 

α π

α sin( π
α

)

)
‖Lf ‖Sp‖u – v‖∞.

Hence �α is a contraction mapping. To complete the proof of the theorem we only need
to invoke the contraction mapping principle. �

Finally, we provide an example to illustrate our results. Consider the following fractional
differential equation.

Example .

⎧
⎪⎪⎨

⎪⎪⎩

∂α
t u(t, x) = ∂

x u(t, x) – λu(t, x) + ∂α–
t a(t)g(u(t, x)), t ∈ R

+, x ∈ [,π ];

u(t, ) = u(t,π ) = , t ∈ R
+;

u(, x) = u(x), x ∈ [,π ],

(.)

where  < α < , λ > , u ∈ L[,π ], and g : R+ → R satisfies
() |g(x)| ≤ L|x|;
() |g(x) – g(y)| ≤ L|x – y|,

where L and L are positive constants. The function a(t) ∈ SpAPω(R+,R) satisfies
supt∈R+ |a(t)| ≤ N , where N is a positive constant. Suppose X = L[,π ] and let A be the
operator given by Au = u′′ – λu with domain D(A) = {u ∈ X : u′′ ∈ X, u() = u(π ) = }. It
is well known that A is a sectorial of type μ = –λ < . Let f (t,ϕ)(s) = a(t)g(ϕ(s)) for ϕ ∈ X
and s ∈ [,π ]. Then (.) can be transformed into (.), where u(t)(x) = u(t, x) for t ∈ R

+,
x ∈ [,π ]. Since a ∈ SpAPω(R+,R), by Theorem . there exists a function b ∈ SpPω(R+,R)
such that

(∫ t+

t

∣∣a(s + nω) – b(s)
∣∣p ds

) 
p

→ 

as n → ∞ pointwise on R
+. Let g(t,ϕ)(s) = b(t)g(ϕ(s)). For each t ∈R

+, we have

∥
∥f (t + nω,ϕ) – g(t,ϕ)

∥
∥ =

(∫ π



∣
∣a(t + nω)g

(
ϕ(s)

)
– b(t)g

(
ϕ(s)

)∣∣ ds
) 



=
∣∣a(t + nω) – b(t)

∣∣
(∫ π


|g(

ϕ(s)
)| ds

) 


≤ L
∣
∣a(t + nω) – b(t)

∣
∣
(∫ π



∣
∣ϕ(s)

∣
∣ ds

) 


≤ L
∣
∣a(t + nω) – b(t)

∣
∣‖ϕ‖.

Then for each t′ ∈R
+, one has

(∫ t′+

t′

∥∥f (t + nω,ϕ) – g(t,ϕ)
∥∥p dt

) 
p

≤ L‖ϕ‖
(∫ t′+

t′

∣
∣a(t + nω) – b(t)

∣
∣p dt

) 
p

.
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Denote �M = {ϕ ∈ X : ‖ϕ‖ ≤ M}. Then we have

(∫ t′+

t′

∥
∥f (t + nω,ϕ) – g(t,ϕ)

∥
∥p dt

) 
p

→ 

as n → ∞ pointwise on R
+ uniformly for ϕ ∈ �M . Clearly, for each ϕ ∈ X, g(t,ϕ) ∈

SpPω(R+, X). So f ∈ SpAPω(R+ × X, X).
On the other hand, we have

∥
∥f (t, u) – f (t, v)

∥
∥ =

(∫ π



∣
∣a(t)g

(
u(s)

)
– a(t)g

(
v(s)

)∣∣ ds
) 



≤ NL

(∫ π



∣∣u(s) – v(s)
∣∣ ds

) 


≤ NL‖u – v‖.

So when L is small enough, by Theorem . the problem (.) has a unique asymptoti-
cally ω-periodic mild solution.

Remark . This example is motivated by the example in []. For a specific result, we
can define g(x) by sin(x) and choose a(t) as Example ..
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