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Abstract
In this paper, we introduce stochasticity into a multigroup SIS model. We present the
sufficient condition for the exponential extinction of the disease and prove that the
noises significantly raise the threshold of a deterministic system. In the case of
persistence, we prove that there exists an invariant distribution which is ergodic.
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1 Introduction
Mathematical models have become important tools in analyzing the spread and control
of infectious diseases. In many epidemiological models it is assumed that the population
being considered is uniform and homogeneously mixing. However, when dealing with a
heterogeneous population, it is appropriate to divide the whole population into subpopu-
lations, each of which is homogeneous. So far a lot of research has been done on various
forms of multigroup models, see, e.g., [–].

Lajmanovich and Yorke [] proposed a deterministic model for the spread of gonor-
rhea. Since the spread of gonorrhea in a population is highly nonuniform, they developed
a deterministic SIS (susceptible-infective-susceptible) model with n groups. Because of
there being no immunes and negligibly few incubating the disease, they assume the pop-
ulation of every subpopulation is constant in size, i.e. Sk + Ik = Nk , where Sk , Ik denote the
susceptible and infective population at time t in the kth group, respectively, and Nk the
total size of the population of kth group. Then the multigroup SIS model takes the form
of

dIk

dt
=

n∑

j=

βkjIj(Nk – Ik) – αkIk , k = , , . . . , n, (.)

where αk is the recovery rate, βkj the contact rate of the kth group’s susceptibles with the
jth group’s infectives. Here αk , βkj, and Nk are positive constants.

Since gonorrhea is in essence a nonseasonal disease with less than a  percent seasonal
component in the variation [], the authors [] give the model (.) time-independent
coefficients. However, also according to [], the probability of one susceptible contacting
one infective does vary with the time of year, although this does not significantly fluctuate.
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For more reality, we introduce randomness into the model (.) by replacing the parame-
ters βkk by βkk → βkk +σk dBk(t), where Bk(t), k = , , . . . , n are standard Brownian motions
with Bk() = , and the intensities of white noises σ 

k > . Then the stochastic version of
the model (.) takes the following form:

dIk =

[ n∑

j=

βkjIj(Nk – Ik) – αkIk

]
dt + σkIk(Nk – Ik) dBk(t), k = , , . . . , n. (.)

Ideally, all of the transmission coefficients βkj should suffer from white noise. If we really
do that, the solution will be very sensitive to white noise. The solution may be negative or
explosive. But for a population system, we always expect there is a positive solution. This
is the main reason why we only introduce white noise into βkk , k = , , . . . , n.

Recently, Gray et al. [] discussed a stochastic SIS model (.) with one group. They
proved that this SIS model has a unique global positive solution and establish conditions
for the extinction and persistence of the disease. In the case of persistence they showed the
existence of a stationary distribution and derived expressions for its mean and variance.

The aim of this paper is to study the asymptotical behavior of the solutions of system
(.). The rest of this paper is organized as follows. In Section , we show that system (.)
has a unique nonnegative solution. In Section , we present the sufficient condition for the
exponential extinction of the disease. Section  focuses on the persistence of the disease.
We show there is a stationary distribution for system (.) and it is ergodic.

Throughout this paper, let (�,F , {Ft}t≥, P) be a complete probability space with a fil-
tration {Ft}t≥ satisfying the usual conditions (i.e. it is right continuous and F contains
all P-null sets).

In general, consider the d-dimensional stochastic differential equation,

dx(t) = f
(
x(t), t

)
dt + g

(
x(t), t

)
dB(t) on t ≥ t (.)

with initial value x(t) = x ∈ R
d . Define the differential operator L associated with (.)

by

L =
∂

∂t
+

d∑

k=

fk(x, t)
∂

∂xk
+




d∑

k,j=

[
gT (x, t)g(x, t)

]
kj

∂

∂xk ∂xj
.

By Itô’s formula, if x(t) ∈ Rd , then dV (x(t), t) = LV (x(t), t) dt + Vx(x(t), t)g(x(t), t) dB(t).

2 Existence and uniqueness of positive solution
To investigate the dynamical behavior, the first concern is whether the solution has a global
existence. Moreover, for an epidemics model, whether the solution is nonnegative is also
considered, that is, we need to show the solution is global and nonnegative. In this section,
we show global existence and uniqueness of a positive solution of system (.). From now
on, we denote the solution (I(t), I(t), . . . , In(t)) of system (.) as Y (t). Denote

� =
{

x ∈R
n :  < xk < Nk for all  ≤ k ≤ n

}
.

Theorem . If (βkj)n×n is irreducible, then for any initial value Y () ∈ �, there is a unique
solution Y (t) of system (.) on t ≥ , and the solution will remain in � with probability .
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Proof Since the coefficients of system (.) satisfy the local Lipschitz condition, there is a
unique local solution Y (t) ∈ � on t ∈ [, τe), where τe is the explosion time. To show this
solution is global, we need to show that τe = +∞ a.s. Define C-function V (Y ) : � → R+

by

V (Y ) =
n∑

k=

[
(Nk – Ik) –  – log(Nk – Ik) + Ik –  – log Ik

]

=
n∑

k=

[
Nk –  – log

(
(Nk – Ik)Ik

)]
.

By direct calculation, we get

LV =
n∑

k=

[
–

Nk – Ik

Ik(Nk – Ik)

(
–αkIk +

n∑

j=

βkjIj(Nk – Ik)

)
+

σ 
k


[
Ik(Nk – Ik) + (Nk – Ik)]

]

=
n∑

k=

(
αk(Nk – Ik)

Nk – Ik
–

Nk – Ik

Ik

n∑

j=

βkjIj +
σ 

k


(
–IkNk + I

k + N
k
)
)

≤
n∑

k=

(
αk +

n∑

j=

βkjIj +
σ 

k N
k



)
≤

n∑

k=

(
αk +

n∑

j=

βkjNj +
σ 

k N
k



)
:= M. (.)

By using similar arguments to Theorem . of Gray et al. [], we get τe = +∞ a.s. This
completes the proof. �

Remark . An n × n matrix (aij) is irreducible if for any nonempty subset S of {, . . . , n}
with a nonempty complement S′, there exist i in S and j in S′ such that aij �= .

Remark . From the proof of Theorem ., we obtain LV ≤ M. Let Ṽ = V + M. Then
LṼ ≤ Ṽ and it is clear that infY∈�\Dk Ṽ (Y ) → ∞ as k → ∞, where Dk = ( 

k , N – 
k ) ×

( 
k , N – 

k ) × · · · × ( 
k , Nn – 

k ). Hence, by Remark  of Theorem . of Hasminskii [],
p., we find that the solution Y (t) is a homogeneous Markov process in �.

3 Exponential extinction of infectious disease
It is clear that P = (, , . . . , ) is the disease-free equilibrium of system (.). For system
(.), P is globally stable ifR ≤ . Hence, it is interesting to study the disease-free equilib-
rium for controlling the infectious disease. In this section, we present sufficient conditions
for the disease to extinct exponentially for system (.).

Theorem . Assume (βkj)n×n is irreducible. If βkk/Nk ≥ σ 
k , k = , , . . . , n and

R <  +

(
 max

≤k≤n
{αk}

n∑

k=

(σkNk)–

)–

, (.)

then the solution Y (t) of system (.) with initial value Y () ∈ � will exponentially tend to
P almost surely. Here R = ρ(M) (the spectral radius of M), M = (βkjNk/αk)n×n.

Proof Since (βkj)n×n is irreducible, βkj ≥ , and σk > , k, j = , , . . . , n, M is also non-
negative and irreducible. By Theorem . of [], p., there is a left eigenvector of M
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corresponding to ρ(M), which is denoted as (ω,ω, . . . ,ωn) and ωk > , k = , , . . . , n, i.e.

(ω,ω, . . . ,ωn)ρ(M) = (ω,ω, . . . ,ωn)M. (.)

Define the C-function V : � → R+ by V (Y ) =
∑n

k= akIk , ak = ωk/αk . By Itô’s formula, we
compute

d(log V ) = L(log V ) dt +

V

n∑

k=

akσk(Nk – Ik)Ik dBk , (.)

where

L(log V ) =

V

n∑

k=

ak

[ n∑

j=

βkj(Nk – Ik)Ij – αkIk

]
–

∑n
k= a

kσ

k (Nk – Ik)I

k
V 

≤ 
V

n∑

k=

ak

[ n∑

j=

βkjNkIj – αkIk

]
–


V

n∑

k=

akβkkI
k –

∑n
k= a

kσ

k (Nk – Ik)I

k
V 

= H + H.

Here H := 
V

∑n
k= ak[

∑n
j= βkjNkIj – αkIk], H := – 

V
∑n

k= akβkkI
k –

∑n
k= a

kσ
k (Nk –Ik )I

k
V  .

In view of the definition of ak and (.), we have

H =

V

[ n∑

k=

n∑

j=

akβkjNkIj –
n∑

k=

akαkIk

]

=

V

[ n∑

k=

n∑

j=

ωk
βkjNk

αk
Ij –

n∑

k=

ωkIk

]

=

V

(ω,ω, . . . ,ωn)
(
M(I, I, . . . , In)T – (I, I, . . . , In)T)

=

V

(R – )
n∑

k=

ωkIk =

V

(R – )
n∑

k=

αkakIk

≤ max
≤k≤n

{αk}(R – )R≥ := m.

By the condition βkk ≥ σ 
k Nk , k = , , . . . , n, we have

H ≤ –


V 

n∑

k=

a
kβkkI

k –


V 

n∑

k=

a
kσ


k
(
N

k – NkIk + I
k
)
I

k

= –


V 

[ n∑

k=

a
k
(
βkk – σ 

k Nk
)
I

k +
n∑

k=

a
kσ


k N

k I
k +

n∑

k=

a
kσ


k I

k I
k

]

≤ –


V 

n∑

k=

a
kσ


k N

k I
k = –

∑n
k= a

kσ

k N

k I
k

(
∑n

k=
ak

σk Nk
σkNkIk)

≤ –
∑n

k= a
kσ


k N

k I
k

(
∑n

k= a
kσ


k N

k I
k )(

∑n
k=


σ

k N
k

)
= –

(


n∑

k=

(σkNk)–

)–

:= m.
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Then L(log V ) ≤ m + m, which combined with (.) yields

log V (t)
t

≤ log V ()
t

+ m + m –
n∑

k=

akσk

∫ t
 (Nk – Ik)Ik/V dBk

t
.

By the strong law of large numbers (Lemma . in []), we get

lim
t→+∞

∫ t
 (Nk – Ik)Ik/V dBk

t
=  a.s.

Hence, limt→∞ log V
t ≤ m + m a.s. Besides, (.) implies m + m < . Thus, the proof of

Theorem . is complete. �

Remark . Theorem . tells us the disease will die out if

R̃ = R –

(
 max

≤k≤n
{αk}

n∑

k=

(σkNk)–

)–

≤ 

and the noise intensity is not large. In [], the disease will extinct when R ≤ . There-
fore, the conditions for the disease to become extinct in system (.) are weaker than the
corresponding deterministic model.

4 Ergodicity of system (1.2)
For a deterministic system, we always discuss the global attractivity of the positive equi-
librium of the system. However, there is no positive equilibrium for system (.). In this
section, we show there is a stationary distribution for system (.) when the white noise is
small, which in turn implies the stability in stochastic sense. To begin with, we present a
well-known result, due to Hasminskii [].

Let X(t) be a homogeneous Markov process in El (El denotes the Euclidean l-space)
described by the stochastic equation

dX(t) = b(X) dt +
k∑

r=

σr(X) dBr(t).

The diffusion matrix is

A(x) =
(
aij(x)

)
, aij(x) =

k∑

r=

σ i
r (x)σ j

r (x).

Assumption B There exists a bounded domain U ⊂ El with regular boundary, having the
following properties:

(B.) In the domain U and some neighborhood thereof, the smallest eigenvalue of the
diffusion matrix A(x) is bounded away from zero.

(B.) If x ∈ El \ U , the mean time τ at which a path issuing from x reaches the set U is
finite, and supx∈K Exτ < ∞ for every compact subset K ⊂ El .
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Lemma . If (B) holds, then the Markov process X(t) has a stationary distribution μ(·).
Let f (·) be a function integrable with respect to the measure μ. Then

Px

{
lim

T→∞

T

∫ T


f
(
X(t)

)
dt =

∫

El

f (x)μ(dx)
}

=  for all x ∈ El.

Theorem . Assume (βkj)n×n is irreducible and R = ρ(M) > . If

n∑

k=

c̄kσ

k I∗

k N
k / < min

{
c̄kβkkI∗

k
, c̄kβkk

(
Nk – I∗

k
), k = , , . . . , n

}
, (.)

then, for any initial value Y () ∈ �, there is a stationary distribution μ(·) for system (.)
and it has the ergodic property, where M = (βkjNk/αk)n×n, P∗ = (I∗

 , I∗
 · · · , I∗

n) ∈ int� is the
endemic equilibrium of system (.), and the c̄k , k = , , . . . , n denote the cofactor of the kth
diagonal element of LB, B = (β̄kj)n×n = (I∗

j (Nk – I∗
k )βkj)n×n; LB is defined as

LB =

⎡

⎢⎢⎢⎢⎣

∑
k �= β̄k –β̄ · · · –β̄n

–β̄
∑

k �= β̄k · · · –β̄n
...

...
. . .

...
–β̄n –β̄n · · · ∑

k �=n β̄nk

⎤

⎥⎥⎥⎥⎦
.

Proof Since R > , from Theorem . of [], system (.) has a unique endemic equilib-
rium P∗ ∈ int�. Then

n∑

j=

βkjI∗
j
(
Nk – I∗

k
)

– αkI∗
k = , k = , , . . . , n.

Let

V =
n∑

k=

c̄kVk ,

where

Vk = Ik – I∗
k – I∗

k log
(
Ik/I∗

k
)
.

By direct calculation, we get

LVk =
(

 –
I∗

k
Ik

)( n∑

j=

βkj(Nk – Ik)Ij – αkIk

)
+ σ 

k I∗
k (Nk – Ik)/

=
(

 –
I∗

k
Ik

)( n∑

j=

βkj(Nk – Ik)Ij –
Ik

I∗
k

n∑

j=

βkj
(
Nk – I∗

k
)
I∗

j

)
+ σ 

k I∗
k (Nk – Ik)/

=
(

 –
I∗

k
Ik

) n∑

j=

βkj

[
(Nk – Ik)Ij –

Ik

I∗
k

(
Nk – I∗

k
)
I∗

j

]
+ σ 

k I∗
k (Nk – Ik)/.
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Obviously,

(Nk – Ik)Ij –
Ik

I∗
k

(
Nk – I∗

k
)
I∗

j = (Nk – Ik)Ij –
(
Nk – I∗

k
)
Ij +

(
Nk – I∗

k
)
Ij –

Ik

I∗
k

(
Nk – I∗

k
)
I∗

j

=
(
I∗

k – Ik
)
Ij +

(
Nk – I∗

k
)(

Ij –
Ik

I∗
k

I∗
j

)
.

Hence,

LVk =
(

 –
I∗

k
Ik

) n∑

j=

βkj

[(
I∗

k – Ik
)
Ij +

(
Nk – I∗

k
)(

Ij –
Ik

I∗
k

I∗
j

)]
+ σ 

k I∗
k (Nk – Ik)/

= –

Ik

n∑

j=

βkj
(
Ik – I∗

k
)Ij + I∗

j
(
Nk – I∗

k
) n∑

j=

βkj

(
 –

I∗
k

Ik

)(
Ij

I∗
j

–
Ik

I∗
k

)

+ σ 
k I∗

k (Nk – Ik)/

≤ –βkk
(
Ik – I∗

k
) +

n∑

j=

β̄kj

(
 –

Ik

I∗
k

+
Ij

I∗
j

–
I∗

k Ij

IkI∗
j

)
+ σ 

k I∗
k N

k /,

where β̄kj := I∗
j (Nk – I∗

k )βkj. Consequently,

LV ≤ –
n∑

k=

c̄kβkk
(
Ik – I∗

k
) +

n∑

k=

n∑

j=

c̄kβ̄kj

(
 –

Ik

I∗
k

+
Ij

I∗
j

–
I∗

k Ij

IkI∗
j

)

+
n∑

k=

c̄kσ

k I∗

k N
k /. (.)

By Theorem . of Li and Shuai [], we know

n∑

k=

c̄k

( n∑

j=

β̄kj
Ij

I∗
j

–
n∑

j=

β̄kj
Ik

I∗
k

)
=  and

n∑

k=

c̄k

( n∑

j=

β̄kj log
Ij

I∗
j

–
n∑

j=

β̄kj log
Ik

I∗
k

)
= .

(.)

Besides, note that a –  – log a ≥  for a > , then

 –
I∗

k Ij

IkI∗
j

≤ – log
I∗

k Ij

IkI∗
j

= – log
I∗

k
Ik

– log
Ij

I∗
j

. (.)

Successively substituting (.) and (.) into (.) yields

LV ≤ –
n∑

k=

c̄kβkk
(
Ik – I∗

k
) +

n∑

k=

c̄kσ

k I∗

k N
k /.

The condition (.) implies that the ellipsoid

–
n∑

k=

c̄kβkk
(
Ik – I∗

k
) +

n∑

k=

c̄kσ

k I∗

k N
k / = 
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lies entirely in �. We can take U to be a neighborhood of the ellipsoid with Ū ⊆ �, so for
Y ∈ � \ U , LV ≤ –K (K is a positive constant), which implies that the condition (B.) in
Lemma . is satisfied (see Chapter , p. of []).

The diffusion matrix of system (.) is written

(aij)n×n = diag
(
σ 

 (N – I)I
 ,σ 

 (N – I)I
 , . . . ,σ 

n (Nn – In)I
n
)
.

For any bounded domain D with D̄ ⊂ � there is M = min{σ 
i (Ni – Ii)I

i , i = , , . . . , n, Y ∈
D̄} >  such that

∑n
i,j= aijξiξj =

∑n
i= σ 

i (Ni – Ii)I
i ξ 

i ≥ M‖ξ ‖ for all Y ∈ D̄, ξ ∈ Rn, which
implies that the condition (B.) is also satisfied (refer to [], p. for details). Therefore,
by Lemma ., system (.) has a stationary distribution μ(·) and it is ergodic. �

Remark . Theorem . shows that, under some conditions imposed on the parameters,
if the noise intensity is small, there exists a stationary distribution for system (.), which
reveals that the disease will prevail.

5 Conclusions
In this paper, we investigate a multigroup SIS model with the effect of environmental white
noise. We obtain the sufficient condition for the extinction of the disease, and we obtain
the criteria for the existence of the invariant distribution of system (.). Some interesting
topics deserve further investigation. For instance, the coefficients of stochastic differential
equations can be modeled by fuzzy sets, and this leads to stochastic differential equations
with fuzziness [, ]. We leave it for future investigation.
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