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Abstract
In this paper, we discuss an approximation of the first and pure second order
derivatives for the solution of the Dirichlet problem on a rectangular domain. The
boundary values on the sides of the rectangle are supposed to have the sixth
derivatives satisfying the Hölder condition. On the vertices, besides the continuity
condition, the compatibility conditions, which result from the Laplace equation for
the second and fourth derivatives of the boundary values, given on the adjacent
sides, are also satisfied. Under these conditions a uniform approximation of order
O(h4) (h is the grid size) is obtained for the solution of the Dirichlet problem on a
square grid, its first and pure second derivatives, by a simple difference scheme.
Numerical experiments are illustrated to support the analysis made.
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1 Introduction
Since the operation of differentiation is ill conditioned, to find a highly accurate approxi-
mation for the derivatives of the solution of a differential equation becomes problematic,
especially when the smoothness is restricted.

In [], it was proved that the higher order difference derivatives uniformly converge to
the corresponding derivatives of the solution of the Laplace equation in any strictly interior
subdomain, with the same order of h as which the difference solution converges on the
given domain. In [], by using the difference solution of the Dirichlet problem for the
Laplace equation on a rectangle, the uniform convergence of its first and pure second
divided difference over the whole grid domain to the corresponding derivatives of the
exact solution with the rate O(h) is proved. In [], the difference schemes on a rectangular
parallelepiped were constructed, where solutions approximate the Dirichlet problem for
the Laplace equation and its first and second derivatives. Under the assumptions that the
boundary functions belong to C,λ,  < λ < , on the faces, are continuous on the edges,
and their second-order derivatives satisfy the compatibility condition, the solution to their
difference schemes converges uniformly on the grid with the rate of O(h).

In this paper, we consider the Dirichlet problem for the Laplace equation on a rectangle,
when the boundary values belong to C,λ,  < λ < , on the sides of the rectangle and as
a whole are continuous on the vertices. Also the τ , τ = , , order derivatives satisfy the
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compatibility conditions on the vertices which result from the Laplace equation. Under
these conditions, we construct the difference problems, the solutions of which converge
to the first and pure second derivatives of the exact solution with the order O(h). Finally,
numerical experiments are given in the last part of the paper to support the theoretical
results.

2 The Dirichlet problem on rectangular domains
Let � = {(x, y) :  < x < a,  < y < b} be a rectangle, a/b be rational, γj (γ ′

j ), j = , , , , be the
sides, including (excluding) the ends, enumerated counterclockwise starting from the left
side (γ ≡ γ, γ ≡ γ), and let γ =

⋃
j= γj be the boundary of �. Denote by s the arclength,

measured along γ , and by sj the value of s at the beginning of γj. We say that f ∈ Ck,λ(D),
if f has kth derivatives on D satisfying a Hölder condition with exponent λ ∈ (, ).

We consider the boundary value problem

�u =  on �, u = ϕj(s) on γj, j = , , , , ()

where � ≡ ∂/∂x + ∂/∂y, ϕj are given functions of s. Assume that

ϕj ∈ C,λ(γj),  < λ < , j = , , , , ()

ϕ
(q)
j (sj) = (–)qϕ

(q)
j– (sj), q = , , . ()

Lemma . The solution u of problem () is from C,λ(�).

The proof of Lemma . follows from Theorem . in [].

Lemma . The inequality is true

max
≤p≤

sup
(x,y)∈�

∣
∣
∣
∣

∂u
∂xp ∂y–p

∣
∣
∣
∣ < ∞, ()

where u is the solution of problem ().

Proof From Lemma . it follows that the functions ∂u
∂x and ∂u

∂y are continuous on �.

We put w = ∂u
∂x . The function w is harmonic in � and is the solution of the problem

�w =  on �, w = 	j on γj, j = , , , ,

where

	τ =
∂ϕτ

∂y , τ = , ,

	ν =
∂ϕν

∂x , ν = , .

From the conditions () and () it follows that

	j ∈ C,λ(γj),  < λ < , 	j(sj) = 	j–(sj), j = , , , .
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Hence, on the basis of Theorem . in [], we have

sup
(x,y)∈�

∣
∣
∣
∣
∂w
∂x

∣
∣
∣
∣ = sup

(x,y)∈�

∣
∣
∣
∣
∂u
∂x

∣
∣
∣
∣ < ∞, ()

sup
(x,y)∈�

∣
∣
∣
∣
∂w
∂y

∣
∣
∣
∣ = sup

(x,y)∈�

∣
∣
∣
∣

∂u
∂x ∂y

∣
∣
∣
∣ < ∞. ()

Similarly, it is proved that

sup
(x,y)∈�

{∣
∣
∣
∣
∂u
∂y

∣
∣
∣
∣,

∣
∣
∣
∣

∂u
∂y ∂x

∣
∣
∣
∣

}

< ∞. ()

From ()-(), estimation () follows. �

Lemma . Let ρ(x, y) be the distance from a current point of the open rectangle � to its
boundary and let ∂/∂l ≡ α∂/∂x + β∂/∂y, α + β = . Then the next inequality holds:

∣
∣
∣
∣
∂u
∂l

∣
∣
∣
∣ ≤ cρ–, ()

where c is a constant independent of the direction of the derivative ∂/∂l, u is a solution of
problem ().

Proof According to Lemma ., we have

max
≤p≤

sup
(x,y)∈�

∣
∣
∣
∣

∂u
∂xp ∂y–p

∣
∣
∣
∣ ≤ c < ∞.

Since any eighth order derivative can be obtained by two times differentiating some of the
derivatives ∂/∂xp ∂y–p,  ≤ p ≤ , on the basis of estimations () and () from [],
we obtain

max
ν+μ=

∣
∣
∣
∣

∂u
∂xν ∂yμ

∣
∣
∣
∣ ≤ cρ

–(x, y) < ∞. ()

From (), inequality () follows. �

Let h > , and a/h ≥ , b/h ≥  be integers. We assign �h, a square net on �, with step h,
obtained by the lines x, y = , h, h, . . . . Let γ h

j be a set of nodes on the interior of γj, and let

γ h =
⋃

j=

γ h
j , γ̇j = γj– ∩ γj, γ h =

⋃

j=

(
γ h

j ∪ γ̇j
)
, �

h = �h ∪ γ h.

Let the operator B be defined as follows:

Bu(x, y) =
(
u(x + h, y) + u(x – h, y) + u(x, y + h) + u(x, y – h)

)
/

+
(
u(x + h, y + h) + u(x + h, y – h)

+ u(x – h, y + h) + u(x – h, y – h)
)
/. ()
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We consider the classical -point finite difference approximation of problem ():

uh = Buh on �h, uh = ϕj on γ h
j ∪ γ̇j, j = , , , . ()

By the maximum principle, problem () has a unique solution.
In what follows, and for simplicity, we will denote by c, c, c, . . . constants which are

independent of h and the nearest factor, and identical notation will be used for various
constants.

Let �h be the set of nodes of the grid �h that are at a distance h from γ , and let �h =
�h\�h.

Lemma . The following inequality holds:

max
(x,y)∈(�h∪�h)

|Bu – u| ≤ ch, ()

where u is a solution of problem ().

Proof Let (x, y) be a point of �h, and let

R =
{

(x, y) : |x – x| < h, |y – y| < h
}

()

be an elementary square, some sides of which lie on the boundary of the rectangle �. On
the vertices of R and on the mid-points of its sides lie the nodes of which the function
values are used to evaluate Bu(x, y).

We represent a solution of problem () in some neighborhood of (x, y) ∈ �h by Tay-
lor’s formula

u(x, y) = p(x, y) + r(x, y), ()

where p(x, y) is the seventh order Taylor’s polynomial, r(x, y) is the remainder term. Tak-
ing into account that the function u is harmonic, by exhaustive calculations, we have

Bp(x, y) = u(x, y). ()

Now, we estimate r at the nodes of the operator B. We take a node (x + h, y + h) which
is one of the eight nodes of B, and we consider the function

ũ(s) = u
(

x +
s√


, y +
s√


)

, –
√

h ≤ s ≤ √
h ()

of one variable s. By virtue of Lemma ., we have

∣
∣
∣
∣
dũ(s)

ds

∣
∣
∣
∣ ≤ c(

√
h – s)–,  ≤ s <

√
h. ()

We represent function () around the point s =  by Taylor’s formula

ũ(s) = p̃(s) + r̃(s),
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where p̃(s) ≡ p(x + s√
 , y + s√

 ) is the seventh order Taylor’s polynomial of the variable s,
and

r̃(s) ≡ r

(

x +
s√


, y +
s√


)

,  ≤ |s| <
√

h, ()

is the remainder term.
On the basis of () and the integral form of the remainder term of Taylor’s formula, we

have

∣
∣̃r(

√
h – ε)

∣
∣ ≤ c


!

∫ √
h–ε


(
√

h – ε – t)(
√

h – t)– dt ≤ ch,  < ε ≤ h√


. ()

Taking into account the continuity of the function r̃(s) on [–
√

h,
√

h], from () and
(), we obtain

∣
∣r(x + h, y + h)

∣
∣ ≤ ch, ()

where c is a constant independent of the point taken, (x, y) on �h.
Estimation () is obtained analogously for the remaining seven nodes of the operator B.

Since the norm of the operator is equal to  in the uniform metric, by using (), we have

∣
∣Br(x, y)

∣
∣ ≤ ch. ()

Hence, on the basis of (), (), (), and linearity of the operator B, we obtain

∣
∣Bu(x, y) – u(x, y)

∣
∣ ≤ ch,

for any (x, y) ∈ �h.
Now, let (x, y) be a point of �h, and let in the Taylor formula () corresponding to this

point, the remainder term r(x, y) be represented in the Lagrange form. Then Br(x, y)
contains eighth order derivatives of the solution of problem () at some points of the open
square R defined by (), when (x, y) ∈ �h. The square R lies at a distance from the
boundary γ of the rectangle �; it is not less than h. Therefore, on the basis of Lemma .,
we obtain

∣
∣Br(x, y)

∣
∣ ≤ ch, ()

where c is a constant independent of the point (x, y) ∈ �h. Again, on the basis of (),
(), and () follows estimation () at any point (x, y) ∈ �h. Lemma . is proved. �

We present two more lemmas. Consider the following systems:

qh = Bqh + gh on �h, qh =  on γ h, ()

qh = Bqh + gh on �h, qh ≥  on γ h, ()

where gh and gh are given functions, and |gh| ≤ gh on �h.
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Lemma . The solutions qh and qh of systems () and () satisfy the inequality

|qh| ≤ qh on �
h.

The proof of Lemma . follows from the comparison theorem (see Chapter  in []).

Lemma . For the solution of the problem

qh = Bqh + h on �h, qh =  on γ h, ()

the following inequality holds:

qh ≤ 

ρdh on �

h,

where d = max{a, b}, ρ = ρ(x, y) is the distance from the current point (x, y) ∈ �
h to the

boundary of the rectangle �.

Proof We consider the functions

q()
h (x, y) =




h(ax – x) ≥ , q()
h (x, y) =




h(by – y) ≥  on �,

which are solutions of the equation qh = Bqh + h on �h. By virtue of Lemma ., we obtain

qh ≤ min
i=,

q(i)
h (x, y) ≤ 


ρdh on �

h. �

Theorem . Assume that the boundary functions ϕj, j = , , ,  satisfy conditions ()
and (). Then

max
�

h
|uh – u| ≤ cρh, ()

where uh is the solution of the finite difference problem (), and u is the exact solution of
problem ().

Proof Let

εh = uh – u on �
h. ()

It is obvious that

εh = Bεh + (Bu – u) on �h, εh =  on γ h. ()

By virtue of estimation () for (Bu – u) and by applying Lemma . to the problems ()
and (), on the basis of Lemma . we obtain

max
�

h
|εh| ≤ cρh. ()

From () and () follows the proof of Theorem .. �
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3 Approximation of the first derivative
We denote �j = ∂u

∂x on γj, j = , , , , and consider the boundary value problem:

�v =  on �, v = �j on γj, j = , , , , ()

where u is a solution of the boundary value problem ().
We put

�h(uh) =


h
(
–ϕ(y) + uh(h, y) – uh(h, y)

+ uh(h, y) – uh(h, y)
)

on γ h
 , ()

�h(uh) =


h
(
ϕ(y) – uh(a – h, y) + uh(a – h, y)

– uh(a – h, y) + uh(a – h, y)
)

on γ h
 , ()

�ph(uh) =
∂ϕp

∂x
on γ h

p , p = , , ()

where uh is the solution of the finite difference boundary value problem ().

Lemma . The following inequality is true:

∣
∣�kh(uh) – �kh(u)

∣
∣ ≤ ch, k = , , ()

where uh is the solution of problem (), u is the solution of problem ().

Proof On the basis of (), (), and Theorem ., we have

∣
∣�kh(uh) – �kh(u)

∣
∣ ≤ 

h
(
(ch)h + (ch)h + (ch)h + (ch)h)

≤ ch, k = , . �

Lemma . The following inequality holds

max
(x,y)∈γ h

k

∣
∣�kh(uh) – �k

∣
∣ ≤ ch, k = , . ()

Proof From Lemma . it follows that u ∈ C,(�). Then, at the end points (,νh) ∈ γ h


and (a,νh) ∈ γ h
 of each line segment {(x, y) :  ≤ x ≤ a,  < y = νh < b}, () and () give

the fourth order approximation of ∂u
∂x , respectively. From the truncation error formulas

(see []) it follows that

max
(x,y)∈γ h

k

∣
∣�kh(u) – �k

∣
∣ ≤ h


max

(x,y)∈�

∣
∣
∣
∣
∂u
∂x

∣
∣
∣
∣ ≤ ch, k = , . ()

On the basis of Lemma . and estimation () follows ().
We consider the finite difference boundary value problem

vh = Bvh on �h, vh = �jh on γ h
j , j = , , , , ()

where �jh, j = , , , , are defined by ()-(). �
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Theorem . The estimation is true

max
(x,y)∈�

h

∣
∣
∣
∣vh –

∂u
∂x

∣
∣
∣
∣ ≤ ch, ()

where u is the solution of problem (), vh is the solution of the finite difference problem ().

Proof Let

εh = vh – v on �
h, ()

where v = ∂u
∂x . From () and (), we have

εh = Bεh + (Bv – v) on �h, εh = �kh(uh) – v on γ h
k , k = , ,

εh =  on γ h
p , p = , .

()

We represent

εh = ε
h + ε

h , ()

where

ε
h = Bε

h on �h, ()

ε
h = �kh(uh) – v on γ h

k , k = , , ε
h =  on γ h

p , p = , , ()

ε
h = Bε

h + (Bv – v) on �h, ε
h =  on γ h

j , j = , , , . ()

By Lemma . and by the maximum principle, for the solution of system (), (), we
have

max
(x,y)∈�

h

∣
∣ε

h
∣
∣ ≤ max

q=,
max

(x,y)∈γ h
q

∣
∣�qh(uh) – v

∣
∣ ≤ ch. ()

The solution ε
h of system () is the error of the approximate solution obtained by the

finite difference method for problem (), when the boundary values satisfy the conditions

�j ∈ C,λ(γj),  < λ < , j = , , , , ()

�
(q)
j (sj) = (–)q�

(q)
j– (sj), q = , . ()

Since the function v = ∂u
∂x is harmonic on � with the boundary functions �j, j = , , , ,

on the basis of (), (), and Remark  in [], we have

max
(x,y)∈�

h

∣
∣ε

h
∣
∣ ≤ ch. ()

By (), (), and () inequality () follows. �
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4 Approximation of the pure second derivatives
We denote ω = ∂u

∂x . The function ω is harmonic on �, on the basis of Lemma . is con-
tinuous on � and is a solution of the following Dirichlet problem:

�ω =  on �, ω = �j on γj, j = , , , , ()

where

�τ =
∂ϕτ

∂x , τ = , , ()

�ν = –
∂ϕν

∂y , ν = , . ()

From the continuity of the function ω on � and from (), () and (), () it follows
that

�j ∈ C,λ(γj),  < λ < , j = , , , , ()

�
(q)
j (sj) = (–)q

�
(q)
j– (sj), q = , , j = , , , . ()

Let ωh be a solution of the finite difference problem

ωh = Bωh on �h, ωh = �j on γ h
j ∪ γ̇j, j = , , , , ()

where �j, j = , , , , are the functions determined by () and ().

Theorem . The following estimation holds:

max
�

h
|ωh – ω| ≤ ch, ()

where ω = ∂u
∂x , u is the solution of problem () and ωh is the solution of the finite difference

problem ().

Proof On the basis of conditions () and (), the exact solution of problem () belongs
to the class of functions C̃,λ(�) (see []). Therefore, inequality () follows from the re-
sults in [] (see Remark ), as the case of the Dirichlet problem. �

5 Numerical example
Let � = {(x, y) : – < x < ,  < y < }, and let γ be the boundary of �. We consider the
following problem:

�u =  on �, u = p(x, y) on γj, j = , , , , ()

where

p(x, y) =
(
x + y) 

 cos

(



arctan

(
y
x

))

()

is the exact solution of this problem.
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Let U be the exact solution and Uh be its approximate values on �
h of the Dirich-

let problem on the rectangular domain �. We denote ‖U – Uh‖�
h = max

�
h |U – Uh|,

�m
U =

‖U–U–m ‖
�

h
‖U–U–(m+) ‖

�
h

.
In Table  and in Table , the maximum errors and the convergence order of the approx-

imations of the first and pure second derivatives of problem () for different step sizes h
are presented.

The results show that the approximate solutions converge as O(h).
The shapes of ∂u

∂x and ∂u
∂x and their approximations are demonstrated in Figure  and

Figure , respectively.

Table 1 The approximate results for the first derivative

h ‖v – vh‖ �m
v

1
8 2.299996064764325009657E–2
1
16 1.894059104568160525104E–3 12.14
1
32 1.344880793701474553783E–4 14.08
1
64 8.960663249977644986927E–6 15.01
1
128 5.796393863873542692774E–7 15.46

Table 2 The approximate results for the pure second derivative

h ‖ω –ωh‖ �m
ω

1
8 3.149059928597543772878E–6
1
16 1.931058119052719414451E–7 16.31
1
32 1.180485369727342048019E–8 16.36
1
64 7.211217140499053022025E–10 16.37
1
128 4.404326492162507264392E–11 16.37

Figure 1 The graph of the approximate (a) and exact (b) solutions of ∂u
∂x .

Figure 2 The graph of the approximate (a) and exact (b) solutions of ∂2u
∂x2 .
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6 Conclusion
The obtained results can be used to highly approximate the derivatives for the solution
of Laplace’s equation by the finite difference method, in some version of domain decom-
position methods, in composite grid methods, and in the combined methods for solving
Laplace’s boundary value problems on polygons (see [–]).
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