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Abstract
In this paper, we study a relation between exponential dichotomy on time scales and
admissibility of the pair (Cb

rd(T
+,X), Lp(T+,X)) for an evolution family on time scales.

We establish a sufficient criterion for the existence of exponential dichotomy on time
scales in terms of the admissibility of the pair (Cb

rd(T
+,X), Lp(T+,X)) for the evolution

family. Conversely, with the help of exponential dichotomy on time scales, we give
the admissibility of the pair (Cb

rd(T
+,X), Lp(T+,X)) for an input-output equation on

time scales.
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1 Introduction
The concept of exponential dichotomies was first introduced by Perron in  [] to study
the conditional stability of the linear differential equations and the existence of bounded
solutions of the nonlinear differential equations. Then Li [] established the correspond-
ing analogous concept for the linear difference equations. The theory of exponential di-
chotomies has been playing an important role in the study of the theory of differential
equations and difference equations (see [–]). An interesting and challenging problem is
to establish necessary and sufficient criteria for the existence of exponential dichotomies.
Among the many methods and tools, the admissibility techniques or input-output meth-
ods have been extensively applying to study the existence of exponential dichotomies for
differential equations and difference equations [–].

It is well known that the theory of dynamic equations on time scales provides a unify-
ing structure for the study of differential equations in the continuous case and difference
equations in the discrete case and has tremendous potential for applications in mathe-
matical models of real processes and phenomena [–]. In recent years, the theory of
exponential dichotomies on time scales for the linear dynamic equations on time scales
extends the idea of hyperbolicity from autonomous dynamic equations on time scales to
explicitly nonautonomous ones and has progressed greatly [–]. In view of the im-
portant role of the admissibility techniques or input-output methods in the study of the
exponential dichotomy on differential equations and difference equations, it is natural for
us to ask whether the admissibility techniques or input-output methods can be applied to
deal with problems of exponential dichotomies on time scales for an evolution family on
time scales.

© 2015 Yang et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited.

http://dx.doi.org/10.1186/s13662-015-0409-7
mailto:zhangjm1978@hotmail.com


Yang et al. Advances in Difference Equations  (2015) 2015:69 Page 2 of 12

Motivated by the results of admissibility and exponential dichotomy for differential
equations and difference equations in [–], in this paper, we establish a relation between
exponential dichotomy on time scales and admissibility of the pair (Cb

rd(T+, X), Lp(T+, X))
for an evolution family on time scales. The paper is organized as follows. In the next
section, we present some basic information concerning exponential dichotomies on time
scales and admissibility for an evolution family. In Section , we construct an equivalent
relation between exponential dichotomy on time scales and the admissibility of the pair
(Cb

rd(T+, X), Lp(T+, X)) for the evolution family on time scales. Our result extends related
results known for differential equations and difference equations on the half-line to more
general time scales.

2 Preliminaries and basic definitions
In this section, we first introduce the following concepts related to the notion of time
scales, which can be found in [, , ]. A time scale T is defined as a nonempty closed
subset of the real numbers. Define the forward jump operator σ : T → T and the grain-
iness function μ(t) = σ (t) – t for any t ∈ T. In the following discussion, the time scale T

is assumed to be unbounded above and below. Let Crd(T,R) be the set of rd-continuous
functions g : T →R and R+(T,R) := {g ∈ Crd(T,R) :  + μ(t)g(t) > , t ∈ T} be the space of
positively regressive functions. We define the exponential function on time scales by

eϕ(t, s) = exp

{∫ t

s
ζμ(τ )

(
ϕ(τ )

)
�τ

}
with ζh(z) =

⎧⎨
⎩

z if h = ,

Log( + hz)/h if h �= ,

for any ϕ ∈R+(T,R) and s, t ∈ T, where Log is the principal logarithm. Define

(ϕ ⊕ ψ)(t) := ϕ(t) + ψ(t) + μ(t)ϕ(t)ψ(t),

�ϕ := –
ϕ(t)

 + μ(t)ϕ(t)
,

(ω � ϕ)(t) := lim
h↘μ(t)

( + hϕ(t))ω – 
h

for a given ω ∈R
+ and for any t ∈ T, ϕ,ψ ∈R+(T,R). Let

T
+ = T∩ [, +∞), κ = min

{
t ∈ T

+}
, [t, s]T+ = [t, s] ∩T

+, t, s ∈ T
+,

[ϕ]∗ := sup
t∈T+

(
ϕ(t)

)
, [ϕ]∗ := inf

t∈T+

(
ϕ(t)

)

for any bounded function ϕ ∈ Crd(T+,R).
Let (X,‖·‖) be a Banach space andB(X) be the space of bounded linear operators defined

on X. Now we give some definitions on time scales.

Definition . {U(t, s)}t≥s ⊂ B(X) is said to be an evolution family on a time scale T
+ if

(i) U(t, t) = id for every t ∈ T
+ and U(t, τ )U(τ , s) = U(t, s) for any t ≥ τ ≥ s ≥ κ ;

(ii) for each s ∈ T
+ and any x ∈ X , U(·, s)x is rd-continuous on [s,∞)T+ for the first

variable and U(s, ·)x is rd-continuous on [κ , s]T+ for the second variable.
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Remark . In the general case, an evolution family {U(t, s)}t≥s is related to an evolution
operator of a linear dynamic equation on time scales.

Definition . An evolution family {U(t, s)}t,s∈T+ is said to be exponential growth on a
time scale T

+ if there exist positive constants L and ρ such that

∥∥U(t, s)
∥∥ ≤ Leρ(t, s), t ≥ s, t, s ∈ T

+. (.)

Definition . An evolution family {U(t, s)}t,s∈T+ is said to admit an exponential di-
chotomy on a time scale T

+ if there exist projections {P(t)}t∈T+ such that U(t, s)P(s) =
P(t)U(t, s) for any t ≥ s ≥ κ and U(t, s)|Ker P(s) : Ker P(s) → Ker P(t) is an isomorphism for
any t ≥ s, t, s ∈ T

+ and there exist a constant K >  and α ∈ Crd(T+,R) with [α]∗ >  such
that

(i) ‖U(t, s)x‖ ≤ Ke�α(t, s)‖x‖ for all x ∈ Range P(s) and any t ≥ s, t, s ∈ T
+;

(ii) ‖U(t, s)y‖ ≥ 
K eα(t, s)‖y‖ for all y ∈ Ker P(s) and any t ≥ s, t, s ∈ T

+.

Remark . The exponential function on time scales can display different forms when we
choose different time scales. For example, when T = R or T = Z, we have e�α(t, s) = e–α(t–s)

or e�α(t, s) = (/( + α))t–s if α is a constant. Let T = qN , q > , then e�α(t, s) =
∏

τ∈[s,t)[/
( + (q – )ατ )]. More examples for the exponential function on different time scales can be
found in []. This shows that the exponential dichotomy on time scales is more general
and unifies the notions of exponential dichotomies on the continuous and discrete case.
On the other hand, we have

eα(t, s) ≤ eα(t–s), e–α(t–s) ≤ e�α(t, s) (.)

for any t ≥ s and any time scale T (see (.) in []).

We let

Cb
rd

(
T

+, X
)

:=
{

u ∈ Crd
(
T

+, X
)|‖u‖∞ := sup

t∈T+

∥∥u(t)
∥∥ < ∞

}

and

Lp(
T

+, X
)

:=
{

f
∣∣∣f : T+ → X is a Bochner measurable function with

‖f ‖p :=
(∫ ∞

κ

∥∥f (t)
∥∥p

�t
)/p

< ∞
}

for p > . It is not difficult to show that (Cb
rd(T+, X),‖ · ‖∞) and (Lp(T+, X),‖ · ‖p) are both

Banach spaces (see []). We consider the integral equation on time scales

u(t) = U(t, s)u(s) +
∫ t

s
U(t, τ )f (τ )�τ , t ≥ s, t, s ∈ T

+, (.)

where f ∈ Lp(T+, X) and u ∈ Cb
rd(T+, X).
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Definition . The pair (Cb
rd(T+, X), Lp(T+, X)) is said to be admissible for an evolution

family {U(t, s)}t,s∈T+ if for every f ∈ Lp(T+, X) there exists a function u ∈ Cb
rd(T+, X) such

that the pair (u, f ) satisfies (.). We say that Lp(T+, X) is the input space and Cb
rd(T+, X) is

the output space.

We easily show that a pair (u, f ) satisfies (.) if and only if (u, f ) satisfies

u(t) = U(t,κ)u(κ) +
∫ t

κ

U(t, τ )f (τ )�τ , t ≥ κ , t ∈ T
+. (.)

In fact, if (.) holds, then for each s ≥ κ

u(s) = U(s,κ)u(κ) +
∫ s

κ

U(s, τ )f (τ )�τ

and

U(t, s)u(s) = U(t, s)U(s,κ)u(κ) +
∫ s

κ

U(t, s)U(s, τ )f (τ )�τ

= U(t,κ)u(κ) +
∫ s

κ

U(t, τ )f (τ )�τ

= u(t) –
∫ t

s
U(t, τ )f (τ )�τ

for any t ≥ s, t ∈ T
+.

3 Main result
In this section, we establish a relation between exponential dichotomy on time scales and
admissibility of the pair (Cb

rd(T+, X), Lp(T+, X)) for an evolution family on time scales. Let
the linear subspace Eκ := {x ∈ X|U(·,κ)x ∈ Cb

rd(T+, X)}. Now we state our main result.

Theorem . Assume that an evolution family U(t, s)t≥s admits an exponential growth on
a time scale T

+ with [u]∗ < ∞. Then the pair (Cb
rd(T+, X), Lp(T+, X)) is admissible for the

evolution family U(t, s)t≥s on the time scale T+ and Eκ is closed and complemented in X if
and only if U(t, s)t≥s admits an exponential dichotomy on the time scale T+.

The proof of Theorem . is nontrivial, we shall divide it into several steps and assume
that the conditions in Theorem . are always satisfied. We first establish some auxiliary
results. If Eκ is closed and complemented in X, then there is a closed linear subspace
Fκ such that X = Eκ ⊕ Fκ . We define the linear subspace Cb,Fκ

rd (T+, X) := {u ∈ Cb
rd(T+, X) :

u(κ) ∈ Fκ}. Using similar arguments to that of Lemma . in [], we conclude that if the
pair (Cb

rd(T+, X), Lp(T+, X)) is admissible, then for every f ∈ Lp(T+, X) there exists a unique
function ū ∈ Cb,Fκ

rd (T+, X) such that the pair (ū, f ) satisfies (.). Therefore, we can define
the input-output operator J : Lp(T+, X) → Cb,Fκ

rd (T+, X) by J(f ) = ū, where the pair (ū, f )
satisfies (.).

Lemma . The operator J is bounded.
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Proof According to the closed graph theorem, we only need to prove that J is closed.
We assume that {fn}n∈N ⊂ Lp(T+, X), f ∈ Lp(T+, X), and fn → f in Lp(T+, X) as n → ∞ and
there exists a function ū ∈ Cb,Fκ

rd (T+, X) such that ūn = J(fn) → ū in Cb,Fκ

rd (T+, X) as n → ∞.
It follows from (.) that

ūn(t) = U(t,κ)ūn(κ) +
∫ t

κ

U(t, τ )fn(τ )�τ , t ∈ T
+. (.)

On the other hand, by (.) and the Hölder inequality on time scales, we have

∥∥∥∥
∫ t

κ

U(t, τ )
(
fn(τ ) – f (τ )

)
�τ

∥∥∥∥ ≤
∫ t

κ

∥∥U(t, τ )
∥∥∥∥fn(τ ) – f (τ )

∥∥�τ

≤ L
∫ t

κ

eρ(t, τ )
∥∥fn(τ ) – f (τ )

∥∥�τ

≤ L
(∫ t

κ

eq�ρ(t, τ )�τ

)/q(∫ t

κ

∥∥fn(τ ) – f (τ )
∥∥p

�τ

)/p

= L
(∫ t

κ

[
/ � (q � ρ)

]
e�
�(q�ρ)(τ , t)�τ

)/q

‖fn – f ‖p

≤  + [(q � ρ)μ]∗

[q � ρ]∗
eρ(t,κ)‖fn – f ‖p

for each t ∈ T
+, where /q + /p = . Then

∫ t
κ

U(t, τ )fn(τ )�τ → ∫ t
κ

U(t, τ )f (τ )�τ since
fn → f in Lp(T+, X) as n → ∞. Combining with (.) gives

ū(t) = U(t,κ)ū(κ) +
∫ t

κ

U(t, τ )f (τ )�τ

since ūn → ū in Cb,Fκ

rd (T+, X) as n → ∞. This implies that J(f ) = ū. The proof is com-
pleted. �

For each given s ∈ T
+, we let

Es :=
{

x ∈ X : sup
t≥s

∥∥U(t, s)x
∥∥ < ∞

}
, Fs := U(s,κ)Fκ . (.)

Lemma . If the pair (Cb
rd(T+, X), Lp(T+, X)) is admissible for the evolution family

U(t, s)t≥s on the time scale T
+, then the subspace Es is closed for every s ∈ T

+ and there
is a positive constant K and α ∈ Crd(T+,R) with [α]∗ >  such that

∥∥U(t, s)x
∥∥ ≤ Ke�α(t, s)‖x‖ (.)

for any x ∈ Es and t ≥ s.

Proof Let

γ :=


‖J‖
(

[p � β]∗
 + [(p � β)μ]∗

)/p

,  < β < γ , α = γ � β , (.)
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where J is defined in Lemma .. A direct calculation gives [γ � β]∗ > . For each given
s ∈ T

+ and any x ∈ Es \ {}, we let

ds,x = sup
{

t ∈ T
+|U(t, s)x �= , t ≥ s

}

and

ηs = inf
{

t ∈ T
+|t ≥ s + 

}
. (.)

Next we consider two different cases.
The first case is ds,x > ηs. We let ft : T+ → X by

ft(r) = χ[s,t)T+ (r)eβ (r, s)
U(r, s)x

‖U(r, s)x‖

and ut : T+ → X by

ut(r) =
∫ r

κ

χ[s,t)T+ (τ )
‖U(τ , s)x‖eβ (τ , s)�τU(r, s)x

for every t ∈ (s, ds,x)T+ . Then

‖ft‖p =
(∫ ∞

κ

∥∥ft(r)
∥∥p

�r
)/p

=
(∫ t

s
ep�β (r, s)�r

)/p

<
(
/[p � β]∗

)/peβ (t, s) < ∞ (.)

and supr∈[t,∞)T+ ‖ut(r)‖ < ∞ since ut(r) =
∫ t

s
eβ (τ ,s)

‖U(τ ,s)x‖�τU(r, s)x for r ≥ t and
supr∈[s,∞)T+ ‖U(r, s)x‖ < ∞ for x ∈ Es. This implies that ft ∈ Lp(T+, X) and ut ∈ Cb

rd(T+, X)
for every t ∈ T

+. Direct calculation shows that the pair (ut , ft) satisfies (.). Therefore, we
have ut = J(ft) and

‖ut‖∞ ≤ ‖J‖‖ft‖p (.)

since ut(κ) =  ∈ Fκ . Noting that t ∈ (s, ds,x)T+ is arbitrary, by (.), (.) and (.), we have

∫ t

s

eβ (τ , s)
‖U(τ , s)x‖�τ ≤ ‖J‖

([p � β]∗)/p
eβ (t, s)

‖U(t, s)x‖ ≤ 
γ

eβ (t, s)
‖U(t, s)x‖ (.)

for any t ∈ (s, ds,x)T+ since ‖ut(t)‖ ≤ ‖ut‖∞. On the other hand, it follows from (.) that

(
e�γ (t,κ)

∫ t

s

eβ (τ , s)
‖U(τ , s)x‖�τ

)�

= e�
�γ (t,κ)

∫ t

s

eβ (τ , s)
‖U(τ , s)x‖�τ + e�γ

(
σ (t),κ

)(∫ t

s

eβ (τ , s)
‖U(τ , s)x‖�τ

)�

= (�γ )e�γ (t,κ)
∫ t

s

eβ (τ , s)
‖U(τ , s)x‖�τ + e�γ (t,κ)

(
 + μ(t)(�γ )

) eβ (t, s)
‖U(t, s)x‖

= –
γ e�γ (t,κ)
 + μ(t)γ

∫ t

s

eβ (τ , s)
‖U(τ , s)x‖�τ +

(
e�γ (t,κ)
 + μ(t)γ

)
eβ (t, s)

‖U(t, s)x‖
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=
e�γ (t,κ)
 + μ(t)γ

(
–γ

∫ t

s

eβ (τ , s)
‖U(τ , s)x‖�τ +

eβ (t, s)
‖U(t, s)x‖

)

≥ 

for any t ∈ (s, ds,x)T+ , which implies that e�γ (t,κ)
∫ t

s
eβ (τ ,s)

‖U(τ ,s)x‖�τ is nondecreasing on
(s, ds,x)T+ . Then

e�γ (t,κ)
∫ t

s

eβ (τ , s)
‖U(τ , s)x‖�τ ≥ e�γ (ηs,κ)

∫ ηs

s

eβ (τ , s)
‖U(τ , s)x‖�τ (.)

for any t ∈ [ηs, ds,x)T+ . By (.), we have

∥∥U(t, s)x
∥∥ ≤ Leρ(t, s)‖x‖ ≤ Leρ(ηs, s)‖x‖ (.)

for any t ∈ [s,ηs]T+ . It follows from (.), (.), and (.) that


Leρ(ηs, s)‖x‖ ≤

∫ ηs

s


Leρ(ηs, s)‖x‖�τ ≤

∫ ηs

s

eβ (τ , s)
‖U(τ , s)x‖�τ

≤ e�γ (t,ηs)
∫ t

s

eβ (τ , s)
‖U(τ , s)x‖�τ ≤ e�γ (t,ηs)

γ

eβ (t, s)
‖U(t, s)x‖

for any t ∈ [ηs, ds,x)T+ . Then

∥∥U(t, s)x
∥∥ ≤ L

γ
eρ(ηs, s)e�γ (t,ηs)eβ (t, s)‖x‖

=
L
γ

eρ(ηs, s)e�γ (s,ηs)eβ�γ (t, s)‖x‖

=
L
γ

eρ⊕γ (ηs, s)e�α(t, s)‖x‖

for any t ∈ [ηs, ds,x)T+ . To obtain the conclusion, we need to show that δ(s) := eρ⊕γ (ηs, s) is
bounded for any s ∈ T

+. For the definition of ηs (see (.)), there are the following three
different cases:

Case . s +  ∈ T
+. We have ηs = inf{t ∈ T

+|t ≥ s + } = s +  < s +  + [μ]∗.
Case . s +  /∈ T

+ and (s, s + ] ∩T
+ �= ∅. Let t∗ = max{t ∈ [s, s + ]T+}. We have

σ (t∗) > t∗. In fact, if σ (t∗) = t∗, then t∗ is a right-dense point, which implies that
there is a point t∗∗ > t∗ and t∗∗ ∈ [s, s + ]T+ . This is a contradiction. By the
definition of t∗, we get ηs = σ (t∗) and ηs ≤ s +  + σ (t∗) – t∗ ≤ s +  + [μ]∗.

Case . (s, s + ] ∩T
+ = ∅. We have ηs = σ (s) > s and ηs ≤ s + σ (s) – s ≤ s +  + [μ]∗.

In view of the above discussion and (.), we have

δ(s) ≤ eρ(ηs, s)eγ (ηs, s) ≤ eρ(ηs–s)eγ (ηs–s) ≤ e(ρ+γ )(ηs–s) ≤ e(ρ+γ )(+[μ]∗) := L

for any s ∈ T
+. Then

∥∥U(t, s)x
∥∥ ≤ (LL/γ )e�α(t, s)‖x‖ (.)
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for all t ∈ [ηs, ds,x)T+ . Moreover, by (.), we get

∥∥U(t, s)x
∥∥ ≤ Leρ(t, s)‖x‖ = Leρ(t, s)eα(t, s)e�α(t, s)‖x‖

≤ Leρ(t, s)eγ (t, s)e�α(t, s)‖x‖ ≤ Leρ(ηs, s)eγ (ηs, s)e�α(t, s)‖x‖
≤ LLe�α(t, s)‖x‖ (.)

for all t ∈ [s,ηs]T+ . It follows from (.) and (.) that

∥∥U(t, s)x
∥∥ ≤ Ke�α(t, s)‖x‖ (.)

for all t ∈ [s, ds,x)T+ , where K = max{LL, (LL/γ )}.
The second case is s ≤ ds,x ≤ ηs. It follows from (.) and (.) that

∥∥U(t, s)x
∥∥ ≤ Leρ(t, s)‖x‖ ≤ Leρ(ηs, s)eγ (ηs, s)e�α(t, s)‖x‖ ≤ Ke�α(t, s)‖x‖ (.)

for all t ∈ [s, ds,x]T+ .
Based on (.), (.), and the definition of ds,x, we conclude that (.) holds. Let s ∈ T

+

and {xn}n∈N ⊂ Es with xn → x as n → ∞. Combining with (.) gives ‖U(t, s)xn‖ ≤ K‖xn‖
for any n ∈ N and any t ≥ s. Thus, we get ‖U(t, s)x‖ ≤ K‖x‖ for any t ≥ s. This implies
that x ∈ Es and Es is closed. The proof is completed. �

Lemma . If the pair (Cb
rd(T+, X), Lp(T+, X)) is admissible for the evolution family

U(t, s)t≥s on the time scale T
+, then the subspace Fs is closed for every s ∈ T

+ and there
is a positive constant K and α ∈ Crd(T+,R) with [α]∗ >  such that

K
∥∥U(t, s)y

∥∥ ≥ eα(t, s)‖y‖ (.)

for any y ∈ Fs and t ≥ s. Moreover, U(t, s)|Fs : Fs → Ft is an isomorphism for any t ≥ s,
t, s ∈ T

+.

Proof Let β , γ be positive constants and α be a rd-continuous function defined in (.).
For y ∈ Fκ \ {}, we have U(t,κ)y �=  for any t ∈ T

+. In fact, if there is t̄ ∈ T
+ such that

U(t̄,κ)y = , then U(t,κ)y = U(t, t̄)U(t̄,κ)y =  for any t ≥ t̄ and y ∈ Eκ . This means that
y ∈ Eκ ∩ Fκ and y = . This is a contradiction to y ∈ Fκ \ {}. For each t ∈ T

+, we choose
{τ t

n}n∈N ⊂ T
+ such that t < τ t

 < τ t
 < · · · < τ t

n < · · · and τ t
n → ∞ as n → ∞. We define fτ t

n :
T

+ → X by

fτ t
n (s) = –χ[t,τ t

n]T+ e�β (s,κ)
U(s,κ)y

‖U(s,κ)y‖

and uτ t
n : T+ → X by

uτ t
n (s) =

∫ ∞

s

χ[t,τ t
n]T+ (τ )e�β (τ ,κ)
‖U(τ ,κ)y‖ �τU(s,κ)y.

It follows that

‖fτ t
n‖p ≤

(∫ ∞

t
e�(p�β)(s,κ)�s

)/p

≤
(

 + [(p � β)μ]∗

[p � β]∗

)/p

e�β (t,κ) < ∞. (.)
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Moreover, uτ t
n is rd-continuous,

uτ t
n (κ) =

(∫ τ t
n

t

e�β (τ ,κ)
‖U(τ ,κ)y‖�τ

)
y ∈ Fκ

and uτ t
n (s) =  for s ≥ τ t

n, which implies that uτ t
n ∈ Cb,Fκ

rd (T+, X). Then uτ t
n = J(fτ t

n ) and
‖uτ t

n‖∞ ≤ ‖J‖‖fτ t
n‖p for any n ∈ N since it is easy to show that the pair (uτ t

n , fτ t
n ) satis-

fies (.). It follows from ‖uτ t
n (t)‖ ≤ ‖uτ t

n‖∞ and (.) that

∫ τ t
n

t

e�β (τ ,κ)
‖U(τ ,κ)y‖�τ

∥∥U(t,κ)y
∥∥ ≤ ‖J‖

(
 + [(p � β)μ]∗

[p � β]∗

)/p

e�β (t, k) =

γ

e�β (t,κ)

for any n ∈ N. This also reads

γ

∫ ∞

t

e�β (τ ,κ)
‖U(τ ,κ)y‖�τ ≤ e�β (t,κ)

‖U(t,κ)y‖ (.)

as n → ∞. It follows from (.) that

(
eγ (t,κ)

∫ ∞

t

e�β (τ ,κ)
‖u(τ ,κ)y‖�τ

)�

= e�
γ (t,κ)

∫ ∞

t

e�β (τ ,κ)
‖u(τ ,κ)y‖�τ + eγ

(
σ (t),κ

)(∫ ∞

t

e�β (τ ,κ)
‖u(τ ,κ)y‖�τ

)�

= γ eγ (t,κ)
∫ ∞

t

e�β (τ ,κ)
‖u(τ ,κ)y‖�τ –

(
 + μ(t)γ

)
eγ (t,κ)

e�β (t,κ)
‖U(t,κ)y‖

≤ eγ (t,κ)
(

γ

∫ ∞

t

e�β (τ ,κ)
‖u(τ ,κ)y‖�τ –

e�β (t,κ)
‖U(t,κ)y‖

)
≤ .

Thus, we get

eγ (t,κ)
∫ ∞

t

e�β (τ ,κ)
‖u(τ ,κ)y‖�τ ≤ eγ (s,κ)

∫ ∞

s

e�β (τ ,κ)
‖U(τ ,κ)y‖�τ (.)

for any t ≥ s, t, s ∈ T
+. Combining with (.) gives

γ eγ (t, s)
∫ ∞

t

e�β (τ ,κ)
‖u(τ ,κ)y‖�τ ≤ e�β (s,κ)

‖U(s,κ)y‖ (.)

for any t ≥ s, t, s ∈ T
+. On the other hand, due to (.), it is sufficient to have

∥∥U(τ ,κ)y
∥∥ =

∥∥U(τ , t)U(t,κ)y
∥∥ ≤ Leρ(τ , t)

∥∥U(t,κ)y
∥∥

for any τ ≥ t, τ , t ∈ T
+. This implies that

∫ ∞

t

e�β (τ ,κ)
‖u(τ ,κ)y‖�τ = e�β (t,κ)

∫ ∞

t

e�β (τ , t)
‖u(τ ,κ)y‖�τ ≥ e�β (t,κ)

L‖U(t,κ)y‖
∫ ∞

t
e�(β⊕ρ)(τ , t)�τ

≥ ( + [(β ⊕ ρ)μ]∗)e�β (t,κ)
L[β ⊕ ρ]∗‖U(t,κ)y‖ . (.)
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By (.) and (.), we have

eγ�β (t, s)
∥∥U(s,κ)y

∥∥ ≤ L[β ⊕ ρ]∗

γ ( + [(β ⊕ ρ)μ]∗)
∥∥U(t,κ)y

∥∥ (.)

for any t ≥ s, t, s ∈ T
+. Together with Fs = U(s,κ)Fκ , K‖U(t, s)y‖ ≥ eα(t, s)‖y‖ holds for

any y ∈ Fs and t ≥ s, where K = (L[β ⊕ ρ]∗/γ ( + [(β ⊕ ρ)μ]∗)).
We easily conclude that the subspace Fs is closed for every s ∈ T

+ since Fs = U(s,κ)Fκ

and Fκ is closed. It follows from Ft = U(t,κ)Fκ = U(t, s)Fs and (.) that U(t, s)|Fs : Fs → Ft

is well defined and bijection t ≥ s, t, s ∈ T
+. The proof is completed. �

We are now at the right position to establish Theorem ..

Proof of Theorem . (Sufficiency). If U(t, s)t≥s admits an exponential growth and an ex-
ponential dichotomy on the time scale T

+, then

‖x + y‖ ≥ 
L

e�ρ(t, s)
∥∥U(t, s)(x + y)

∥∥ ≥ 
L

e�ρ(t, s)
(


K

eα(t, s) – Ke�α(t, s)
)

for any t ≥ s and x ∈ Range P(s), y ∈ Ker P(s) with ‖x‖ = ‖y‖ = . This shows that there is a
positive constant ĉ such that

ĉ ≤ inf
s∈T+

{‖x + y‖|x ∈ Range P(s), y ∈ Ker P(s),‖x‖ = ,‖y‖ = 
}

≤
∥∥∥∥ P(s)z
‖P(s)z‖ +

id – P(s)z
‖id – P(s)z‖

∥∥∥∥ ≤ ‖z‖
‖P(s)z‖

for any z ∈ X, which implies that ‖P(s)‖ ≤ /ĉ := c for any s ∈ T
+. For every f ∈ Lp(T+, X),

we let

u(t) =
∫ t

κ

U(t, τ )P(τ )f (τ )�τ –
∫ ∞

t
U(t, τ )

(
id – P(τ )

)
f (τ )�τ .

It follows from (i) and (ii) in Definition . that

∥∥u(t)
∥∥ ≤ Kc

∫ t

κ

e�α(t, τ )
∥∥f (τ )

∥∥�τ + K( + c)
∫ ∞

t
e�α(τ , t)

∥∥f (τ )
∥∥�τ

≤
(

Kc
[q � α]∗

)/q

‖f ‖p +
(

 + [(q � α)μ]∗

[q � α]∗

)/q

‖f ‖p

for any t ∈ T
+, where /q + /p = . Then u ∈ Crd(T+,R). A direct calculation gives the

pair (u, f ) that satisfies (.). Thus, the pair (Cb
rd(T+, X), Lp(T+, X)) is admissible for the

evolution family U(t, s)t≥s on the time scale T
+. In view of (i) and (ii) in Definition ., for

any x ∈ Eκ , we have supt∈T+ ‖U(t,κ)x‖ < ∞ and

eα(t,κ)
K

∥∥(
id – P(κ)

)
x
∥∥ ≤ ∥∥U(t,κ)

(
id – P(κ)

)
x
∥∥

≤ sup
t∈T+

∥∥U(t,κ)x
∥∥ + Ke�α(t,κ)

∥∥P(κ)x
∥∥

≤ sup
t∈T+

∥∥U(t,κ)x
∥∥ + Kc‖x‖ < ∞
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for any t ∈ T
+. Therefore, (id – P(κ))x =  and x ∈ Range P(κ). On the other hand, it is clear

that Range P(κ) ⊂ Eκ . This means that Eκ = Range P(κ) is closed and complemented in X.
(Necessity). By Lemmas . and ., if the pair (Cb

rd(T+, X), Lp(T+, X)) is admissible for
the evolution family U(t, s)t≥s on the time scale T

+, then Es and Fs (see (.)) are both
closed linear subspaces for every s ∈ T

+. Let P(s) be the projection satisfying P(s)(X) = Es

for every s ∈ T
+. To obtain the conclusions, we need to prove (I –P(s))(X) = Fs. If z ∈ Es ∩Fs

for every s ∈ T
+, then there is ẑ ∈ Fκ such that U(s,κ)ẑ = z. By U(t,κ)ẑ = U(t, s)U(s,κ)ẑ =

U(t, s)x ∈ Cb
rd(T+, X), we get ẑ ∈ Eκ ∩ Fκ = {} and z = U(s,κ)ẑ = . Thus, Es ∩ Fs = {}. For

any z ∈ X, we have f (t) := χ[s,ηs)T+ U(t, s)z ∈ Lp(T+, X) and there exists u ∈ Cb.Fκ

rd (T+, X) such
that

u(t) = J(f ) = U(t, s)u(s) +
∫ t

s
U(t, τ )f (τ )�τ

≥ U(t, s)u(s) +
∫ ηs

s
U(t, τ )f (τ )�τ

≥ U(t, s)
(
u(s) + z

)

for any t ≥ ηs, where ηs can be found in (.). Then we get u(s) + z ∈ Es. This implies
together with the fact that u(s) ∈ Fs since u(κ) ∈ Fκ that z = u(s) + z – u(s) ∈ Es + Fs. Com-
bining with Es ∩Fs = {} gives X = Es ⊕Fs. This means that (I – P(s))(X) = Fs is well defined.
Hence, we have U(t, s)P(s) = P(t)U(t, s), Range P(s) = Es and Ker P(s) = F(s). It follows from
Lemma . and Lemma . that U(t, s)t≥s admits an exponential dichotomy on the time
scale T

+, where K = max{K, K} and β , γ , α can be found in (.). �

Remark . Our result extends related results known for differential equations [] and
difference equations [] on the half-line to more general time scales.
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