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Abstract
In this paper, we study the fuzzy Laplace transforms introduced by the authors in
(Allahviranloo and Ahmadi in Soft Comput. 14:235-243, 2010) to solve only first-order
fuzzy linear differential equations. We extend and use this method to solve
second-order fuzzy linear differential equations under generalized Hukuhara
differentiability.
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1 Introduction
In recent years, the theory of FDEs has attracted widespread attention and has been rapidly
growing. It was massively studied by several authors (see [–]). Concerning the solutions
of this kind of equations, some numerical methods and algorithms have been developed
by other researchers (see [–]).

Allahviranloo et al. proposed in [] a novel method for solving fuzzy linear differential
equations, which its construction based on the equivalent integral forms of original prob-
lems under the assumption of strongly generalized differentiability. But their method was
limited to solving only fuzzy linear differential equations with crisp constant coefficients,
and its main result was formal and lacks proof.

Motivated by their work, we have developed and extended in  (see []) this op-
erator method to solve some first-order fuzzy linear differential equations, with variable
coefficients. Moreover, we gave the general formula’s solution with necessary proofs.

Before, in , Allahviranloo and Ahmadi introduced in [] the fuzzy Laplace trans-
form, which they used under the strongly generalized differentiability, in an analytic solu-
tion method for some first-order fuzzy differential equations (FDEs).

In their main result the authors established the relation between the fuzzy Laplace trans-
forms of a fuzzy function and its first derivative.

They gave two numerical examples to illustrate the efficiency of the method, but these
two examples are all first-order FDEs.

The aim of this work is to develop their method and to extend their main result by estab-
lishing the relationship between the fuzzy Laplace transforms of a function and its second
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derivative, with the purpose of solving second-order fuzzy linear differential equations
under strongly generalized differentiability.

The remainder of this paper is organized as follows:
In Section , which is reserved for some preliminaries, we collect some useful results

on fuzzy derivation and integration. In Section , we first introduce the fuzzy Laplace
transform, we recall its basic properties. Then we announce and prove our main result. In
Section , we propose the procedure for solving second-order FDEs by the fuzzy Laplace
transform. For illustration, we give some numerical examples in Section . In the last sec-
tion, we present our conclusion and a further research topic.

2 Preliminaries
By PK (R) we denote the family of all nonempty, compact, and convex subsets of R and
define the addition and scalar multiplication in PK (R) as usual. Denote

E =
{

u : R → [, ]|u satisfies (i)-(iv) below
}

,

where
(i) u is normal, i.e. ∃x ∈R for which u(x) = ,

(ii) u is fuzzy convex, i.e.

u
(
λx + ( – λy)

) ≥ min
(
u(x), u(y)

)
for any x, y ∈R, and λ ∈ [, ],

(iii) u is upper semi-continuous,
(iv) supp u = {x ∈R|u(x) > } is the support of the u, and its closure cl (supp u) is

compact.
For  < α ≤ , denote

[u]α =
{

x ∈R|u(x) ≥ α
}

.

Then, from (i)-(iv), it follows that the α-level set [u]α ∈ PK (R) for all  ≤ α ≤ .
According to Zadeh’s extension principle, we have addition and scalar multiplication in

fuzzy-number space E as usual.
It is well known that the following properties are true for all levels:

[u + v]α = [u]α + [v]α , [ku]α = k[u]α .

Let D : E × E → [,∞) be a function which is defined by the equation

D(u, v) = sup
≤α≤

d
(
[u]α , [v]α

)
,

where d is the Hausdorff metric defined in PK (R). Then it is easy to see that D is a metric
in E and has the following properties []:

() (E, D) is a complete metric space;
() D(u + w, v + w) = D(u, v) for all u, v, w ∈ E;
() D(ku, kv) = |k|D(u, v) for all u, v ∈ E and k ∈R;
() D(u + w, v + t) ≤ D(u, v) + D(w, t) for all u, v, w, t ∈ E.
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Definition . A fuzzy number u in parametric form is a pair (u, u) of functions u(r), u(r),
 ≤ r ≤ , which satisfy the following requirements:

() u(r) is a bounded non-decreasing left continuous function in (, ], and right
continuous at ;

() u(r) is a bounded non-increasing left continuous function in (, ], and right
continuous at ;

() u(r) ≤ u(r) for all  ≤ r ≤ .

A crisp number k is simply represented by u(r) = u(r) = k,  ≤ r ≤ .
Let T = [c, d] ⊂R be a compact interval.

Definition . A mapping F : T → E is strongly measurable if for all α ∈ [, ] the set-
valued function Fα : T →PK (R) defined by Fα(t) = [F(t)]α is Lebesgue measurable.

A mapping F : T → E is called integrably bounded if there exists an integrable function
k such that ‖x‖ ≤ k(t) for all x ∈ F(t).

Definition . Let F : T → E, then the integral of F over T , denoted by
∫

T F(t) dt or
∫ d

c F(t) dt, is defined by the equation

[∫

T
F(t) dt

]α

=
∫

T
Fα(t) dt; α ∈ ], ]

i.e.

[∫

T
F(t) dt

]α

=
{∫

T
f (t) dt|f : T →R is a measurable selection for Fα

}
.

Also, a strongly measurable and integrably bounded mapping F : T → E is said to be inte-
grable over T if

∫
T F(t) dt ∈ E.

Proposition . (Aumann []) If F : T → E is strongly measurable and integrably
bounded, then F is integrable.

For more measurability, integrability properties for fuzzy set-valued mappings see [, ,
].

Theorem . (see [, ]) Let f (x) be a fuzzy valued-function on [a,∞[ which is repre-
sented by (f (x, r), f (x, r)). For any fixed r ∈ [, ], assume f (x, r), f (x, r) are Riemann inte-
grable on [a, b] for every b ≥ a, and assume there are two positive constants M(r) and M(r)
such that

∫ b
a |f (x, r)|dx ≤ M(r) and

∫ b
a |f (x, r)|dx ≤ M(r) for every b ≥ a. Then f (x) is im-

proper fuzzy Riemann integrable on [a,∞[ and the improper fuzzy Riemann integral is a
fuzzy number. Furthermore, we have

∫ ∞

a
f (x) dx =

(∫ ∞

a
f (x, r) dx,

∫ ∞

a
f (x, r) dx

)
.

Proposition . (see []) If each of f (x) and g(x) is a fuzzy valued function and fuzzy Rie-
mann integrable on [a,∞[ then f (x) + g(x) is fuzzy Riemann integrable on [a,∞[. Moreover,
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we have
∫ ∞

a

(
f (x) + g(x)

)
dx =

∫ ∞

a
f (x) dx +

∫ ∞

a
g(x) dx.

For u, v ∈ E, if there exists w ∈ E such that u = v + w, then w is the Hukuhara difference
of u and v denoted by u 
 v.

Definition . We say that a mapping f : (a, b) → E is strongly generalized differentiable
at x ∈ (a, b) if there exists an element f ′(x) ∈ E such that

(i) for all h >  sufficiently small, there exist f (x + h) 
 f (x), f (x) 
 f (x – h), and the
limits

lim
h→+

f (x + h) 
 f (x)
h

= lim
h→+

f (x) 
 f (x – h)
h

= f ′(x)

or
(ii) for all h >  sufficiently small, there exist f (x) 
 f (x + h), f (x – h) 
 f (x), and the

limits

lim
h→+

f (x) 
 f (x + h)
(–h)

= lim
h→+

f (x – h) 
 f (x)
(–h)

= f ′(x)

or
(iii) for all h >  sufficiently small, there exist f (x + h) 
 f (x), f (x – h) 
 f (x), and the

limits

lim
h→+

f (x + h) 
 f (x)
h

= lim
h→+

f (x – h) 
 f (x)
(–h)

= f ′(x)

or
(iv) for all h >  sufficiently small, there exist f (x) 
 f (x + h), f (x) 
 f (x – h), and the

limits

lim
h→+

f (x) 
 f (x + h)
(–h)

= lim
h→+

f (x) 
 f (x – h)
h

= f ′(x).

The following theorem (see []) allows us to consider case (i) or (ii) of the previous
definition almost everywhere in the domain of the functions under discussion.

Theorem . Let f : (a, b) → E be strongly generalized differentiable on each point x ∈
(a, b) in the sense of Definition ., (iii) or (iv). Then f ′(x) ∈ R for all x ∈ (a, b).

Theorem . (see e.g. []) Let f : R → E be a function and denote f (t) = (f (t, r), f (t, r)),
for each r ∈ [, ]. Then

() If f is (i)-differentiable, then f (t, r) and f (t, r) are differentiable functions and
f ′(t) = (f ′(t, r), f ′(t, r)).

() If f is (ii)-differentiable, then f (t, r) and f (t, r) are differentiable functions and
f ′(t) = (f ′(t, r), f ′(t, r)).

Definition . We say that a mapping f : (a, b) → E is strongly generalized differentiable
of the second-order at x ∈ (a, b); if there exists an element f ′′(x) ∈ E such that
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(i) for all h >  sufficiently small, there exist f ′(x + h) 
 f ′(x), f ′(x) 
 f ′(x – h), and
the limits

lim
h→+

f ′(x + h) 
 f ′(x)
h

= lim
h→+

f ′(x) 
 f ′(x – h)
h

= f ′′(x)

or
(ii) for all h >  sufficiently small, there exist f ′(x) 
 f ′(x + h), f ′(x – h) 
 f ′(x), and

the limits

lim
h→+

f ′(x) 
 f ′(x + h)
(–h)

= lim
h→+

f ′(x – h) 
 f ′(x)
(–h)

= f ′′(x)

or
(iii) for all h >  sufficiently small, there exist f ′(x + h) 
 f ′(x), f ′(x – h) 
 f ′(x), and

the limits

lim
h→+

f ′(x + h) 
 f ′(x)
h

= lim
h→+

f ′(x – h) 
 f ′(x)
(–h)

= f ′′(x)

or
(iv) for all h >  sufficiently small, there exist f ′(x) 
 f ′(x + h), f ′(x) 
 f ′(x – h), and

the limits

lim
h→+

f ′(x) 
 f ′(x + h)
(–h)

= lim
h→+

f ′(x) 
 f ′(x – h)
h

= f ′′(x).

All the limits are taken in the metric space (E, D), and at the end points of (a, b) and we
consider only one-sided derivatives.

3 Fuzzy Laplace transform
Definition . (see []) Let f (x) be a continuous fuzzy-valued function. Suppose that
e–pxf (x) is improper fuzzy Riemann integrable on [,∞[, then

∫ ∞
 e–pxf (x) dx is called the

fuzzy Laplace transform of f and is denoted

L
[
f (x)

]
=

∫ ∞


e–pxf (x) dx, p > .

Denote by L(g(x)) the classical Laplace transform of a crisp function g(x).
Since

∫ ∞
 e–pxf (x) dx = (

∫ ∞
 e–pxf (x, r) dx,

∫ ∞
 e–pxf (x, r) dx), then

L
[
f (x)

]
=

(
L

(
f (x, r)

)
,L

(
f (x, r)

))
.

Theorem . (see []) Let f ′(x) be an integrable fuzzy-valued function and f (x) the prim-
itive of f ′(x) on [,∞[. Then

(a) if f is (i)-differentiable:

L
[
f ′(x)

]
= pL

[
f (x)

] 
 f () ()

(b) or if f is (ii)-differentiable:

L
[
f ′(x)

]
=

(
–f ()

) 
 (–p)L
[
f (x)

]
. ()
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Theorem . (see []) Let f (x), g(x) be continuous fuzzy-valued functions and c, c two
real constants, then

L
[
cf (x) + cg(x)

]
= cL

[
f (x)

]
+ cL

[
g(x)

]
.

Now, we present our main result about the relation between the Laplace transforms of
a function and its second derivative.

Theorem . Let f (x) be a continuous fuzzy-valued function such that e–pxf (x), e–pxf ′(x),
and e–pxf ′′(x) exist, are continuous, and Riemann integrable on [,∞[. We distinguish the
following cases:

(a) If f (x) and f ′(x) are (i)-differentiable, then

L
[
f ′′(x)

]
=

{
pL

[
f (x)

] 
 pf ()
} 
 f ′(). ()

(b) If f (x) is (i)-differentiable and f ′(x) is (ii)-differentiable, then

L
[
f ′′(x)

]
=

(
–f ′()

) 
 {
–pL

[
f (x)

] 
 (
–pf ()

)}
. ()

(c) If f (x) is (ii)-differentiable and f ′(x) is (i)-differentiable, then

L
[
f ′′(x)

]
=

{(
–pf ()

) 
 (
–pL

[
f (x)

])} 
 f ′(). ()

(d) If f (x) is (ii)-differentiable and f ′(x) is (ii)-differentiable, then

L
[
f ′′(x)

]
=

(
–f ′()

) 
 {
pf () 
 pL

[
f (x)

]}
. ()

Proof
(a) Assume that f (x) and f ′(x) are (i)-differentiable, then applying () to f (x) and f ′(x),

respectively, we get

L
[
f ′(x)

]
= pL

[
f (x)

] 
 f () and L
[
f ′′(x)

]
= pL

[
f ′(x)

] 
 f ′().

Combining these identities yields

L
[
f ′′(x)

]
= p

{
pL

[
f (x)

] 
 f ()
} 
 f ′()

=
{

pL
[
f (x)

] 
 pf ()
} 
 f ′().

(b) Assume that f (x) is (i)-differentiable and f ′(x) is (ii)-differentiable, then applying ()
and () to f (x) and f ′(x), respectively, we get

L
[
f ′(x)

]
= pL

[
f (x)

] 
 f () and L
[
f ′′(x)

]
=

(
–f ′()

) 
 (–p)L
[
f ′(x)

]
.

By combination of these identities we get

L
[
f ′′(x)

]
=

(
–f ′()

) 
 (–p)
{

pL
[
f (x)

] 
 f ()
}

=
(
–f ′()

) 
 {
–pL

[
f (x)

] 
 (
–pf ()

)}
.
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(c) If f (x) is (ii)-differentiable and f ′(x) is (i)-differentiable, then

L
[
f ′(x)

]
=

(
–f ()

) 
 (–p)L
[
f (x)

]
and L

[
f ′′(x)

]
= pL

[
f ′(x)

] 
 f ′().

By combination of these identities we get

L
[
f ′′(x)

]
= p

{(
–f ()

) 
 (–p)L
[
f (x)

]} 
 f ′()

=
{(

–pf ()
) 
 (

–p)L
[
f (x)

]} 
 f ′().

(d) Assume that f (x) and f ′(x) are (ii)-differentiable, then

L
[
f ′(x)

]
=

(
–f ()

) 
 (–p)L
[
f (x)

]
and L

[
f ′′(x)

]
=

(
–f ′()

) 
 (–p)L
[
f ′(x)

]
.

Combining these identities yields

L
[
f ′′(x)

]
=

(
–f ′()

) 
 (–p)
{(

–f ()
) 
 (–p)L

[
f (x)

]}

=
(
–f ′()

) 
 {
pf () 
 pL

[
f (x)

]}
. �

4 Fuzzy Laplace transform algorithm for second-order fuzzy differential
equations

Our aim now is to solve the following second-order fuzzy differential equation, using the
fuzzy Laplace transform method under strongly generalized differentiability:

⎧
⎪⎪⎨

⎪⎪⎩

y′′(t) = f (t, y(t), y′(t)),

y() = y = (y

, y) ∈ E,

y′() = z = (z, z) ∈ E,

()

where y(t) = (y(t,α), y(t,α)) is a fuzzy function of t ≥  and f (t, y(t), y′(t)) is a fuzzy-valued
function, which is linear with respect to (y(t), y′(t)).

By using the fuzzy Laplace transform, we obtain

L
[
y′′(t)

]
= L

[
f
(
t, y(t), y′(t)

)]
. ()

Then we have the following alternatives for solving ():
(a) Case I: If y and y′ are (i)-differentiable: y′(t) = (y′(t,α), y′(t,α)) and

y′′(t) = (y′′(t,α), y′′(t,α)) and

L
[
y′′(t)

]
=

{
pL

[
y(t)

] 
 py()
} 
 y′().

Therefore

L
[
f
(
t, y(t), y′(t)

)]
=

{
pL

[
y(t)

] 
 py
} 
 z.

Hence
⎧
⎨

⎩
L[f (t, y(t), y′(t),α)] = pL[y(t,α)] – py


(α) – z(α),

L[f (t, y(t), y′(t),α)] = pL[y(t,α)] – py(α) – z(α),
()
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where f (t, y(t), y′(t),α) = min{f (t, u, v)/u ∈ (y(t,α), y(t,α)); v ∈ (y′(t,α), y′(t,α))} and
f (t, y(t), y′(t),α) = max{f (t, u, v)/u ∈ (y(t,α), y(t,α)); v ∈ (y′(t,α), y′(t,α))}. Assume
that this leads to

⎧
⎨

⎩
L[y(t,α)] = H(p,α),

L[y(t,α)] = K(p,α),

where the couple (H(p,α), K(p,α)) is a solution of the system ().
By using the inverse Laplace transform we get

⎧
⎨

⎩
y(t,α) = L–[H(p,α)],

y(t,α) = L–[K(p,α)].

(b) Case II: If y is (i)-differentiable and y′ is (ii)-differentiable: y′(t) = (y′(t,α), y′(t,α)) and
y′′(t) = (y′′(t,α), y′′(t,α)) and

L
[
y′′(t)

]
=

(
–y′()

) 
 {
–pL

[
y(t)

] 
 (
–py()

)}
.

Therefore

L
[
f
(
t, y(t), y′(t)

)]
= (–z) 
 {

–pL
[
y(t)

] 
 (–py)
}

.

Hence
⎧
⎨

⎩
L[f (t, y(t), y′(t),α)] = pL[y(t,α)] – py


(α) – z(α),

L[f (t, y(t), y′(t),α)] = pL[y(t,α)] – py(α) – z(α).
()

Assume that this implies

⎧
⎨

⎩
L[y(t,α)] = H(p,α),

L[y(t,α)] = K(p,α),

where (H(p,α), K(p,α)) is a solution of the system ().
By using the inverse Laplace transform we get

⎧
⎨

⎩
y(t,α) = L–[H(p,α)],

y(t,α) = L–[K(p,α)].

(c) Case III: If y is (ii)-differentiable and y′ is (i)-differentiable: y′(t) = (y′(t,α), y′(t,α))
and y′′(t) = (y′′(t,α), y′′(t,α)) and

L
[
y′′(t)

]
=

{(
–py()

) 
 (
–pL

[
y(t)

])} 
 y′().

Therefore

L
[
f
(
t, y(t), y′(t)

)]
=

{(
–py()

) 
 (
–pL

[
y(t)

])} 
 y′().
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Hence
⎧
⎨

⎩
L[f (t, y(t), y′(t),α)] = pL[y(t,α)] – py


(α) – z(α),

L[f (t, y(t), y′(t),α)] = pL[y(t,α)] – py(α) – z(α).
()

Assume that this leads to
⎧
⎨

⎩
L[y(t,α)] = H(p,α),

L[y(t,α)] = K(p,α),

where (H(p,α), K(p,α)) is a solution of the system ().
By using the inverse Laplace transform we get

⎧
⎨

⎩
y(t,α) = L–[H(p,α)],

y(t,α) = L–[K(p,α)].

(d) Case IV: If y and y′ are (ii)-differentiable: y′(t) = (y′(t,α), y′(t,α)) and
y′′(t) = (y′′(t,α), y′′(t,α)) and

L
[
y′′(t)

]
=

(
–y′()

) 
 {
py() 
 pL

[
y(t)

]}
.

Therefore

L
[
f
(
t, y(t), y′(t)

)]
=

(
–y′()

) 
 {
py() 
 pL

[
y(t)

]}
.

Hence
⎧
⎨

⎩
L[f (t, y(t), y′(t),α)] = pL[y(t,α)] – py


(α) – z(α),

L[f (t, y(t), y′(t),α)] = pL[y(t,α)] – py(α) – z(α).
()

Assume that this implies

⎧
⎨

⎩
L[y(t,α)] = H(p,α),

L[y(t,α)] = K(p,α),

where (H(p,α), K(p,α)) is a solution of the system ().
By using the inverse Laplace transform we get

⎧
⎨

⎩
y(t,α) = L–[H(p,α)],

y(t,α) = L–[K(p,α)].

Remark . To show that H(p,α) and K(p,α) can easily be calculated, we suppose that
the fuzzy linear function f is given by f (t, y(t), y′(t)) = ay(t) + by′(t) + c(t), where a, b are
real constants and c(t) is a crisp mapping.
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We have to discuss the following cases:
() Case (I.): If a ≥  and b ≥ , then the system () is equivalent to

⎧
⎨

⎩
pL[y(t,α)] – py


(α) – z(α) = (a + bp)L[y(t,α)] – by


(α) + L[c(t)],

pL[y(t,α)] – py(α) – z(α) = (a + bp)L[y(t,α)] – by(α) + L[c(t)].

By consequence
⎧
⎨

⎩
H(p,α) = L[y(t,α)] =

(p–b)y(α)+z(α)+L[c(t)]
p–bp–a ,

K(p,α) = L[y(t,α)] = (p–b)y(α)+z(α)+L[c(t)]
p–bp–a .

() Case (I.): If a ≥  and b < , then () is equivalent to the following system:
⎧
⎨

⎩
(p – a)L[y(t,α)] – bpL[y(t,α)] = py


(α) + z(α) – by(α) + L[c(t)],

bpL[y(t,α)] + (p – a)L[y(t,α)] = py(α) + z(α) – by

(α) + L[c(t)].

Denote
⎧
⎨

⎩
B(p,α) = py


(α) + z(α) – by(α) + L[c(t)],

C(p,α) = py(α) + z(α) – by

(α) + L[c(t)].

()

Hence
⎧
⎨

⎩
H(p,α) = L[y(t,α)] = (p–a)B(p,α)+bpC(p,α)

(p–a)+(bp) ,

K(p,α) = L[y(t,α)] = (p–a)C(p,α)–bpB(p,α)
(p–a)+(bp) .

() Case (I.): If a <  and b ≥ , then () is equivalent to the following system:
⎧
⎨

⎩
(p – bp)L[y(t,α)] – aL[y(t,α)] = py


(α) + z(α) – by(α) + L[c(t)],

–aL[y(t,α)] + (p – bp)L[y(t,α)] = py(α) + z(α) – by

(α) + L[c(t)].

Therefore
⎧
⎨

⎩
H(p,α) = L[y(t,α)] = (p–bp)B(p,α)+aC(p,α)

(p–bp)+a ,

K(p,α) = L[y(t,α)] = (p–a)C(p,α)+aB(p,α)
(p–bp)+a .

() Case (I.): If a <  and b < , then () is equivalent to the following system:
⎧
⎨

⎩
pL[y(t,α)] – (a + bp)L[y(t,α)] = py


(α) + z(α) – by(α) + L[c(t)],

–(a + bp)L[y(t,α)] + pL[y(t,α)] = py(α) + z(α) – by

(α) + L[c(t)].

Therefore
⎧
⎨

⎩
H(p,α) = L[y(t,α)] = pB(p,α)+(a+bp)C(p,α)

p+(a+bp) ,

K(p,α) = L[y(t,α)] = pC(p,α)+(a+bp)B(p,α)
p+(a+bp) .

Here B(p,α) and C(p,α) are given by ().
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Similarly, the respective expressions of H(p,α), K(p,α), H(p,α), K(p,α), H(p,α),
K(p,α) can be computed.

5 Numerical examples
The following first example was studied in [] using the fuzzy double integral method:

Example 

⎧
⎪⎪⎨

⎪⎪⎩

y′′(x) + y(x) = σ, σ = (α,  – α),

y(,α) = (α – ,  – α),

y′(,α) = (α – ,  – α).

()

• Case I: If y(x) and y′(x) are (i)-differentiable, then

⎧
⎨

⎩
y′′(x,α) + y(x,α) = α,

y′′(x,α) + y(x,α) =  – α.

Therefore

⎧
⎨

⎩
L[y′′(x,α)] + L[y(x,α)] = α

p ,

L[y′′(x,α)] + L[y(x,α)] = –α
p .

Using Theorem ., we get

⎧
⎨

⎩
L[y(x,α)] = (α – ) p+

p+ + α( 
p – p

p+ ),

L[y(x,α)] = ( – α) p+
p+ + ( – α)( 

p – p
p+ ).

By the inverse Laplace transform we deduce

⎧
⎨

⎩
y(x,α) = α( + sin(x)) – sin(x) – cos(x),

y(x,α) = ( – α)( + sin(x)) – sin(x) – cos(x).

In this case, no solution exists, since y′(x) is not an (i)-differentiable fuzzy-valued
function (see []).

• Case II: If y(x) is (i)-differentiable and y′(x) is (ii)-differentiable, then

⎧
⎨

⎩
L[y′′(x,α)] + L[y(x,α)] = α

p ,

L[y′′(x,α)] + L[y(x,α)] = –α
p .

Using Theorem ., we get

⎧
⎨

⎩
pL[y(x,α)] + L[y(x,α)] = ( – α)(p + ) + α

p ,

L[y(x,α)] + pL[y(x,α)] = (α – )(p + ) + –α
p .
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Thus
⎧
⎨

⎩
L[y(x,α)] = α( 

(p–) – 
(p+) + 

p ) + 
(p+) – 

(p–) – p
p+ ,

L[y(x,α)] = α( 
(p+) – 

(p–) – 
p ) + 

p + 
(p–) – 

(p+) – p
p+ .

By the inverse Laplace transform we deduce

⎧
⎨

⎩
y(x,α) = α( + sinh(x)) – sinh(x) – cos(x),

y(x,α) = ( – α)( + sinh(x)) – sinh(x) – cos(x).

As in case I, no solution exists (see []).
• Case III: If y(x) is (ii)-differentiable and y′(x) is (i)-differentiable, then

⎧
⎨

⎩
L[y(x,α)] = α( 

(p+) – 
(p–) + 

p ) + 
(p–) – 

(p+) – p
p+ ,

L[y(x,α)] = α( 
(p–) – 

(p+) – 
p ) + 

p + 
(p+) – 

(p–) – p
p+ .

By the inverse Laplace transform we deduce

⎧
⎨

⎩
y(x,α) = α( – sinh(x)) + sinh(x) – cos(x),

y(x,α) = ( – α)( – sinh(x)) + sinh(x) – cos(x).

In this case, since y(x) is (ii)-differentiable and y′(x) is (i)-differentiable, the solution is
acceptable for x ∈ (, ln( +

√
)) (see []).

• Case IV: If y(x) and y′(x) are (ii)-differentiable, then

⎧
⎨

⎩
L[y(x,α)] = (α – )( p

p+ – 
p+ ) + α( 

p – p
p+ ),

L[y(x,α)] = ( – α)( p
p+ – 

p+ ) + ( – α)( 
p – p

p+ ).

By the inverse Laplace transform we deduce

⎧
⎨

⎩
y(x,α) = α( – sin(x)) + sin(x) – cos(x),

y(x,α) = ( – α)( – sin(x)) + sin(x) – cos(x).

In this case, the solution is acceptable for x ∈ (, π
 ) (see []).

Example  We consider the following fuzzy differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

y′′(x) = y′(x) + x + ,

y(,α) = (α – ,  – α),

y′(,α) = (α – ,  – α).

()

• Case I: If y(x) and y′(x) are (i)-differentiable, then

⎧
⎨

⎩
L[y′′(x,α)] = L[y′(x)] + L[t + ],

L[y′′(x,α)] = L[y′(x)] + L[t + ].
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Using Theorems . and ., we get

⎧
⎨

⎩
L[y(x,α)] = α–

p– + p+
p(p–) ,

L[y(x,α)] = –α
p– + p+

p(p–) .

By the inverse Laplace transform we deduce

⎧
⎨

⎩
y(x,α) = αex – x

 – x – ,

y(x,α) = ex( – α) – x

 – x – .

In this case, the solution is valid for all x ∈R.
• Case II: If y(x) is (i)-differentiable and y′(x) is (ii)-differentiable, then by Theorems .

and . we get

⎧
⎨

⎩
–pL[y(x,α)] + pL[y(x,α)] = ( – α)p +  – α + p+

p ,

pL[y(x,α)] – pL[y(x,α)] = (α – )p + α –  + p+
p .

Therefore
⎧
⎨

⎩
L[y(x,α)] = α–

p– + –α

p(p–) + p+
p(p–) ,

L[y(x,α)] = –α
p– + α–

p(p–) + p+
p(p–) .

Using the inverse Laplace transform we deduce

⎧
⎨

⎩
y(x,α) = αex + ( – α) cosh(x) – x

 – x –  + α,

y(x,α) = ( – α)ex + (α – ) cosh(x) – x

 – x +  – α.

This solution is not acceptable since y′′(x,α) = y′(x,α) + x + .
• Case III: If y(x) is (ii)-differentiable and y′(x) is (i)-differentiable, then by Theorems .

and . we get

⎧
⎨

⎩
L[y(x,α)] = –α

p– + α–
p(p–) + p+

p(p–) ,

L[y(x,α)] = α–
p– + –α

p(p–) + p+
p(p–) .

Using the inverse Laplace transform we deduce

⎧
⎨

⎩
y(x,α) = ( – α)ex – x

 – x –  + α,

y(x,α) = αex – x

 – x +  – α.

In this case, the solution is valid for all x ∈R.
• Case IV: If y(x) and y′(x) are (ii)-differentiable, then by Theorems . and . we get

⎧
⎨

⎩
pL[y(x,α)] – pL[y(x,α)] = (α – )p + p+

p ,

–pL[y(x,α)] + pL[y(x,α)] = ( – α)p + p+
p .
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By solving this linear system and using the inverse Laplace transform, we get

⎧
⎨

⎩
y(x,α) = (α – ) cosh(x) + ( – α) sinh(x) + ex – x

 – x – ,

y(x,α) = ( – α) cosh(x) + (α – ) sinh(x) + ex – x

 – x – .

As in case II, no solution exists.

6 Conclusion
In the present work, the relation between the fuzzy Laplace transforms of a fuzzy func-
tion and its second derivative is established and proved. The main purpose of the paper
is to solve fuzzy linear second-order differential equations (FDEs) using the fuzzy Laplace
transform method, under generalized differentiability. The efficiency of the proposed al-
gorithm is illustrated by giving two numerical examples.

For future research, we will investigate the relationship between the fuzzy Laplace trans-
form of a fuzzy function and that of its kth derivative, with k ≥ , then we will apply the
Laplace method to solve a large class of FDEs.
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