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Abstract
In this paper, some sufficient conditions on the existence of 2kπ -periodic solutions
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1 Introduction
In this paper, we are concerned with the existence of homoclinic solutions for the following
prescribed mean curvature Rayleigh equation:

(
x′(t)√

 + x′(t)

)′
+ f

(
x′(t)

)
+ g

(
x(t)

)
= e(t), (.)

where f , g, e ∈ C(R,R) with f () =  and g() = .
A solution x(t) of (.) is named homoclinic (to ) if x(t) →  and x′(t) →  as |t| → .

Furthermore, x(t) is called a nontrivial homoclinic solution (.) if x(t) is a homoclinic
solution of (.) and x �= .

Various types of prescribed mean equations have been studied widely by some authors
in many papers (see [–]) because of their having appeared in some scientific fields, such
as differential geometry and physics. Recently, some results on the existence of solutions
for prescribed mean equations were obtained (see [–] and references cited therein).
Feng in [] discussed a delay prescribed mean curvature Liénard equation of the form

(
x′(t)√

 + x′(t)

)′
+ f

(
x(t)

)
x′(t) + g

(
t, x

(
t – τ (t)

))
= e(t), (.)

estimated a priori bounds by eliminating the nonlinear term ( x′(t)√
+x′(t)

)′ and established

sufficient conditions on the existence of periodic solutions for (.) by using Mawhin’s
continuation theorem. The main difficulty overcome by Feng in [] lies in the nonlinear
term ( x′(t)√

+x′(t)
)′, the existence of which obstructs the usual method of finding a priori
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bounds. He transformed (.) into the following equivalent system:

{
x′

(t) = ψ(x(t)) = x(t)√
–x

(t)
,

x′
(t) = –f (x(t))ψ(x(t)) – g(t, x(t)) + e(t),

(.)

and used Mawhin’s continuation theorem to prove the existence result. From then on,
similar approaches were used by Li and Wang [] and Li et al. []. Clearly, |x| < c < 
(c is a constant) is necessarily satisfied when Mawhin’s continuation theorem is applied to
the system (.). But, as pointed out by Liang and Lu in [], the proof of |x| < c <  was
not done in [, , ]. To do it, Li and Wang in [] gave a complementary proof.

In [], Liang and Lu investigated the following prescribed mean curvature Duffing
equation:

(
x′(t)√

 + x′(t)

)′
+ cx′(t) + f

(
x(t)

)
= p(t), (.)

where f ∈ C(R,R), c > . Assume

(A) there exist constants m > , α >  such that xf (x) ≤ –m|x|α and f ′(x) < , ∀x ∈ R,

and

(A) p ∈ C(R,R) is a bounded function with p(t) �=  and

B := max

{(∫
R

∣∣p(t)
∣∣ dt

) 


,
(∫

R

∣∣p(t)
∣∣β dt

) 
β
}

+ sup
t∈R

|p(t)| < +∞,

where 
α

+ 
β

= .

If (A), (A), and condition

B
α

α– + TBm


α–
 <

√
Tm


α–
 (.)

hold, they obtained the existence of homoclinic solutions for (.). For the method of ob-
taining homoclinic solution, we also see the papers [–]. It is not difficult to see that the
condition (.) is complex and strong. In this paper, we will consider more general equa-
tion (.) and obtain the existence of homoclinic solutions under the more simple and
reasonable conditions. To find a homoclinic solution for (.), we seek a limit of a certain
sequence of kT-periodic solutions xk(t) for the following equations:

(
x′(t)√

 + x′(t)

)′
+ f

(
x′(t)

)
+ g

(
x(t)

)
= ek(t), (.)

where k ∈N, ek : R →R is a kT-periodic function (T >  is a constant) defined by

ek(t) =

{
e(t), t ∈ [–kT , kT – ε),
e(kT – ε) + e(–kT)–e(kT–ε)

ε
(t – kT + ε), t ∈ [kT – ε, kT],

(.)

ε ∈ (, T) is a constant independent of k.
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2 Preliminaries
Let X and Y be real Banach spaces and L : X ⊃ Dom L → Y be a linear operator. L is said
to be a Fredholm operator with index zero provided that

(i) Im L is closed subset of Y ,
(ii) dim ker L = codim Im L < +∞.
Set X = ker L ⊕ X, Y = Im L ⊕ Y. Let P : X → ker L and Q : Y → Y be the nature pro-

jections. It is easy to see that ker L ∩ (Dom L ∩ X) = . Thus the restriction LP := L|Dom L∩X

is invertible. We denote by K the inverse of LP .
Let � be an open bounded subset of X with Dom L ∩� �= φ. A map N : � → Y is said to

be L-compact in � if QN : � → Y and K(I – Q)N : � → X are compact.
The following lemma due to Mawhin (see []) is a fundamental tool to prove the exis-

tence of kT-periodic solutions for (.).

Lemma . Let L be a Fredholm operator of index zero and Let N be L-compact on �. If
the following conditions hold.

(h) Lx �= λNx, ∀(x,λ) ∈ [(D(L) \ ker L) ∩ ∂�] × (, );
(h) Nx /∈ Im L, ∀x ∈ ker L ∩ ∂�;
(h) deg(JQN |ker L,� ∩ ker L, ) �= , where J : Im Q → ker L is an isomorphism.

Then Lx = Nx has at least one solution in D(L) ∩ �.

The following lemma is a special case of Lemma . in [].

Lemma . If x : R → R is continuously differentiable on R, a > , then the following in-
equality holds:

∣∣x(t)
∣∣ ≤ (a)– 



(∫ t+a

t–a

∣∣x(s)
∣∣ ds

) 


+ a(a)– 
p

(∫ t+a

t–a

∣∣x′(s)
∣∣ ds

) 


. (.)

Lemma . [] Let xk ∈ C
kT be kT-periodic function for each k ∈N with

‖xk‖∞ ≤ A,
∥∥x′

k
∥∥∞ ≤ A,

∥∥x′′
k
∥∥∞ ≤ A,

where A, A, and A are constants independent of k ∈ N. Then there exists a function
x ∈ C(R,R) such that for each interval [c, d] ⊂ R, there is a subsequence {xkj} of {xk}k∈N
with x′

kj
(t) → x′

(t) uniformly on [c, d].

In order to apply Mawhin’s continuation theorem to study the existence of kT-periodic
solution of (.), we rewrite (.) as

⎧⎨
⎩

x′(t) = y(t)√
–y(t)

,

y′(t) = –f ( y(t)√
–y(t)

) – g(x(t)) + ek(t).
(.)

Obviously, if z(t) = (x(t), y(t))� is a kT-periodic solution of (.), then x(t) must be a
kT-periodic solution of (.). Hence, the problem of finding a kT-periodic solution of
(.) reduces to finding one of (.).
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Now, we set

Xk = Yk =
{

z : z(t) =
(
x(t), y(t)

)� ∈ C
(
R

,R), z(t) = z(t + kT)
}

,

with the norm ‖z‖ = max{‖x‖∞,‖y‖∞}, where

‖x‖∞ = max
t∈[,kT]

∣∣x(t)
∣∣, ‖y‖∞ = max

t∈[,kT]

∣∣y(t)
∣∣.

Clearly, Xk and Yk are Banach spaces. Meanwhile, let

L : Xk ⊃ Dom L → Yk , Lz = z′ =
(
x′(t), y′(t)

)�,

where

Dom L =
{

z : z =
(
x(t), y(t)

)� ∈ C(
R,R), z(t) = z(t + kT)

}
.

Define a nonlinear operator N : Xk → Yk by

Nz =

⎛
⎝

y(t)√
–y(t)

–f ( y(t)√
–y(t)

) – g(x(t)) + e(t)

⎞
⎠ .

Then the system (.) can be written to Lz = Nz.
It is easy to see that ker L = R

 and Im L = {u ∈ Yk :
∫ kT

–kT u(s) ds = }. So L is a Fredholm
operator with index zero.

Let P : Xk → ker L and Q : Yk → Im Q be defined by

Pz =


kT

∫ kT

–kT
z(s) ds, Qu =


kT

∫ kT

–kT
u(s) ds,

and denote by K the inverse of L|ker P∩Dom L. Then, ker L = Im Q = R
 and

Ku(t) =
∫ kT

–kT
G(t, s)u(s) ds, (.)

where

G(t, s) =

{
s

kT , –kT ≤ s < t ≤ kT ,
s–kT
kT , –kT ≤ t ≤ s ≤ kT .

It follows from (.) that N is L-compact on �, where � is an open, bounded subset of Xk .

3 Main result
For the sake of convenience, we give the following fundamental assumptions.

(H) There exist α and β with β > α >  such that ∀x ∈ R,

αx ≤ xf (x) ≤ βx.



Zheng and Li Advances in Difference Equations  (2015) 2015:77 Page 5 of 13

(H) There exists γ >  such that

xg(x) ≤ –γ x.

(H) e(t) is bounded on R and

 < d := max

{(∫ +∞

–∞
e(t) dt

) 


, sup
t∈R

∣∣e(t)
∣∣} < +∞.

Obviously, the conditions (H), (H), and (H) are simplistic and reasonable.

Theorem . Let (H), (H), and (H) hold. Then for each k ∈ N, (.) has at least one
kT-periodic solution.

Proof We consider the auxiliary system of the system (.),

{
x′(t) = λ

y(t)√
–y(t)

= λψ(y(t)),

y′(t) = –λf (ψ(y(t))) – λg(x(t)) + λek(t),
(.)

where λ ∈ (, ] is a parameter. Firstly, we will prove that the set of all possible kT-periodic
solutions of the system (.) is bounded.

Obviously, the system (.) is equivalent to the following equation:

( 
λ

x′(t)√
 + 

λ x′(t)

)′
+ λf

(

λ

x′(t)
)

+ λg
(
x(t)

)
= λek(t). (.)

Multiplying (.) by x′ and integrating from –kT to kT , we have

λ

∫ kT

–kT
f
(


λ

x′(t)
)

x′(t) dt + λ

∫ kT

–kT
g
(
x(t)

)
x′(t) dt = λ

∫ kT

–kT
ek(t)x′(t) dt. (.)

By (H), we obtain

∣∣∣∣λ
∫ kT

–kT
f
(


λ

x′(t)
)

x′(t) dt
∣∣∣∣ ≥ λ

∫ kT

–kT
f
(


λ

x′(t)
)

x′(t)
λ

dt

≥ α

∫ kT

–kT

∣∣x′(t)
∣∣ dt. (.)

By (.), we get

∫ kT

–kT

∣∣ek(t)
∣∣ dt =

∫ kT–ε

–kT

∣∣e(t)
∣∣ dt +

∫ kT

kT–ε

∣∣∣∣e(kT – ε)

+
e(–kT) – e(kT – ε)

ε
· (t – kT + ε)

∣∣∣∣


dt

≤
∫ kT–ε

–kT

∣∣e(t)
∣∣ dt +

∫ kT

kT–ε

max
{∣∣e(kT – ε)

∣∣,
∣∣e(–kT)

∣∣}dt
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≤
∫ +∞

–∞

∣∣e(t)
∣∣ dt +

∫ kT

kT–ε

d dt

≤ d( + ε). (.)

Noticing that
∫ kT

–kT g(x(t))x′(t) dt = , we have from (.), (.), and (.)

α

∫ kT

–kT

∣∣x′(t)
∣∣ dt ≤

∣∣∣∣λ
∫ kT

–kT
f
(


λ

x′(t)
)

x′(t) dt
∣∣∣∣

≤ λ

(∣∣∣∣
∫ kT

–kT
g
(
x(t)

)
x′(t) dt

∣∣∣∣ +
∣∣∣∣
∫ kT

–kT
ek(t)x′(t) dt

∣∣∣∣
)

≤ λ

(∫ kT

–kT
e

k(t) dt
) 

 ·
(∫ kT

–kT

∣∣x′(t)
∣∣ dt

) 


≤ λd
√

 + ε ·
(∫ kT

–kT

∣∣x′(t)
∣∣ dt

) 


,

i.e.,

(∫ kT

–kT

∣∣x′(t)
∣∣ dt

) 
 ≤ λd

α

√
 + ε. (.)

Hence, there exists a positive constant D independent of k and λ such that

∥∥x′∥∥
 ≤ D. (.)

Multiplying (.) by x and integrating from –kT to kT , we obtain

∫ kT

–kT

( 
λ

x′(t)√
 + 

λ x′(t)

)′
x(t) dt + λ

∫ kT

–kT
f
(


λ

x′(t)
)

x(t) dt + λ

∫ kT

–kT
g
(
x(t)

)
x(t) dt

= λ

∫ kT

–kT
ek(t)x(t) dt. (.)

Since x′(t) = λ
y(t)√
–y(t)

, we get y(t) =

λ

x′(t)√
+ 

λ x′(t)
. Then

∫ kT

–kT

( 
λ

x′(t)√
 + 

λ x′(t)

)′
x(t) dt =

∫ kT

–kT
y′(t)x(t) dt

= –
∫ kT

–kT
y(t)x′(t) dt

= –λ

∫ kT

–kT

y(t)√
 – y(t)

dt. (.)

It follows from (.) and (.) that

–
∫ kT

–kT
g
(
x(t)

)
x(t) dt ≤ –

∫ kT

–kT
f
(


λ

x′(t)
)

x(t) dt +
∫ kT

–kT
ek(t)x(t) dt. (.)
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By (H), we have

∫ kT

–kT
g
(
x(t)

)
x(t) dt ≤ –

∫ kT

–kT
γ x(t) dt = –γ ‖x‖

. (.)

By (H) and (.), we obtain

–
∫ kT

–kT
f
(


λ

x′(t)
)

x(t) dt ≤ β

∫ kT

–kT

∣∣∣∣ 
λ

x′(t)
∣∣∣∣
∣∣x(t)

∣∣dt

≤ β

(∫ kT

–kT

∣∣∣∣ 
λ

x′(t)
∣∣∣∣


dt
) 

 ·
(∫ kT

–kT

∣∣x(t)
∣∣ dt

) 


≤ β

λ
· ∥∥x′∥∥

 · ‖x‖

≤ βd
α

√
 + ε‖x‖. (.)

By (.), we get

∫ kT

–kT
ek(t)x(t) dt ≤

(∫ kT

–kT
e

k(t) dt
) 

 ·
(∫ kT

–kT

∣∣x(t)
∣∣ dt

) 


≤ d
√

 + ε‖x‖. (.)

Then we get from (.), (.), (.), and (.)

γ ‖x‖
 ≤ βd

α

√
 + ε‖x‖ + d

√
 + ε‖x‖,

i.e.,

‖x‖ ≤ α + β

αγ
d
√

 + ε.

Therefore, there exists a positive constant D independent of k and λ such that

‖x‖ ≤ D. (.)

Thus, by using Lemma ., we have

∣∣x(t)
∣∣ ≤ (T)– 



(∫ t+T

t–T

∣∣x(s)
∣∣

) 


+ T(T)– 


(∫ t+T

t–T

∣∣x′(s)
∣∣

) 


≤ (T)– 


(∫ t+kT

t–kT

∣∣x(s)
∣∣

) 


+ T(T)– 


(∫ t+kT

t–kT

∣∣x′(s)
∣∣

) 


= (T)– 


(∫ kT

–kT

∣∣x(s)
∣∣

) 


+ T(T)– 


(∫ kT

–kT

∣∣x′(s)
∣∣

) 


≤ (T)– 
 D + T(T)– 

 D.
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Hence, there exists a positive constant M independent of k and λ such that

‖x‖∞ ≤ M.

In what follows, we prove that there exists a constant ε with  < ε �  such that

∣∣y(t)
∣∣ <  – ε, ∀t ∈R. (.)

Since ‖x‖∞ ≤ M and g is continuous, there exists M >  such that

–M < –g
(
x(t)

)
+ ek(t) < M, ∀t ∈R.

By (H), we get

f (x) ≥ αx, ∀x > .

Now we prove by contradiction that

y(t) ≤ M√
M

 + α
, ∀t ∈ R.

Assume that there exist t∗
 > t∗

 such that

y
(
t∗

)

=
M√

M
 + α

, y
(
t∗

)

>
M√

M
 + α

and

y(t) >
M√

M
 + α

, ∀t ∈ (
t∗
 , t∗


)
.

Noticing that λ ∈ (, ], we have ∀t ∈ (t∗
 , t∗

),

y′(t) = λ
(
–f

(
ψ

(
y(t)

))
– g

(
x(t)

)
+ ek(t)

)
< ,

which is a contradiction. By (H), we get

f (x) ≤ αx, ∀x < .

By using a similar argument, we can prove that

y(t) ≥ –
M√

M
 + α

, ∀t ∈R.

Thus

–
M√

M
 + α

≤ y(t) ≤ M√
M

 + α
, ∀t ∈R.

Therefore, (.) holds.
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Putting

� =
{(

x(t), y(t)
) ∈ C

(
R

,R) : ‖x‖∞ < M + ,‖y‖∞ <  – ε
}

,

we can give a standard argument on � by using Lemma . (also see [] or []) and find
that the system (.) has at least one kT-periodic solution. Equivalently, (.) has at least
one kT-periodic solution. �

Theorem . Let (H), (H), and (H) hold. Then (.) has at least one nontrivial homo-
clinic solution.

Proof If (xk(t), yk(t)) is a solution of (.), then

(
x′

k(t)√
 + (x′

k(t))

)′
+ f

(
x′

k(t)
)

+ g
(
xk(t)

)
= ek(t). (.)

From Theorem ., we have

‖xk‖∞ < M + , ‖yk‖∞ <  – ε, (.)

where yk(t) = x′
k (t)√

+(x′
k (t)) . Equation (.) is equivalent to

⎧⎪⎨
⎪⎩

x′
k(t) = yk (t)√

–y
k (t)

,

y′
k(t) = –f ( yk (t)√

–y
k (t)

) – g(xk(t)) + ek(t).

Since f , g , ek are continuous, we have yk(t) is continuous differentiable on R. Moreover, it
follows that x′

k(t) is also continuous differentiable on R. Hence,

x′′
k (t) =

y′
k(t)

( – y
k(t)) 


. (.)

Since f , g , ek are continuous, we find from (.) that there exists a positive constant M

independent of k such that

∥∥y′
k
∥∥∞ < M.

Hence, by (.), there exists a positive constant M independent of k such that

∥∥x′′
k
∥∥∞ < M.

By using Lemma ., we find that there is a function x ∈ C(R,R) such that, for each
interval [a, b] ⊂R, there is a subsequence {xkj (t)} of xk(t) with x′

kj
(t) → x′

(t) uniformly on
[a, b]. In what follows, we will show that x(t) is just a homoclinic solution of (.).

For all a, b ∈ R with a < b, there exist a positive integer j and a positive real number ε

such that, for j > j, [a – ε, b + ε] ⊂ [–kjT , kjT – ε]. Then for j > j,

( x′
kj

(t)√
 + (x′

kj
(t))

)′
+ f

(
x′

kj
(t)

)
+ g

(
xkj (t)

)
= e(t). (.)
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Since x′
kj

(t) → x′
(t) uniformly on [a, b], we have

–f
(
x′

kj
(t)

)
– g

(
xkj (t)

)
+ e(t) → –f

(
x′

(t)
)

– g
(
x(t)

)
+ e(t), uniformly on [a, b].

Since
x′

kj
(t)√

+(x′
kj

(t))
→ x′

(t)√
+(x′

(t)) uniformly on [a, b] and
x′

kj
(t)√

+(x′
kj

(t))
= ykj (t) is continuous dif-

ferentiable for t ∈ [a, b], we get

( x′
kj

(t)√
 + (x′

kj
(t))

)′
→

(
x′

(t)√
 + (x′

(t))

)′
, uniformly on [a, b].

Hence, we obtain

(
x′

(t)√
 + (x′

(t))

)′
+ f

(
x′

(t)
)

+ g
(
x(t)

)
= e(t), t ∈ [a, b]. (.)

Noticing that a, b are two arbitrary constants with a < b, we find that x : R → R is a
solution of (.).

In the following, we prove that x(t) →  and x′
(t) →  as |t| → +∞. Firstly, we prove

x(t) →  as |t| → +∞. Let i be a positive integer with i < kj, then

∫ iT

–iT

(∣∣x(t)
∣∣ +

∣∣x′
(t)

∣∣)dt = lim
j→+∞

∫ iT

–iT

(∣∣xkj (t)
∣∣ +

∣∣x′
kj

(t)
∣∣)dt

≤ lim
j→+∞

∫ kjT

–kjT

(∣∣xkj (t)
∣∣ +

∣∣x′
kj

(t)
∣∣)dt

≤ D
 + D

.

Let i → +∞, then

∫ ∞

–∞

(∣∣x(t)
∣∣ +

∣∣x′
(t)

∣∣)dt = lim
j→+∞

∫ iT

–iT

(∣∣x(t)
∣∣ +

∣∣x′
(t)

∣∣)dt ≤ D
 + D

,

which implies

lim
r→+∞

∫
|t|≥r

(∣∣x(t)
∣∣ +

∣∣x′
(t)

∣∣)dt = .

Using Lemma ., we have

∣∣x(t)
∣∣ ≤ (T)– 



(∫ t+T

t–T

∣∣x(s)
∣∣ dt

) 


+ T(T)– 


(∫ t+T

t–T

∣∣x′
(s)

∣∣ dt
) 



≤ 
(
(T)– 

 + T(T)– 

)(∫ t+kT

t–kT

(∣∣x(s)
∣∣ +

∣∣x′
(s)

∣∣)dt
) 



→ , as |t| → +∞.
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Finally, we prove that

x′
(t) →  as |t| → +∞. (.)

From (.), we get

∣∣x(t)
∣∣ ≤ M + ,

∣∣x′
(t)

∣∣ ≤  – ε√
ε – ε


, for t ∈R.

Then we have

∣∣∣∣
(

x′
(t)√

 + (x′
(t))

)′∣∣∣∣ ≤ ∣∣f (x′
(t)

)∣∣ +
∣∣g(

x(t)
)∣∣ + |e(t)| ≤ M,

where M is a positive constant.
If (.) does not hold, then there exists a sequence tk satisfying

|t| < |t| < |t| < · · · with |tk+| – |tk| > , k = , , . . .

and ε ∈ (, 
 ) such that

∣∣x′
(tk)

∣∣ ≥ ε√
 – (ε)

, k = , , . . . .

Hence we have, for t ∈ [tk , tk + ε
+M

],

∣∣x′
(t)

∣∣ ≥
∣∣∣∣ x′

(t)√
 + (x′

(t))

∣∣∣∣

=
∣∣∣∣ x′

(tk)√
 + (x′

(tk))
+

∫ t

tk

(
x′

(s)√
 + (x′

(s))

)′
ds

∣∣∣∣

≥
∣∣∣∣ x′

(tk)√
 + (x′

(tk))

∣∣∣∣ –
∫ t

tk

∣∣∣∣
(

x′
(s)√

 + (x′
(s))

)′∣∣∣∣ds

≥ ε –
M

 + M
· ε

> ε.

Therefore,

∫ +∞

–∞

∣∣x′
(t)

∣∣ dt ≥
∞∑

k=

∫ tk + ε
+M

tk

∣∣x′
(t)

∣∣ dt = ∞,

which is a contradiction. Then (.) holds.
By (H), we have e �= . Thus it follows from f () =  and g() =  that x is nontrivial.

�
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4 An example
In this section, we shall construct an example to show the applications of Theorem ..

Example . Let f (x) = x+x√
+x , g(x) = – x+x√

+x . The prescribed mean curvature Rayleigh
equation

(
x′

√
 + x′

)′
+ f

(
x′(t)

)
+ g

(
x(t)

)
= exp

{
–t} (.)

has at least one nontrivial homoclinic solution.

Proof Obviously, one has

√


· x ≤ xf (x) ≤ x

and

xg(x) ≤ –
√


· x.

Then (H) and (H) hold. Since

d = max

{(∫ +∞

–∞

(
exp

{
–t}) dt

) 


, sup
t∈R

exp
{

–t}} = 

√
π


,

(H) holds. Therefore, (.) has at least one nontrivial homoclinic solution. �
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