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Abstract
Solving the boundary value problems of the heat equation in noncylindrical domains
degenerating at the initial moment leads to the necessity of research of the singular
Volterra integral equations of the second kind, when the norm of the integral
operator is equal to 1. The paper deals with the singular Volterra integral equation of
the second kind, to which by virtue of ‘the incompressibility’ of the kernel the classical
method of successive approximations is not applicable. It is shown that the
corresponding homogeneous equation when |λ| > 1 has a continuous spectrum,
and the multiplicity of the characteristic numbers increases depending on the growth
of the modulus of the spectral parameter |λ|. By the Carleman-Vekua regularization
method (Vekua in Generalized Analytic Functions, 1988) the initial equation is
reduced to the Abel equation. The eigenfunctions of the equation are found
explicitly. Similar integral equations also arise in the study of spectral-loaded heat
equations (Amangaliyeva et al. in Differ. Equ. 47(2):231-243, 2011).
MSC: Primary 45D05; 45C05; secondary 45E10
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1 Introduction
Investigation of boundary value problems for the heat equation in noncylindrical domains
has wide practical application [–]. For example, in the study of thermal regimes of the
various electrical contacts there is the necessity to study the processes of heat and mass
transfer taking place between the electrodes. After achieving the melting temperature at
the contact surface of electrodes there is a liquid metal bridge between these electrodes.
When the contacts open this bridge is divided into two parts, i.e. the contact material is
transferred from one electrode to another, and this leads to the bridging erosion. Ulti-
mately, the smooth surface of contacts is destroyed, which means that their proper oper-
ation is violated. The mathematical description of the thermal processes which go with
the bridging erosion, leads to solving the boundary value problems for the heat equation
in domains with moving boundary, namely in the domains which degenerate into a point
at the initial moment. Using the apparatus of heat potentials, solving the problems under
consideration is reduced to the study of singular Volterra integral equations of the second
kind, when the norm of the integral operator is equal to . A feature of these equations is
the incompressibility of the kernel and this is expressed in the fact that the corresponding
nonhomogeneous equation cannot be solved by classical methods.
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For the problem of the solvability of the Volterra integral equation of the second kind
with a special kernel, stated in Section , after some transformation in Section  we obtain
the corresponding characteristic integral equation. An important moment of our research
is fact that using a Carleman-Vekua regularization method [], we reduce the initial prob-
lem to solving the Abel integral equation of the second kind. The solution of the last equa-
tion provides finding all solutions of the initial integral equation from Section . These
results are stated in Sections -. The main result about solvability of the integral equa-
tion in a class of essentially bounded functions is formulated in the form of the theorem
in Section .

2 Statement of the problem
When solving model problems for parabolic equations in domains with moving boundary
the singular integral equations of the following form arise:

ϕ(t) – λ

∫ t


K(t, τ )ϕ(τ ) dτ = f (t), t > , ()

where

K(t, τ ) =


a
√

π

{
t + τ

(t – τ )/ exp

(
–

(t + τ )

a(t – τ )

)
+


(t – τ )/ exp

(
–

t – τ

a

)}
.

The kernel K(t, τ ) has the following properties:
() K(t, τ ) ≥  and continuously at  < τ < t < +∞;
() limt→t

∫ t
t

K(t, τ ) dτ = , t ≥ ε > ;
() limt→

∫ t
 K(t, τ ) dτ = , limt→+∞

∫ t
 K(t, τ ) dτ = .

To verify property () we make the substitution x =
√

t – τ . We have

∫ t


K(t, τ ) dτ = –

√
π

exp

{
t
a

}∫ √
t


exp

{
–
(

t
ax

+
x

a

)}
d
(

t
ax

+
x

a

)

+
√
π

∫ √
t


exp

{
–

x

a

}
d
(

x
a

)

= exp

{
t
a

}
erfc

(

√

t
a

)
+ erf

(√
t

a

)
. ()

From () the validity of property () directly follows. Moreover, it also follows that the
norm of the integral operator in (), acting in the class of essentially bounded functions,
is equal to .

Also the kernel K(t, τ ) is summable with weight function t–/. Indeed,

∫ t



K(t, τ )√
τ

dτ =
exp{t/a}

a
√

π

∫ √
t




√

t – x

x exp

{
–
(

t
ax

+
x

a

)}
dx

+


a
√

π

∫ √
t



√
t – x

exp

{
–
(

t
ax

–
x

a

)}
dx

+


a
√

π

∫ √
t



√
t – x

exp

{
–

x

a

}
dx

=I(t) + I(t) + I(t).
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For the first integral after introducing the replacement y = /x we have the estimate

I(t) ≤ 
√

t exp{t/a}
a
√

π

∫ +∞

t–/
exp

{
–

ty

a –


ay

}
dy.

For small values t the last integral is bounded. For large values t �  we have the fol-
lowing estimate:


√

t exp{t/a}
a
√

π

∫ +∞


exp

{
–

ty

a –


ay

}
dy =

√
t

≤ const.

Thus we have established the boundedness of the first integral I(t).
We estimate the integrals I(t) and I(t) using the following integral:


a
√

π

∫ √
t



dx√
t – x

=


a
√

π

∫ √
t



dy√
y(t – y)

=
√

π

a
.

Problem To find the solution ϕ(t) of integral equation () satisfying the condition
√

t ·
ϕ(t) ∈ L∞(,∞) for any given function

√
t · f (t) ∈ L∞(,∞) and each given complex spec-

tral parameter λ ∈ C .

We note that the integral equations of the form () arise in the study of boundary value
problems of heat conduction in an infinite angular domain, which degenerates at the initial
moment. Such equations are called by us Volterra integral equations with ‘incompressible’
kernel. The feature of the equation in question consists in property () of the kernel K(t, τ )
and is expressed in the fact that the corresponding nonhomogeneous equation cannot be
solved by the method of successive approximations for |λ| > . Obviously, if |λ| < , then ()
has a unique solution, which can be found by the method of successive approximations.
The case λ =  was considered in [], where it is shown that () has only one nontrivial
solution at f (t) ≡  (within a constant factor). Further in this paper, we assume that |λ| > .

The equations of the form () were first considered by SN Kharin: the asymptotics of
integrals of the double layer potentials were studied, and approximate solutions of some
applied problems were constructed [, ]. Subsequently such integral equations were the
subject of investigation by many authors.

It should be noted that the boundary value problems for spectrally loaded parabolic
equations also are reduced to the singular integral equations under consideration when
the load line moves by the law x = α(t) [, ].

3 Transforming the integral equation
We will use a Carleman-Vekua regularization method []. To do this we transform (). By
means of the relations

t + τ = t – (t – τ ),
(t + τ )

a(t – τ )
=

tτ
a(t – τ )

+
t – τ

a ,
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we reduce () to the form

ϕ(t) –
∫ t




a

√
π

{
t

(t – τ )/ exp

{
–

tτ
a(t – τ )

}
–


(t – τ )/ exp

{
–

tτ
a(t – τ )

}

+


(t – τ )/

}
· exp

{
–

t – τ

a

}
ϕ(τ ) dτ = f (t). ()

From [], p., it follows that it suffices to find a solution to the ‘simplified’ equation

ϕ̃(t) – λ

∫ t


k(t, τ )ϕ̃(τ ) dτ = f̃ (t), ()

ϕ̃(t) = exp
{

t/
(
a)} · ϕ(t), f̃ (t) = exp

{
t/

(
a)} · f (t),

where

k(t, τ ) =


a
√

π

{
t

(t – τ )/ exp

{
–

tτ
a(t – τ )

}
+


(t – τ )/

(
 – exp

{
–

tτ
a(t – τ )

})}
,

⎧⎪⎨
⎪⎩

√
t · exp{–t/(a)} · ϕ̃(t) ∈ L∞(,∞),√
t · exp{–t/(a)} · f̃ (t) ∈ L∞(,∞),√
t · exp{–(t – τ )/(a)} · k(t, τ ) ∈ L(,∞).

()

To investigate the full equation () we will extract its characteristic part, namely

ϕ̃(t) – λ

∫ t


k(t, τ )ϕ̃(τ ) dτ = f(t), ()

where

k(t, τ ) =
t

a
√

π (t – τ )/ exp

{
–

tτ
a(t – τ )

}
,

kh(t, τ ) =


a
√

π (t – τ )/

(
 – exp

{
–

tτ
a(t – τ )

})
,

f(t) = f̃ (t) + λ

∫ t


kh(t, τ )ϕ̃(τ ) dτ . ()

Equation () is characteristic for (), since

lim
t→

∫ t


k(t, τ ) dτ = ; lim

t→

∫ t


kh(t, τ ) dτ = .

4 Solving the characteristic integral equation
Considering the right side of () as known, we find its solution, i.e. the solution of the
characteristic equation ().

Analogously ([], p.) integral equation () is reduced to an equation with a difference
kernel. To do this, we make in it replacements:

t =

y

; τ =

x

; ψ(y) =
√y

· ϕ̃
(


y

)
; f(y) =

√y
· f

(

y

)
. ()
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Then we obtain the equation of the form

ψ(y) – λ

∫ ∞

y


a
√

π (x – y)/ exp

{
–


a(x – y)

}
ψ(x) dx = f(y), y > , ()

where
{

exp{–/(ay)} · ψ(y) ∈ L∞(,∞),
exp{–/(ay)} · f(y) ∈ L∞(,∞).

()

The solution of () can be found either by the operational method, or by its reduction
to Riemann boundary value problem [, ].

If we denote L[ψ(y)] = ψ(p) as the Laplace transformation of the function ψ(y), then the
following formula holds for the convolution:

L
[∫ ∞

y
K(y – x)ψ(x) dx

]
= K(–p)ψ(p), ()

where

K(–p) =
∫ ∞


K(–t) exp{pt}dt.

As

L
[

b

√

π t/ exp

{
–

b

t

}]
= exp{–b

√
p}, b = const,

then, by virtue of (), () is transformed to

ψ(p) ·
(

 – λ exp

{
–


a
√

–p
})

= f (p). ()

The corresponding homogeneous equation has the form

ψ(p) ·
(

 – λ exp

{
–


a
√

–p
})

= . ()

In the case when

 – λ exp

{
–


a
√

–p
}

= , ()

the nonzero solutions of () are

ψk(p) = Ck · δ(p – pk),

where δ(x) is the delta-function, Ck = const, and pk (k = ,±,±, . . .) are roots of ().
Applying to the last equality the inverse Laplace transformation, we obtain

ψ(y) =


π i

∫ σ+i∞

σ+i∞
δ(p – pk) exp{py}dp = exp{pky}



Jenaliyev et al. Advances in Difference Equations  (2015) 2015:71 Page 6 of 14

(the integral is taken along any straight line Re p = σ and understood in the sense of the
principal value).

Therefore, if p = pk are roots of (), then the eigenfunctions of () will have the form
[]

ψk(y) = Ck exp{pky}, Ck = const. ()

We shall find the roots of (). When |λ| ≥  we have exp{ 
a
√–p} = λ []. Taking the

logarithm, we obtain


a
√

–p = ln |λ| + i(argλ + kπ ); k = , , , . . . ,

–pk =
a


(
ln |λ| – (argλ + kπ )) + i

a


ln |λ|(argλ + kπ ). ()

For the boundedness of functions () at infinity it is necessary that Re(–pk) ≥ , i.e.
ln |λ| ≥ (argλ + kπ ) or

– ln |λ| ≤ argλ + kπ ≤ ln |λ|.

Hence –N ≤ k ≤ N, where

N =
[

ln |λ| + argλ

π

]
, N =

[
ln |λ| – argλ

π

]
,

N + N +  is number of eigenfunctions of () and [a] is the integer part of a. Obviously,
the larger |λ|, the greater the multiplicity of the eigenfunctions.

Thereby, ∀λ, |λ| ≥  we have

ψhom(y) =
N∑

k=–N

Ck exp{pky}.

Using the replacements which are inverse to (), we obtain the solution of the homoge-
neous equation ()

ϕ̃hom(t) =
N∑

k=–N

Ck · √
t

· exp

{
pk

t

}
,

where Re pk ≤  by virtue of ().
We note that if λ = , then p = . This case is considered in detail in [, , ].
We rewrite the nonhomogeneous operator equation in the form

ψ(p) = f (p) +
λ exp{– 

a
√–p}

 – λ exp{– 
a
√–p} f (p), at Re p ≤ .

Introducing the notation

rλ–(p) =
exp{– 

a
√–p}

 – λ exp{– 
a
√–p} ,
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we will find the original of this image:

rλ–(y) =


π i

∫ i∞

–i∞

exp{– 
a
√–p}

 – λ exp{– 
a
√–p} dp, where rλ–(y) ≡ , if y > .

In the last integral we have carried out the integration along the contour, avoiding the
points pk , determined by (), on the left. The integral is understood in the sense of the
Cauchy principal value. Since we consider y ≤ , we close on the right cutting the half-
plane (slit is along the positive real semiaxis). The zeros of the denominator of the function

A(p) =
exp{– 

a
√–p}

 – λ exp{– 
a
√–p}

are numbers pk , k = ,±,±, . . . , which we need to circumvent twice in opposite direc-
tions. Therefore, according to [], pp.-, we have

rλ–(y) =
∞∑

n=

res
p=pn

A(p) =


a
√

π (–y)/

∞∑
n=

n
λn exp

{
–

n

a(–y)

}
.

Thus, the solution of the nonhomogeneous equation () has the form ([], pp.-):

ψ(y) = f(y) + λ

∫ ∞

y
rλ–(y – x)f(x) dx +

N∑
k=–N

Ck · epk y, Ck a const, ()

where the resolvent rλ–(y) is defined above.
Performing the reverse replacements to () into (), we obtain the solution of the

nonhomogeneous equation ()

ϕ̃(t) = f(t) + λ

∫ t


r(t, τ )f(τ ) dτ +

N∑
k=–N

Ck · √
t

· e
pk
t , ()

where

r(t, τ ) =
t

a
√

π (t – τ )/

∞∑
n=

n
λn exp

{
–n tτ

a(t – τ )

}
. ()

5 Reducing the integral equation (4) to Abel equation
We shall now get to solving (), i.e. ‘the simplified’ variant of the initial equation ().

Using the formula for the solution of the characteristic equation (), taking into account
() for the function f(t), we obtain

ϕ̃(t) = f̃ (t) + λ

∫ t




a

√
π (t – τ )

(
 – exp

{
–

tτ
a(t – τ )

})
ϕ̃(τ ) dτ + λ

∫ t


r(t, τ )

×
(

f̃ (τ ) + λ

∫ τ




a

√
π (τ – τ)

(
 – exp

{
–

ττ

a(τ – τ)

})
ϕ̃(τ) dτ

)
dτ

+
N∑

k=–N

Ck · √
t

· exp

{
pk

t

}
.
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Changing the order of integration in the right-hand side of this equation and interchang-
ing the roles of τ and τ, we have

ϕ̃(t) = λ

∫ t



{


a
√

π (t – τ )

(
 – exp

{
–

tτ
a(t – τ )

})

+ λ

∫ t

τ

r(t, τ)


a
√

π (τ – τ )

(
 – exp

{
–

ττ

a(τ – τ )

})
dτ

}
ϕ̃(τ ) dτ

+ f̃ (t) + λ

∫ t


r(t, τ )f̃ (τ ) dτ +

N∑
k=–N

Ck · √
t

· exp

{
pk

t

}
. ()

We compute the inner integral in ()

J(t, τ ;λ) =
∫ t

τ

r(t, τ)


a
√

π (τ – τ )

(
 – exp

{
–

ττ

a(τ – τ )

})
dτ

=
t

aπ

∞∑
n=

∫ t

τ

n
λn(t – τ)/

√
(τ – τ )

exp

{
–n tτ

a(t – τ)

}

×
(

 – exp

{
–

ττ

a(τ – τ )

})
dτ

=
t

aπ

∞∑
n=

n
λn

[
I()

n (t, τ ) – I()
n (t, τ )

]
, ()

where

I()
n (t, τ ) =

∫ t

τ


(t – τ)/

√
(τ – τ )

exp

{
–n tτ

a(t – τ)

}
dτ,

I()
n (t, τ ) =

∫ t

τ


(t – τ)/

√
(τ – τ )

exp

{
–n tτ

a(t – τ)
–

ττ

a(τ – τ )

}
dτ.

Using the substitution z =
√

(τ – τ )/(t – τ) we compute the integrals I()
n (t, τ ) and I()

n (t, τ ).
We will have

I()
n (t, τ ) =


t – τ

exp

{
–

ntτ
a(t – τ )

}∫ ∞


exp

{
–

ntz

a(t – τ )

}
dz

=
a
√

π

nt
√

t – τ
exp

{
–

ntτ
a(t – τ )

}
,

I()
n (t, τ ) =


t – τ

exp

{
–

(n + )tτ
a(t – τ )

}∫ ∞


exp

{
–

ntz

a(t – τ )
–

τ 

a(t – τ )z

}
dz

=
a
√

π

nt
√

t – τ
exp

{
–

(n + )tτ
a(t – τ )

}
.

When calculating the integral I()
n (t, τ ) the following formula was used ([], p., for-

mula .):

∫ ∞


exp

{
–μx –

η

x

}
=

√
π

√
μ

exp{–
√

μη}, μ > ,η > .
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Thus, for the difference I()
n (t, τ ) – I()

n (t, τ ) we obtain

I()
n (t, τ ) – I()

n (t, τ ) =
a
√

π

nt
√

t – τ

(
exp

{
–

ntτ
a(t – τ )

}
– exp

{
–

(n + )tτ
a(t – τ )

})
.

Substituting the last expression into (), we obtain

J(t, τ ;λ) =


a
√

π (t – τ )

∞∑
n=


λn

(
exp

{
–

ntτ
a(t – τ )

}
– exp

{
–

(n + )tτ
a(t – τ )

})

=


aλ
√

π (t – τ )
exp

{
–

tτ
a(t – τ )

}
.

Then () can be rewritten as

ϕ̃(t) = λ

∫ t



{


a
√

π (t – τ )

(
 – exp

{
–

tτ
a(t – τ )

})
+


a

√
π (t – τ )

× exp

{
–

tτ
a(t – τ )

}}
ϕ̃(τ ) dτ + f̃ (t) + λ

∫ t


r(t, τ )f̃ (τ ) dτ

+
N∑

k=–N

Ck · √
t

· exp

{
pk

t

}
.

Finally, after introducing the notation

f̃(t) = f̃ (t) + λ

∫ t


r(t, τ )f̃ (τ ) dτ , ()

where r(t, τ ) is defined by (), we obtain

ϕ̃(t) –
λ

a
√

π

∫ t



ϕ̃(τ )√
t – τ

dτ = f̃(t) +
N∑

k=–N

Ck · √
t

· exp

{
pk

t

}
, ()

where the solution and the right side of the integral equation () belong to classes ().
Thus, the initial ‘simplified’ integral equation () is reduced to (), that is, an Abel in-

tegral equation of the second kind.

6 Solution of Abel integral equation. The main result
According to [], p., a solution of the Abel equation of the second kind,

y(x) + μ

∫ x

a

y(t)√
x – t

dt = g(x),

has the form

y(x) = G(x) + πμ
∫ x

a
exp

[
πμ(x – t)

]
G(t) dt, ()

where

G(x) = g(x) – μ

∫ x

a

g(t)√
x – t

dt.
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We find the solution of the Abel equation () for f̃(t) = , that is, we will find a so-
lution of the corresponding homogeneous equation () for each k, –N ≤ k ≤ N (eigen-
functions). Under this condition, () for each k, –N ≤ k ≤ N, has the form

ϕ̃k(t) –
λ

a
√

π

∫ t



ϕ̃k(τ )√
t – τ

dτ =
√
t

exp

{
pk

t

}
.

The solution of this equation can be written as (see ())

ϕ̃k(t) = Gk(t) +
λ

a

∫ t


exp

(
λ(t – τ )

a

)
Gk(τ ) dτ ,

where

Gk(t) =
√
t

exp

{
pk

t

}
+

λ

a
√

π

∫ t



exp{ pk
t }√

τ (t – τ )
dτ

=
√
t

exp

{
pk

t

}
+

λ
√

π

a
erfc

(√–pk√
t

)
.

In calculating the last integral we use the formulas [], p., formula . (); p.,
formula .. Indeed, according to these formulas, we obtain

λ

a
√

π

∫ t



exp{ pk
t }√

τ (t – τ )
dτ =

λ

a

(
–pk

t

)–/

exp

{
pk

t

}
· W–/,/

(
–pk

t

)
,

W–/,/

(
–pk

t

)
=

√
π

(
–pk

t

)/

exp

{
–pk

t

}
· erfc

(√–pk√
t

)
,

where Wα,β (z) is the Whittaker function.
The function Gk(t) is bounded for ∀t ∈ [; +∞) at t → +∞ and Gk() = .
Thus, the eigenfunctions of () have the form

ϕ̃k(t) =
√
t

exp

{
pk

t

}
+

λ
√

π

a
erfc

(√–pk√
t

)

+
λ

a

∫ t


exp

(
λ(t – τ )

a

)
·
{

√
τ

exp

{
pk

τ

}
+

λ
√

π

a
erfc

(√–pk√
τ

)}
dτ .

We rewrite the previous function in the form

ϕ̃k(t) =
√
t

exp

{
pk

t

}
+

λ
√

π

a
erfc

(√–pk√
t

)

+
λ

a exp

(
λt
a

){∫ t


exp

(
–λ

a τ +
pk

τ

)
√
τ

dτ

+
λ
√

π

a

∫ t


erfc

(√–pk√
τ

)
exp

(
–

λ

a τ

)
dτ

}

or

ϕ̃k(t) =
√
t

exp

{
pk

t

}
+

λ
√

π

a
erfc

(√–pk√
t

)

+
λ

a exp

(
λt
a

){
Ik(t;λ) +

λ
√

π

a
Ik(t;λ)

}
, ()
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where

Ik(t;λ) =
∫ t


exp

(
–

λ

a τ +
pk

τ

)
√
τ

dτ ,

Ik(t;λ) =
∫ t


erfc

(√–pk√
τ

)
· exp

(
–

λ

a τ

)
dτ .

After the replacement z =
√

τ the integral Ik(t;λ) can be written as

Ik(t;λ) = 
∫ √

t


exp

(
–

λ

a z +
pk

z

)
dz.

We compute the integral Ik(t;λ) integrating by parts:

∥∥∥∥∥
u = erfc(

√–pk√
τ

); dv = exp(– λ

a τ ) dτ

du =
√–pk√
πτ/ exp{ pk

τ
}dτ ; v = – a

λ exp(– λ

a τ )

∥∥∥∥∥ . ()

Then, using (), we have

Ik(t;λ) = –
a

λ exp

(
–

λ

a t
)

· erfc

(√–pk√
t

)

+
a√–pk

λ√π

∫ t


exp

(
–

λ

a τ +
pk

τ

)


τ / dτ .

After replacing z =
√

τ we obtain

Ik(t;λ) = –
a

λ exp

(
–

λ

a t
)

· erfc

(√–pk√
t

)

+
a√–pk

λ√π

∫ √
t


exp

(
–

λ

a z +
pk

z

)

z dz.

After substituting the expressions obtained for Ik(t;λ) and Ik(t;λ) into () we have

ϕ̃k(t) =
√
t

exp

{
pk

t

}
+

λ
√

π

a
erfc

(√–pk√
t

)

+
λ

a exp

(
λt
a

){

∫ √

t


exp

(
–

λ

a z +
pk

z

)
dz

+
λ
√

π

a

[
–

a

λ exp

(
–

λ

a t
)

erfc

(√–pk√
t

)

+
a√–pk

λ√π

∫ √
t


exp

(
–

λ

a z +
pk

z

)

z dz

]}
.

After some simple transformations we obtain

ϕ̃k(t) =
√
t

exp

{
pk

t

}
+

λ

a exp

(
λt
a

)

×
∫ √

t


exp

(
–

λ

a z +
pk

z

)(
 +

a√–pk

λz

)
dz
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=
√
t

exp

{
pk

t

}
+

λ

a
exp

(
λt
a

)

×
∫ √

t


exp

(
–

λ

a z +
pk

z

)(
λ

a
+

√–pk

z

)
dz

=
√
t

exp

{
pk

t

}
–

λ

a
exp

(
λt
a

)∫ √
t


exp

(
pk

z –
λ

a z
)

d
(√–pk

z
–

λ

a
z
)

.

After the introduction of the replacement ξ =
√–pk

z – λ
a z we obtain

ϕ̃k(t) =
√
t

exp

{
pk

t

}
+

λ

a
exp

(
λt
a –

λ
√–pk

a

)∫ {IRP}
a√–pk –λt

a
√

t

exp
(
–ξ )dξ

=
√
t

exp

{
pk

t

}
+

λ
√

π

a
exp

(
λt
a –

λ
√–pk

a

)
erfc

(a√–pk – λt
a

√
t

)
,

where {IRP} = limt→+
a√–pk –λt

a
√

t ∈ C is infinitely remote point, and the expression denoted
as ([], p., formula .)

erfc

(
a√–pk – λt

a
√

t

)
def=

√
π

∫ {IRP}
a√–pk –λt

a
√

t

exp
{

–ξ }dξ ,

is an integral over an open ended contour from the starting point a√–pk –λt
a

√
t to the infinitely

remote point {IRP}.
Thus, the function

ϕ̃k(t) = exp

{
pk

t

}{
√
t

+
λ
√

π

a
exp

(√–pk√
t

–
λ
√

t
a

)

erfc

(
a√–pk – λt

a
√

t

)}
()

is an eigenfunction of the ‘simplified’ equation () for each k; –N ≤ k ≤ N, where

N =
[

ln |λ| + argλ

π

]
, N =

[
ln |λ| – argλ

π

]
,

and [a] is the integer part of a.
Then the function

ϕ̃(t) =
N∑

k=–N

Ckϕ̃k(t) ()

is a solution of the Abel equation () for f̃(t) = , that is, a solution of the ‘simplified’
homogeneous equation (), and the functions ϕ̃k(t) and values pk are determined by ()
and (), respectively.

We note that after multiplying equality () by exp(–t/(a)), we obtain the solution of
the homogeneous equation corresponding to the original equation ():

ϕ(t) =
N∑

k=–N

Ck

{
√
t

exp

(
pk

t
–

t
a

)

+
λ
√

π

a
exp

(
λ – 
a t –

λ
√–pk

a

)
· erfc

(
a√–pk – λt

a
√

t

)}
. ()
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The function
√

t ·ϕ(t) belongs to the space L∞(,∞). Indeed, we have for the first terms
of the sum (),

exp

(
pk

t
–

t
a

)
∈ L∞(,∞).

For the second terms in the sum () the following inclusions are also valid:

√
t · λ

√
π

a
exp

(
λ – 
a t –

λ
√–pk

a

)
· erfc

(
a√–pk – λt

a
√

t

)
∈ L∞(,∞).

Here it is sufficient to take into account that the numbers pk , k ∈ [–N, N], are the roots of
() for each fixed complex spectral parameter λ ∈ C , and to use the asymptotic form of the
function erfc(z) for large values of z ([], p., formula .; [], p.). Obviously,
there is a limit relation

z =
a√–pk – λt

a
√

t
→ {IRP} at t → ∞ and for each |λ| > .

Thus, the following theorem holds.

Theorem The nonhomogeneous integral equation () is solvable in the class
√

t · ϕ(t) ∈
L∞(,∞) for any right-hand side

√
t · f (t) ∈ L∞(;∞) and for each |λ| > . The correspond-

ing homogeneous equation has (N + N + ) eigenfunctions

ϕk(t) =
√
t

exp

(
pk

t
–

t
a

)

+
λ
√

π

a
exp

(
λ – 
a t –

λ
√–pk

a

)
· erfc

(
a√–pk – λt

a
√

t

)
,

and the general solution of integral equation () can be written as

ϕ(t) = F(t) +
λ

a

∫ t


exp

(
λ(t – τ )

a

)
F(t) dτ +

N∑
k=–N

Ckϕk(t),

where

F(t) = f̃(t) –
λ

a
√

π

∫ t



f̃(τ )√
t – τ

dτ ,

and the function
√

t · exp{–t/(a)} · f̃(t) ∈ L∞(,∞) is defined by ().

7 Conclusion
We studied the problems of resolvability of singular Volterra integral equations of the sec-
ond kind in the space of essentially bounded functions. It is proved that at |λ| >  the ho-
mogeneous equation which corresponds to () has a continuous spectrum, and the mul-
tiplicity of the characteristic numbers increases depending on the growth of the modulus
of the spectral parameter |λ|. The initial equation () is reduced to the Abel integral equa-
tion () by the regularization method of Carleman-Vekua [], which was developed for
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solving singular integral equations. The eigenfunctions of () are found explicitly and their
multiplicity depending on the modulus of the characteristic number |λ| is found.
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