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Abstract
By means of the fixed point theory for a strict set contraction operator, this paper
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1 Introduction
Let (E,‖ · ‖) be a real Banach space and P ⊂ E be a cone of E. The goal of this paper is to
study the existence, nonexistence, and multiplicity of positive solutions for the following
higher order boundary value problem with fractional integral boundary conditions:

cDαx(t) = λa(t)f
(
t, x, x′, . . . , x(n–))

+ λb(t)g
(
t, x, x′, . . . , x(n–), Tx, Sx

)
, t ∈ (, ), (.)

x(i)() = θ ,  ≤ i ≤ n – ,

x(n–)() + x(n–)() = Iδx(n–)(η),

x(n–)() + x(n–)() + Iδx(n–)(μ) = θ ,

(.)

where θ is the zero element of E, λ, λ are positive parameters, n –  < α < n (n ∈ N and
n ≥ ), cDα is the Caputo fractional derivative of order α, δ ≥ , Iδ is the Riemann-Liouville
fractional integral of order δ, / < μ ≤ η < /, f ∈ C(J × Pn–, P), g ∈ C(J × Pn+, P) (J =
[, ]), the coefficients a, b ∈ C((, ),R+) may be singular at t =  or t = . Here,

Tx(t) =
∫ t


K(t, s)x(s) ds, Sx(t) =

∫ 


H(t, s)x(s) ds, (.)

in which K ∈ C[D,R+], D = {(t, s) ∈ J × J : t ≥ s}, H ∈ C[J × J ,R+].
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Recently, there has been much attention on the fractional differential equations because
of their applications in a variety of different areas of sciences including physics, chem-
istry, engineering etc. Thus, intensive study has been done to investigate the positive solu-
tions for the nonlinear boundary value problems of fractional differential equations. For
instance, in [], Zhao et al. studied the following problem:

Dqy(t) + r(t)f (yt) = , ∀t ∈ (, ), q ∈ (n – , n],

y(i)() = θ ,  ≤ i ≤ n – ,

αy(n–)(t) – βy(n–)(t) = η(t), t ∈ [–τ , ],

γ y(n–)(t) + δy(n–)(t) = ξ (t), t ∈ [,  + a].

Existence results of at least one or two positive solutions are established to the fractional
functional differential equation by constructing a special cone and using the Krasnoselskii
fixed point theorem.

In [], Zhang considered the following boundary value problem for a fractional differ-
ential equation:

Dαu(t) + q(t)f
(
u, u′, . . . , u(n–)) = , t ∈ (, ),α ∈ (n – , n],

u() = u′() = · · · = u(n–)() = u(n–)() = .

The author obtained the existence of positive solutions by using the fixed point theorem
for mixed monotone operator. For more details and examples, we refer the reader to [–]
and the references therein.

On the other hand, the existence results of positive solutions for integer order differ-
ential equations have been studied extensively by several researchers (see [–] and the
references therein), but, as far as we know, only a few papers consider the BVP for higher
order fractional differential equations in Banach spaces. (See [, ] and the references
therein.) So, the aim of this paper is to fill this gap.

In this paper, we obtain the existence, multiplicity, and nonexistence of positive solutions
for the BVP (.), (.) in Banach spaces. The argument is based upon the Kuratowski
measure of noncompactness and fixed point theorem for strict set contraction operator.
To our knowledge, the existence results, especially obtained for higher order fractional
boundary value problems jointly with fractional integral boundary conditions are rarely
seen when the nonlinear term takes values in an abstract space.

Let the real Banach space E endowed with the norm ‖x‖ be a partially ordered by a cone
P of E, i.e., x ≤ y if and only if y – x ∈ P. Recall that P is said to be normal if there exists a
constant N >  such that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖. (N is called the normal constant
of P.) In the present paper, we always assume that P is normal in E and without loss of
generality, we suppose that the normal constant N = .

The basic space using in this paper is C[J , E]. Clearly, C[J , E] is a Banach space with the
supremum norm ‖x‖c = sup‖x(t)‖ and Q = {x ∈ C[J , E] : x(t) ≥ θ , t ∈ J} is a cone of the
Banach space C[J , E].

A function x ∈ C[J , E] whose α derivative exists on J is called a solution of (.), (.) if
x obeys (.), (.). x is a positive solution of (.), (.) if, in addition, x(t) ≥ θ for t ∈ (, )
and x(t) 	≡ θ .
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For convenience of the reader, we first state some basic definitions and lemmas which
can be found in [, , –].

Definition . ([, ]) The Riemann-Liouville fractional integral of order α ∈ R
+ for a

continuous function h : (,∞) →R is defined by

Iαh(t) =


�(α)

∫ t


(t – s)α–h(s) ds, (.)

where �(·) is the Euler Gamma function, provided that the integral exists.

Definition . ([, ]) If h ∈ Cn[, ], then the Caputo fractional derivative of order α is
defined by

cDαh(t) =


�(n – α)

∫ t


(t – s)n–α–h(n)(s) ds = In–αh(n)(t), (.)

where n –  < α < n, n = [α] +  and [α] denotes the integer part of the real number α.

Remark . ([, ]) If α = n ∈ N, then the Caputo derivative coincides with a conven-
tional nth order derivative of the function h(t).

Lemma . ([, ]) If α > β > , then for h(t) ∈ L(, ), the equality

(cDβ Iαh
)
(t) = Iα–βh(t)

is verified almost everywhere on [, ].

Lemma . ([, ]) Let n = [α] +  for α /∈N and n = α for α ∈N. If y(t) ∈ Cn[, ], then

(
IαDαy

)
(t) = y(t) –

n–∑

i=

y(i)()
i!

ti.

Lemma . ([, ]) Let α >  and n = [α] +  for α /∈ N and n = α for α ∈N. If h(t) ∈ C[, ],
then the homogeneous fractional differential equation

cDαh(t) = 

has a solution

h(t) = c + ct + ct + · · · + cntn–,

where ci ∈R (i = , , . . . , n).

Definition . ([, ]) Let E be a real Banach space and S be a bounded subset of E.
Let α(S) = inf{δ >  : S =

⋃m
i= Si with diam(Si) ≤ δ, i = , , . . . , m}. Then α(S) is called the

Kuratowski measure of noncompactness.
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In this paper, we use α(·) and αC(·) to denote the Kuratowski measure of noncompact-
ness of a bounded set in E and C[J , E], respectively. For details of the definition and the
properties of the measure of noncompactness, we refer the reader to [–] and the ref-
erences therein.

Lemma . ([]) If H ⊂ C[I, E] is bounded and equicontinuous, then α(H(t)) is continu-
ous on I and

αC(H) = max
t∈I

α
(
H(t)

)
, α

({∫

I
x(t) dt : x ∈ H

})
≤

∫

I
α
(
H(t)

)
dt,

where I = [a, b], H(t) = {x(t) : x ∈ H}, t ∈ I .

Definition . ([]) Let P be a cone of real Banach space E. If P∗ = {ψ ∈ E∗ : ψ(x) ≥
,∀x ∈ P} then P∗ is called a dual cone of cone P.

Throughout this paper, for any y, y, . . . , yn+ ∈ P and ψ ∈ P∗ with ‖ψ‖ = , we define

f β = lim∑n–
i= ‖yi‖→β

sup max
t∈J

‖f (t, y, y, . . . , yn–)‖
∑n–

i= ‖yi‖
,

gβ = lim∑n+
i= ‖yi‖→β

sup max
t∈J

‖g(t, y, y, . . . , yn+)‖
∑n+

i= ‖yi‖
,

(ψ f )β = lim∑n–
i= ‖yi‖→β

inf min
t∈J

ψ(f (t, y, y, . . . , yn–))
∑n–

i= ‖yi‖
,

(ψg)β = lim∑n+
i= ‖yi‖→β

inf min
t∈J

ψ(g(t, y, y, . . . , yn+))
∑n+

i= ‖yi‖
,

where β is  or ∞.

Lemma . [] Let K be a cone in a Banach space E and Kr,R = {x ∈ K : r ≤ ‖x‖ ≤ R},
R > r > . Assume that A : Kr,R → K is a strict set contraction such that one of the following
two conditions hold:

(i) ‖Ax‖ ≥ ‖x‖, ∀x ∈ K , ‖x‖ = r; ‖Ax‖ ≤ ‖x‖, ∀x ∈ K , ‖x‖ = R.
(ii) ‖Ax‖ ≤ ‖x‖, ∀x ∈ K , ‖x‖ = r; ‖Ax‖ ≥ ‖x‖, ∀x ∈ K , ‖x‖ = R.

Then A has a fixed point x ∈ Kr,R such that r ≤ ‖x‖ ≤ R.

2 Several lemmas
It is convenient to list the following assumptions which are to be used throughout the
paper:

(H) f ∈ C(J × Pn–, P), g ∈ C(J × Pn+, P) and for any r > , f (t, u, u, . . . , un–),
g(t, u, u, . . . , un+) are uniformly continuous on J × Pn–

r and J × Pn–
r × Pk∗r × Ph∗r , re-

spectively. Here, k∗, h∗, Pr are defined by

k∗ = sup
t∈[,]

∫ 


K(t, s) ds, h∗ = sup

t∈[,]

∫ 


H(t, s) ds, (.)

Pr =
{

u ∈ P : ‖u‖ ≤ r
}

.
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(H) a, b ∈ C((, ), [,∞)) may be singular at t =  or t = , a(t), b(t) do not vanish
identically on any subinterval of (, ) with

∫ 



(
a(s) + b(s)

)
m(s) ds < +∞,

where m(s) will be given in (.).
(H) There exist nonnegative functions Lj(·), Mk ∈ L[, ] (j = , , . . . , n – ; k = , , . . . ,

n + ) such that

α
(
f (t, D, D, . . . , Dn–)

) ≤
n–∑

j=

Lj(t)α(Dj),

α
(
g(t, D, D, . . . , Dn+)

) ≤
n+∑

k=

Mk(t)α(Dk), ∀t ∈ J .

Here Di ⊂ P (i = , , . . . , n + ) are bounded and

ρ

∫ 


m(s)

(
λa(s)L(s) + λb(s)M(s)

)
ds < ,

where

L(s) =
n–∑

j=

Lj(s)
(n –  – j)!

+ Ln–(s), (.)

M(s) =
n–∑

k=

Mk(s)
(n –  – k)!

+ Mn–(s) +
k∗

(n – )!
Mn(s) +

h∗

(n – )!
Mn+(s), (.)

and k∗ and h∗ are given by (.).
In order to obtain the existence and nonexistence of positive solutions, we will consider

the following auxiliary problem:

cDα–n+y(t) = λa(t)f
(
t, In–y, . . . , Iy, y

)

+ λb(t)g
(
t, In–y, . . . , Iy, y, T

(
In–y

)
, S

(
In–y

))
, t ∈ (, ), (.)

y() + y′() = Iδy(η),

y() + y′() + Iδy(μ) = θ ,
(.)

where

Ij(y)(t) =


�(j)

∫ t


(t – s)j–y(s) ds (j = , , . . . , n – ).

Lemma . The higher order fractional boundary value problem (.), (.) has a solution
if and only if the nonlinear fractional boundary value problem (.), (.) has a solution.

Proof Let x be a solution of the higher order fractional boundary value problem (.), (.)
and y(t) = cDn–x(t). Then from the boundary value conditions (.) and the definition of
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the Caputo fractional derivative, we obtain

y(t) = Dn–x(t) = x(n–)(t),

Iy(t) = Ix(n–)(t) =


�()

∫ t


x(n–)(s) ds = x(n–)(t),

Iy(t) = Ix(n–)(t) =


�()

∫ t


(t – s)x(n–)(s) ds = x(n–)(t),

...

In–y(t) = In–x(n–)(t) =


�(n – )

∫ t


(t – s)n–x(n–)(s) ds = x(t),

cDα–n+y(t) =


�(n – α)

∫ t


(t – s)n–α–y′′(s) ds

=


�(n – α)

∫ t


(t – s)n–α–x(n)(s) ds

= cDαx(t),

which imply that

y() + y′() = Iδy(η),

y() + y′() + Iδy(μ) = θ .

Hence, y(t) = x(n–)(t) is a solution of the fractional boundary value problem (.), (.).
Conversely, if y is a solution of the fractional boundary value problem (.), (.), and

letting x(t) = In–y(t), then it follows from the definition of the Caputo fractional derivative
and the boundary value conditions (.) that

x′(t) = DIn–y(t) = cDIIn–y(t) = In–y(t),

x′′(t) = Dx(t) = cDIn–y(t) = cDIIn–y(t) = In–y(t),

...

x(n–)(t) = Dn–x(t) = cDn–In–y(t) = y(t),

cDαx(t) = In–α
(
x(n))(t) = In–α

(
In–y

)(n)(t) = In–α
(
y′′)(t) = cDα–n+y(t),

which indicate that

x(i)() = θ ,  ≤ i ≤ n – ,

x(n–)() + x(n–)() = Iδx(n–)(η),

x(n–)() + x(n–)() + Iδx(n–)(μ) = θ .

Finally, x(t) = In–y(t) is a solution of the higher order fractional boundary value problem
(.), (.). Therefore, the proof of Lemma . is completed. �
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Lemma . For any h ∈ C[(, ), E] with
∫ 

 ( – s)α–nh(s) ds < +∞, the following fractional
boundary value problem:

cDα–n+y(t) = h(t), t ∈ (, ), (.)

y() + y′() = θ ,

y() + y′() = θ
(.)

has a unique solution

y(t) =
∫ 


G(t, s)h(s) ds, (.)

where

G(t, s) =

{
(–s)α–n+(–t)+(t–s)α–n+

�(α–n+) + (–s)α–n(–t)
�(α–n+) , s ≤ t;

(–s)α–n+(–t)
�(α–n+) + (–s)α–n(–t)

�(α–n+) , t ≤ s.
(.)

Proof Let y(t) be a solution of the boundary value problem (.), (.). Applying the oper-
ator Iα–n+ to both sides of (.), by Lemma ., we reduce (.) to an equivalent integral
equation

y(t) = Iα–n+h(t) + c + ct. (.)

Thus, differentiating (.), we have

y′(t) = Iα–n+h(t) + c. (.)

By the boundary conditions of (.), we get

c = Iα–n+h() + Iα–n+h(),

c = –Iα–n+h() – Iα–n+h().
(.)

Substituting these values into (.), we obtain

y(t) =


�(α – n + )

∫ t


(t – s)α–n+h(s) ds + ( – t)

[
Iα–n+h() + Iα–n+h()

]

=


�(α – n + )

∫ t


(t – s)α–n+h(s) ds

+
 – t

�(α – n + )

∫ 


( – s)α–n+h(s) ds +

 – t
�(α – n + )

∫ 


( – s)α–nh(s) ds

=
∫ 


G(t, s)h(s) ds.

Therefore, the proof of Lemma . is completed. �
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Lemma . For any h ∈ C[(, ), E] with
∫ 

 ( – s)α–nh(s) ds < +∞, the following fractional
boundary value problem:

cDα–n+y(t) = h(t), t ∈ (, ), (.)

y() + y′() = Iδy(η),

y() + y′() + Iδy(μ) = θ ,
(.)

has a unique solution

y(t) =
∫ 


H(t, s)h(s) ds, (.)

where

H(t, s) = G(t, s) +

ψ

[

(

 +
μδ+

�(δ + )

)
– t

(
 +

μδ

�(δ + )

)]
IδG(η, s)

+

ψ

[
 –

ηδ+

�(δ + )
– t

(
 –

ηδ

�(δ + )

)]
IδG(μ, s), t, s ∈ [, ], (.)

ψ = 
(

 –
ηδ

�(δ + )

)(
 +

μδ+

�(δ + )

)
–

(
 +

μδ

�(δ + )

)(
 –

ηδ+

�(δ + )

)
. (.)

Here, IδG(η, s) and IδG(μ, s) denote the Riemann-Liouville integral of G(t, s) with respect
to t = η and t = μ, respectively.

Proof Let

u(t) =
∫ 


G(t, s)h(s) ds. (.)

Then by Lemma ., u(t) verifies

cDα–n+u(t) = h(t), t ∈ (, ), (.)

u() + u′() = θ ,

u() + u′() = θ .
(.)

Suppose that y(t) is a solution of the boundary value problem (.), (.), and let

z(t) = y(t) – u(t), t ∈ [, ], (.)

then z(t) satisfies the following fractional boundary value problem:

cDα–n+z(t) = θ , t ∈ (, ), (.)

z() + z′() = Iδz(η) + Iδu(η),

z() + z′() + Iδz(μ) + Iδu(μ) = θ .
(.)
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Thus, we deduce from Lemma . that

z(t) = c + ct, t ∈ [, ], c, c ∈R. (.)

Replacing z(t) into (.), we get

c =

ψ

[
Iδu(η)

(
 +

μδ+

�(δ + )

)
+ Iδu(μ)

(
 –

ηδ+

�(δ + )

)]
,

c = –

ψ

[
Iδu(μ)

(
 –

ηδ

�(δ + )

)
+ Iδu(η)

(
 +

μδ

�(δ + )

)]
,

(.)

where

ψ = 
(

 –
ηδ

�(δ + )

)(
 +

μδ+

�(δ + )

)
–

(
 +

μδ

�(δ + )

)(
 –

ηδ+

�(δ + )

)
. (.)

Finally, replacing (.) into (.), we have

z(t) =

ψ

[

(

 +
μδ+

�(δ + )

)
– t

(
 +

μδ

�(δ + )

)]
Iδu(η)

+

ψ

[
 –

ηδ+

�(δ + )
– t

(
 –

ηδ

�(δ + )

)]
Iδu(μ). (.)

It follows from (.) and (.) that the integral equation (.) is satisfied. Therefore, the
proof of Lemma . is completed. �

Remark . Note that ψ >  for 
 < μ ≤ η < 

 and δ ≥ , since we have

ψ = 
(

 +
ηδ

�(δ + )

)(
 +

μδ+

�(δ + )

)
–

ηδ

�(δ + )

(
 +

μδ+

�(δ + )

)

–
(

 +
μδ

�(δ + )

)(
 –

ηδ+

�(δ + )

)

≥
(

 +
ηδ

�(δ + )

)(
 +

μδ+

�(δ + )
+

ηδ+

�(δ + )

)
–

ηδ

�(δ + )

(
 +

μδ+

�(δ + )

)

=  –
ηδ

�(δ + )
–

ηδμδ+

�(δ + )�(δ + )
+

ηδ+

�(δ + )
+

ηδ+

�(δ + )�(δ + )
+

μδ+

�(δ + )

≥  –
ηδ

�(δ + )
+

ηδ+

�(δ + )
+

μδ+

�(δ + )

>
ηδ+

�(δ + )
+

μδ+

�(δ + )

> .

Lemma . Let n –  < α < n. Then G(t, s) given by the expression (.) has the following
properties:

(i) G(t, s) ∈ C([, ] × [, )), G(t, s) > , t, s ∈ (, ).
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(ii) There exists a positive function ϕ ∈ C(, ) such that

G(t, s) ≤ m(s), t ∈ [, ], s ∈ (, ), (.)

and

G(t, s) ≥ ϕ(s)m(s), t ∈
[




,



]
, s ∈ (, ), (.)

where

m(s) =
( – s)α–n+

�(α – n + )
+

( – s)α–n

�(α – n + )
, s ∈ [, ). (.)

Proof From the definition of G(t, s), it is easy to see that (i) holds. Now, we will prove the
inequalities of the Green’s function G(t, s).

Let us define the functions G(t, s) and G(t, s) as follows:

G(t, s) =
( – s)α–n+( – t) + (t – s)α–n+

�(α – n + )
+

( – s)α–n( – t)
�(α – n + )

, s ≤ t;

G(t, s) =
( – s)α–n+( – t)

�(α – n + )
+

( – s)α–n( – t)
�(α – n + )

, t ≤ s,

then G(t, s) is a nonincreasing function with respect to t. Thus, we get

max
t∈[,]

G(t, s) ≤ ( – s)α–n+

�(α – n + )
+

( – s)α–n

�(α – n + )
, (.)

min
t∈[ 

 , 
 ]

G(t, s) ≥ 


[
( – s)α–n+

�(α – n + )
+

( – s)α–n

�(α – n + )

]
, (.)

and

max
t∈[,]

G(t, s) ≤ ( – s)α–n+

�(α – n + )
+

( – s)α–n

�(α – n + )

<
( – s)α–n+

�(α – n + )
+

( – s)α–n

�(α – n + )
, (.)

min
t∈[ 

 , 
 ]

G(t, s) ≥ 


[
( – s)α–n+

�(α – n + )
+

( – s)α–n

�(α – n + )

]
. (.)

It follows from (.)-(.) that

max
t∈[,]

G(t, s) ≤ m(s) =
( – s)α–n+

�(α – n + )
+

( – s)α–n

�(α – n + )

and

min
t∈[ 

 , 
 ]

G(t, s) ≥ 


[
( – s)α–n+

�(α – n + )
+

( – s)α–n

�(α – n + )

]
.
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Hence, if we take

ϕ(s) =
( – s)α–n+ + (α – n + )( – s)α–n

( – s)α–n+ + (α – n + )( – s)α–n , (.)

then the property (ii) holds and it is evident that ϕ(s) ∈ C[(, ), (,∞)]. The proof of
Lemma . is completed. �

Remark . From the expression of the function ϕ(s), we know that ϕ(s) > 
 .

Lemma . Let n –  < α < n. Then H(t, s) given by (.) has the following properties:
(i) H(t, s) ∈ C([, ] × [, )), H(t, s) > , t, s ∈ (, ).

(ii) There exist nonnegative numbers ρ and γ such that

H(t, s) ≤ ρm(s), for t ∈ [, ], s ∈ (, ), (.)

and

H(t, s) ≥ γ ϕ(s)m(s), t ∈
[




,



]
, s ∈ (, ), (.)

where

ρ =  +
ηδ

ψ�(δ + )
+

(ηδ+ – μδ+)
ψ�(δ + )�(δ + )

,

γ =  +


ψ�(δ + )

(



+
μδ+

�(δ + )
–

ηδ+

�(δ + )

)(
μ –




)δ

.

(.)

Proof From the definition of H(t, s), it is easy to see that property (i) is satisfied. Now,
property (ii) will be verified. From (.) and (.) for t ∈ [, ], s ∈ [, ), we get

H(t, s) ≤ m(s) +

ψ

(
 +

μδ+

�(δ + )

)


�(δ)

∫ η


(η – τ )δ–m(s) dτ

+

ψ

(
 –

ηδ+

�(δ + )

)


�(δ)

∫ μ


(μ – τ )δ–m(s) dτ

= m(s)
[

 +


ψ�(δ + )

[
ηδ

(
 +

μδ+

�(δ + )

)
+ μδ

(
 –

ηδ+

�(δ + )

)]]

≤ m(s)
(

 +
ηδ

ψ�(δ + )
+

(ηδ+ – μδ+)
ψ�(δ + )�(δ + )

)
.

On the other hand, we can derive from (.) and (.) that

H(t, s) ≥ ϕ(s)m(s) +

ψ

[(



+
μδ+

�(δ + )
–

μδ

�(δ + )

)


�(δ)

∫ η

/
(η – τ )δ–G(τ , s) dτ

+
(




–
ηδ+

�(δ + )
+

ηδ

�(δ + )

)


�(δ)

∫ μ

/
(μ – τ )δ–G(τ , s) dτ

]

≥ ϕ(s)m(s)
{

 +


ψ�(δ + )

[(



+
μδ+

�(δ + )
–

μδ

�(δ + )

)(
η –




)δ
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+
(




–
ηδ+

�(δ + )
+

ηδ

�(δ + )

)(
μ –




)δ]}

≥ ϕ(s)m(s)
[

 +


ψ�(δ + )

(



+
μδ+

�(δ + )
–

ηδ+

�(δ + )

)(
μ –




)δ]
.

Therefore, the proof of Lemma . is completed. �

Lemma . If there exists h ∈ Q such that y(t) =
∫ 

 H(t, s)h(s) ds < +∞, then y(t) ≥ θ , t ∈ J ,
i.e., y ∈ Q.

Proof By means of Lemma . and Lemma ., we have y(t) ≥ θ , t ∈ J . �

Remark . Define σ as follows:

σ =
γ


. (.)

If there exists h ∈ Q such that y(t) =
∫ 

 H(t, s)h(s) ds < +∞, then by Remark . and
Lemma ., we get

min
t∈[ 

 , 
 ]

y(t) = min
t∈[ 

 , 
 ]

∫ 


H(t, s)h(s) ds

≥ σ

∫ 


m(s)h(s) ds

≥ σ

ρ
ρ

∫ 


m(s)h(s) ds

≥ σ

ρ

∫ 


H(s, s)h(s) ds

=
σ

ρ
y(s), s ∈ J . (.)

To establish the existence and nonexistence of positive solutions, we define a cone K by

K =
{

y ∈ Q : y(t) ≥ σ

ρ
y(s), t ∈

[



,



]
, s ∈ J

}
,

where ρ and σ are defined by (.) and (.), respectively.
In this paper, by means of Lemma ., we will consider the boundary value problem

(.), (.). Here, we define the operator

Ay(t) = λ

∫ 


H(t, s)a(s)f

(
s, In–y(s), . . . , Iy(s), y(s)

)
ds

+ λ

∫ 


H(t, s)b(s)g

(
s, In–y(s), . . . , Iy(s), y(s),

T
(
In–y(s)

)
, S

(
In–y(s)

))
ds, (.)

where H(t, s) is given by (.).
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Lemma . Assume that (H)-(H) are satisfied. Then, for any r > , the operator A : Q ∩
Br → Q is a strict set contraction, where Br = {y ∈ C[J , E] : ‖y‖c ≤ r}.

Proof Let y ∈ Q ∩ Br , then from (H), for any t ∈ [, ] we obtain

fr(t) = sup
{∥∥f (t, u, u, . . . , un–)

∥∥ : (u, u, . . . , un–) ∈ Pr
n–} < +∞

and

gr(t) = sup
{∥∥g(t, u, u, . . . , un+)

∥∥ : (u, u, . . . , un+) ∈ Pr
n– × Pk∗r × Ph∗r

}

< +∞.

Using condition (H), we have

∥∥Ay(t)
∥∥ ≤ ρ

[
λ

∫ 


m(s)a(s)

∥∥f
(
s, In–y(s), . . . , Iy(s), y(s)

)∥∥ds

+ λ

∫ 


m(s)b(s)

∥
∥g

(
s, In–y(s), . . . , Iy(s), y(s), T

(
In–y(s)

)
, S

(
In–y(s)

))∥∥ds
]

≤ ρ

∫ 


m(s)

[
λa(s)fr(s) + λb(s)gr(s)

]
ds < +∞. (.)

Thus, A : Q ∩ Br → Q is bounded. Next, we shall prove that A is continuous. Let ym, y ∈
Q ∩ Br with ‖ym – y‖c →  as m → ∞. For any t, t ∈ J , we have

∥∥(Aym)(t) – (Aym)(t)
∥∥ ≤

∫ 



∣∣H(t, s) – H(t, s)
∣∣[λa(s)fr(s) + λb(s)gr(s)

]
ds. (.)

It follows from (H), (.), and (.) that Aym is equicontinuous on J . On the other
hand, for any t ∈ J , we have ‖ym(t) – y(t)‖ → , ‖Ijym(t) – Ijy(t)‖ →  (j = , , . . . , n – ),
‖S(In–)ym(t) – S(In–)y(t)‖ →  and ‖T(In–)ym(t) – T(In–)y(t)‖ → , as m → ∞. Thus,
by using the Lebesgue dominated convergence theorem and (.), we have

∥∥(Aym)(t) – (Ay)(t)
∥∥ →  as m → ∞, t ∈ J , (.)

so (Aym)(t) is relatively compact for every t ∈ J . Therefore, we deduce from the Ascoli-
Arzela theorem that {Aym} is relatively compact in Q. Now, we will show that ‖Aym –
Ay‖c →  as m → ∞. If not, then there exists ε >  and {ymi} ⊂ {ym} such that

‖Aymi – Ay‖ > ε for i = , , . . . . (.)

Because {Aym} is relatively compact in ‖ · ‖c, there exists a subsequence of {Aym} converg-
ing to some u ∈ C[J , P]. Without loss of generality, we suppose that {Aymi} itself converges
to u, which means that

‖Aymi – u‖c →  as i → ∞. (.)
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By (.) and (.), we get u = Ay. This relation contradicts (.). Hence, A is a contin-
uous operator.

Finally, we will prove that A : Q ∩ Br → Q is a strict set contraction, i.e., there exists
l ∈ (, ) such that

αC(AV ) ≤ lαC(V ), V ⊂ Q ∩ Br ,

where

l = ρ

∫ 


m(s)

(
λa(s)L(s) + λb(s)M(s)

)
ds < ,

and the functions L(s) and M(s) are defined in (.) and (.), respectively.
Assume that V ⊂ Br is given arbitrarily, then from the above arguments, we know that

{Ay : y ∈ V } are uniformly bounded and equicontinuous, so by Lemma . and (H), we
have

αc(AV ) = max
t∈[,]

α(AV )(t).

For any y ∈ V , let

(Any)(t) = λ

∫ –/n

/n
H(t, s)a(s)f

(
s, In–y(s), . . . , Iy(s), y(s)

)
ds

+ λ

∫ –/n

/n
H(t, s)b(s)g

(
s, In–y(s), . . . , Iy(s), y(s),

T
(
In–y(s)

)
, S

(
In–y(s)

))
ds. (.)

By (.), it is easy to see that (Any)(t) → (Ay)(t) as n → ∞, y ∈ V , t ∈ J . This shows that

dH
(
(AnV )(t), (AV )(t)

) → , as n → ∞, (.)

where dH (·, ·) denotes the Hausdorff metric. Hence, by (.) and the property of the mea-
sure of noncompactness, we have

α
(
(AnV )(t)

) → α
(
(AV )(t)

)
, as n → ∞. (.)

Now, we estimate for each α((AnV )(t)) and t ∈ J . By means of (H), we have

α
(
(AnV )(t)

) ≤ α

(
λ

∫ –/n

/n
H(t, s)a(s)f

(
s, In–V (s), . . . , IV (s), V (s)

)
ds

)

+ α

(
λ

∫ –/n

/n
H(t, s)b(s)g

(
s, In–V (s), . . . , IV (s),

V (s), T
(
In–V (s)

)
, S

(
In–V (s)

))
ds

)

≤ λρ

∫ –/n

/n
m(s)a(s)α

(
f
(
s, In–V (s), . . . , IV (s), V (s)

))
ds



Yoruk Deren Advances in Difference Equations  (2015) 2015:72 Page 15 of 24

+ λρ

∫ –/n

/n
m(s)b(s)α

(
g
(
s, In–V (s), . . . , IV (s),

V (s), T
(
In–V (s)

)
, S

(
In–V (s)

)))
ds

≤ ρ

∫ –/n

/n
m(s)

[

λa(s)

( n–∑

k=

Lk(s)
(n –  – k)!

+ Ln–(s)

)

+ λb(s)

( n–∑

k=

Mk(s)
(n –  – k)!

+ Mn–(s) +
k∗

(n – )!
Mn(s)

+
h∗

(n – )!
Mn+(s)

)]

dsαc(V )

≤ ρ

∫ 


m(s)

(
λa(s)L(s) + λb(s)M(s)

)
dsαc(V ), (.)

where L(s) and M(s) are given by (.) and (.), respectively. By using (.) and (.),
we have

α
(
(AV )(t)

) ≤ ρ

∫ 


m(s)

(
λa(s)L(s) + λb(s)M(s)

)
dsαc(V ),

so, by Lemma ., we can get

αc(AV ) ≤ ρ

∫ 


m(s)

(
λa(s)L(s) + λb(s)M(s)

)
dsαc(V ),

where

l = ρ

∫ 


m(s)

(
λa(s)L(s) + λb(s)M(s)

)
ds < .

Thus, the operator A : Q ∩ Br → Q is a strict set contraction. The proof of Lemma . is
completed. �

Lemma . Assume that (H)-(H) are satisfied. Then A(K) ⊂ K and A : Kr,R → K is a
strict set contraction.

Proof By Remark ., it is obvious that the operator A leaves the cone K invariant; i.e., A :
K → K . Besides, by Kr,R ⊂ K , A(Kr,R) ⊂ K holds. Thus, A : Kr,R → K . This and Lemma .
complete the proof of Lemma .. �

3 Main results
In this section, we give the existence, multiplicity, and nonexistence results of positive
solutions for the BVP (.), (.).

For convenience, let us define

A =

ρ

[ n–∑

i=


i!

∫ 


m(s)

(
a(s) + b(s)

)
ds +

k∗ + h∗

(n – )!

∫ 


m(s)b(s) ds

]–

,

B =
[∫ /

/
m(s)a(s) ds

]–

, C =
[∫ /

/
m(s)b(s) ds

]–

.

(.)
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Now, we assume the following condition on f (t, y, . . . , yn–) and g(t, y, . . . , yn+).
(H) There exist constants  < r < R < +∞ such that for all t ∈ J

∥∥f (t, y, . . . , yn–)
∥∥ ≤ A

λ

n–∑

i=

‖yi‖, yi ∈ P (i = , , . . . , n – ),  ≤
n–∑

i=

‖yi‖ ≤ r,

∥
∥g(t, y, . . . , yn+)

∥
∥ ≤ A

λ

n+∑

i=

‖yi‖, yi ∈ P (i = , , . . . , n + ),  ≤
n+∑

i=

‖yi‖ ≤ r,

ψ
(
f (t, y, . . . , yn–)

) ≥ ρRB
λσ  , yi ∈ P \ θ (i = , , . . . , n – ), R ≤

n–∑

i=

‖yi‖ < +∞,

where ρ and σ are given by (.) and (.), respectively, and ψ ∈ P∗ with ‖ψ‖ = .

Theorem . Suppose that (H)-(H) are satisfied and P is normal. Then the BVP (.),
(.) has at least one positive solution y(t), t ∈ J such that

σ

ρ

(
k∗ + h∗

(n – )!
+

n–∑

i=


i!

)–

r ≤ ∥∥y(t)
∥∥ ≤ ρ

σ
R. (.)

Proof Assume that the operator given by (.) is the cone preserving, strict set contrac-
tion. Choose

r =

(
k∗ + h∗

(n – )!
+

n–∑

i=


i!

)–

r. (.)

It is evident that r < r. Let y ∈ K with ‖y‖c = r, then by (H), we have

∥∥Ay(t)
∥∥ ≤ ρ

[
λ

∫ 


m(s)a(s)

∥∥f
(
s, In–y(s), . . . , Iy(s), y(s)

)∥∥ds

+ λ

∫ 


m(s)b(s)

∥
∥g

(
s, In–y(s), . . . , Iy(s), y(s), T

(
In–y(s)

)
, S

(
In–y(s)

))∥∥ds
]

≤ ρA

[∫ 


m(s)

(
a(s) + b(s)

)
[ n–∑

i=

∥∥Iiy(s)
∥∥ +

∥∥y(s)
∥∥
]

ds

+
∫ 


m(s)b(s)

[∥∥T
(
In–y(s)

)∥∥ +
∥
∥S

(
In–y(s)

)∥∥]
ds

]

≤ ρA‖y‖c

[ n–∑

i=


i!

∫ 


m(s)

(
a(s) + b(s)

)
ds +

k∗ + h∗

(n – )!

∫ 


m(s)b(s) ds

]

= ‖y‖c.

If we choose � = {y ∈ K : ‖y‖c < r}, then we have

‖Ay‖c ≤ ‖y‖c for all y ∈ K ∩ ∂�. (.)
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Next, set R = ρ

σ
R and � = {y ∈ K : ‖y‖c < R}. Then y ∈ K with ‖y‖c = R, t ∈ [ 

 , 
 ], s ∈

[, ] implies that

y(t) ≥ σ

ρ
y(s),

so we have

∥∥y(t)
∥∥ ≥ σ

ρ
R = R, t ∈

[



,



]
,

that is, ‖∑n–
i= Iiy(s)‖ + ‖y(s)‖ ≥ R for all s ∈ [ 

 , 
 ]. Then, from condition (H) again, we

have

∥∥Ay(t)
∥∥ ≥ ψ(Ay)(t) ≥ λ

∫ 


H(t, s)a(s)ψ

(
f
(
s, In–y(s), . . . , Iy(s), y(s)

))
ds

≥ λσ

∫ /

/
m(s)a(s)ψ

(
f
(
s, In–y(s), . . . , Iy(s), y(s)

))
ds

≥ ρRB
σ

∫ /

/
m(s)a(s) ds

=
ρ

σ
R = R = ‖y‖c.

Thus, we have

‖Ay‖c ≥ ‖y‖c for all y ∈ K ∩ ∂�. (.)

Lemma . together with (.) and (.) shows that there exists a fixed point y(t) in K ∩
(� \ �) satisfying σ

ρ
( k∗+h∗

(n–)! +
∑n–

i=

i! )

–r ≤ ‖y(t)‖ ≤ ρ

σ
R. This and Lemma . complete

the proof of Theorem .. �

Similarly, we can prove the following result.

Corollary . Suppose that (H)-(H) hold and P is normal. If f  = , g =  and (ψ f )∞ =
∞, then the BVP (.), (.) has at least one positive solution y(t), t ∈ J in P for r >  suffi-
ciently small and R >  sufficiently large.

In the next theorem, we also assume the following condition on f (t, y, . . . , yn–) and
g(t, y, . . . , yn+).

(H) There exist constants  < r < R < +∞ such that for all t ∈ J

ψ
(
f (t, y, . . . , yn–)

) ≥ ρB
∑n–

i= ‖yi‖
λσ  , yi ∈ P \ θ (i = , , . . . , n – ),  ≤

n–∑

i=

‖yi‖ ≤ r,

∥
∥f (t, y, . . . , yn–)

∥
∥ ≤ A

λ

n–∑

i=

‖yi‖, yi ∈ P (i = , , . . . , n – ), R ≤
n–∑

i=

‖yi‖ < ∞,

∥
∥g(t, y, . . . , yn+)

∥
∥ ≤ A

λ

n+∑

i=

‖yi‖, yi ∈ P (i = , , . . . , n + ), R ≤
n+∑

i=

‖yi‖ < ∞,

where ρ and σ are given by (.) and (.), respectively, and ψ ∈ P∗ with ‖ψ‖ = .
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Theorem . Suppose that (H)-(H) and (H) are satisfied and P is normal. Then the
BVP (.), (.) has at least one positive solution y(t), t ∈ J , such that

σ

ρ

( n–∑

i=


i!

)–

r ≤ ∥
∥y(t)

∥
∥ ≤ R. (.)

Proof Assume that the operator given by (.) is a cone preserving, strict set contraction.
Choose

r =

( n–∑

i=


i!

)–

r. (.)

Clearly, r < r. Let y ∈ K with ‖y‖C = r, then by (H), we have

∥
∥Ay(t)

∥
∥ ≥ ψ

(
(Ay)(t)

) ≥ λ

∫ 


H(t, s)a(s)ψ

(
f
(
s, In–y(s), . . . , Iy(s), y(s)

))
ds

≥ λσ

∫ /

/
m(s)a(s)ψ

(
f
(
s, In–y(s), . . . , Iy(s), y(s)

))
ds

≥ Bρ

σ

∫ /

/
m(s)a(s)

[ n–∑

i=

∥
∥Iiy(s)

∥
∥ +

∥
∥y(s)

∥
∥
]

ds

≥ Bρ

σ

σ

ρ
‖y‖c

∫ /

/
m(s)a(s) ds

= ‖y‖c.

Set � = {y ∈ K : ‖y‖c < r}, thus we have

‖Ay‖c ≥ ‖y‖c for all y ∈ K ∩ ∂�. (.)

Finally, let y ∈ K with ‖y‖c = R. Then from condition (H), we get

∥
∥Ay(t)

∥
∥ ≤ ρ

[
λ

∫ 


m(s)a(s)

∥
∥f

(
s, In–y(s), . . . , Iy(s), y(s)

)∥∥ds

+ λ

∫ 


m(s)b(s)

∥
∥g

(
s, In–y(s), . . . , Iy(s), y(s), T

(
In–y(s)

)
, S

(
In–y(s)

))∥∥ds
]

≤ ρA

[∫ 


m(s)

(
a(s) + b(s)

)
[ n–∑

i=

∥
∥Iiy(s)

∥
∥ +

∥
∥y(s)

∥
∥
]

ds

+
∫ 


m(s)b(s)

[∥∥T
(
In–y(s)

)∥∥ +
∥∥S

(
In–y(s)

)∥∥]
ds

]

≤ ρA‖y‖c

[ n–∑

i=


i!

∫ 


m(s)

(
a(s) + b(s)

)
ds +

k∗ + h∗

(n – )!

∫ 


m(s)b(s) ds

]

= ‖y‖c.
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Therefore, we have

‖Ay‖c ≤ ‖y‖c for all y ∈ K ∩ ∂�, (.)

where � = {y ∈ K : ‖y‖c < R}. Lemma . together with (.) and (.) shows that there
exists a fixed point y(t) in K ∩ (� \ �) satisfying σ

ρ
(
∑n–

i=

i! )

–r ≤ ‖y(t)‖ ≤ R. This and
Lemma . complete the proof of Theorem .. �

Similarly, we can also prove the following results.

Corollary . Suppose that (H)-(H) hold and P is normal. If f ∞ = , g∞ =  and (ψ f ) =
∞, then the BVP (.)-(.) has at least one positive solution y in P for r >  sufficiently small
and R >  sufficiently large.

Theorem . Suppose that (H)-(H) are satisfied, P is normal and the following two con-
ditions hold:

(H) There exist constants  < r < R < +∞ such that for all t ∈ J

ψ
(
f (t, y, . . . , yn–)

) ≥ ρB
λσ 

n–∑

i=

‖yi‖, yi ∈ P (i = , , . . . , n – ),
n–∑

i=

‖yi‖ ≤ r,

ψ
(
g(t, y, . . . , yn+)

) ≥ ρC
∑n+

i= ‖yi‖
λσ  , yi ∈ P (i = , , . . . , n + ),

n+∑

i=

‖yi‖ ≥ R.

(H) There exists b >  such that

sup
(t,y,...,yn–)∈J×Pn–

b

∥∥f (t, y, . . . , yn–)
∥∥ <

b
λρ

∫ 
 m(s)a(s) ds

,

sup
(t,y,...,yn–)∈J×Pn–

b ×Pk∗b×Ph∗b

∥
∥g(t, y, . . . , yn+)

∥
∥ <

b
λρ

∫ 
 m(s)b(s) ds

,

where ρ , σ , k∗, and h∗ are given by (.), (.), and (.), respectively, and ψ ∈ P∗ with
‖ψ‖ = .

Then the BVP (.), (.) has at least two positive solutions.

Proof Suppose that the operator given by (.) is a cone preserving, strict set contraction.
Let

r =

( n–∑

i=


i!

)–

r. (.)

Clearly, r < r. Then for t ∈ J , y ∈ K with ‖y‖c = r, we have

∥
∥Ay(t)

∥
∥ ≥ ψ

(
(Ay)(t)

) ≥ λ

∫ 


H(t, s)a(s)ψ

(
f
(
s, In–y(s), . . . , Iy(s), y(s)

))
ds

≥ λσ

∫ /

/
m(s)a(s)ψ

(
f
(
s, In–y(s), . . . , Iy(s), y(s)

))
ds
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≥ Bρ

σ

∫ /

/
m(s)a(s)

[ n–∑

i=

∥
∥Iiy(s)

∥
∥ +

∥
∥y(s)

∥
∥
]

ds

≥ Bρ

σ

σ

ρ
‖y‖c

∫ /

/
m(s)a(s) ds

= ‖y‖c.

If we choose � = {y ∈ K : ‖y‖c < r}, then we have

‖Ay‖c ≥ ‖y‖c for all y ∈ K ∩ ∂�. (.)

Further, set r = max{r, ρ

σ
R} and � = {y ∈ K : ‖y‖c < r}. Then y ∈ K with ‖y‖c = r,

t ∈ [ 
 , 

 ], s ∈ [, ] implies that

y(t) ≥ σ

ρ
y(s),

so we have

∥∥y(t)
∥∥ ≥ σ

ρ
r = R, t ∈

[



,



]
,

that is, ‖T(In–y(s))‖ + ‖S(In–y(s))‖ + ‖∑n–
i= Iiy(s)‖ + ‖y(s)‖ ≥ R for all s ∈ [ 

 , 
 ]. Then,

from condition (H) again, we have

∥
∥Ay(t)

∥
∥

≥ ψ
(
(Ay)(t)

)

≥ λ

∫ 


H(t, s)b(s)ψ

(
g
(
s, In–y(s), . . . , Iy(s), y(s), T

(
In–y(s)

)
, S

(
In–y(s)

)))
ds

≥ λσ

∫ /

/
m(s)b(s)ψ

(
g
(
s, In–y(s), . . . , Iy(s), y(s), T

(
In–y(s)

)
, S

(
In–y(s)

)))
ds

≥ ρC
σ

∫ /

/
m(s)b(s)

[
∥
∥T

(
In–y(s)

)∥∥ +
∥
∥S

(
In–y(s)

)∥∥ +
∥∥
∥∥

n–∑

i=

Iiy(s)
∥∥
∥∥ +

∥
∥y(s)

∥
∥
]

ds

≥ ρC
σ

σ

ρ
‖y‖c

∫ /

/
m(s)b(s) ds

= ‖y‖c.

Hence, we have

‖Ay‖c ≥ ‖y‖c for all y ∈ K ∩ ∂�. (.)

Finally, let b ∈ K with ‖y‖c = b, r < b < r, then we get

∥
∥Ay(t)

∥
∥

≤ ρ

[
λ

∫ 


m(s)a(s)

∥
∥f

(
s, In–y(s), . . . , Iy(s), y(s)

)∥∥ds
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+ λ

∫ 


m(s)b(s)

∥∥g
(
s, In–y(s), . . . , Iy(s), y(s), T

(
In–y(s)

)
, S

(
In–y(s)

))∥∥ds
]

≤ ρ

[
λ sup

(t,y,...,yn–)∈J×Pn–
b

∥
∥f (t, y, . . . , yn–)

∥
∥

∫ 


m(s)a(s) ds

+ λ sup
(t,y,...,yn–)∈J×Pn–

b ×Pk∗b×Ph∗b

∥
∥g(t, y, . . . , yn+)

∥
∥

∫ 


m(s)b(s) ds

]

< b.

Therefore, we have

‖Ay‖c < ‖y‖c for all y ∈ K ∩ ∂�, (.)

where � = {y ∈ K : ‖y‖c < b}. Lemma . together with (.), (.), and (.) shows that
there exist a fixed point y(t) in Kr,b and a fixed point y(t) in Kb,r . This and Lemma .
complete the proof of Theorem .. �

Now, we shall present the nonexistence results of positive solutions for the BVP (.),
(.).

Theorem . Suppose that (H)-(H) hold, P is normal and

(i) λψ
(
f (t, y, y, . . . , yn–)

)
>

ρB
σ 

n–∑

i=

‖yi‖, ∀yi ∈ P,
n–∑

i=

‖yi‖ > ,

or

(ii) λψ
(
g(t, y, y, . . . , yn+)

)
>

ρC
σ 

n+∑

i=

‖yi‖, ∀yi ∈ P,
n+∑

i=

‖yi‖ > ,

then the BVP (.)-(.) has no positive solution.

Proof Suppose that y(t) is a positive solution of the BVP (.)-(.). Then y ∈ K , ‖y‖c > 
for t ∈ J and

‖y‖c ≥ σλ

∫ /

/
m(s)a(s)ψ

(
f
(
s, In–y(s), . . . , Iy(s), y(s)

))
ds

>
ρ

σ
B

∫ /

/
m(s)a(s)

[ n–∑

i=

∥∥Iiy(s)
∥∥ +

∥∥y(s)
∥∥
]

ds

≥ ρ

σ

σ

ρ
‖y‖cB

∫ /

/
m(s)a(s) ds

= ‖y‖c,

which is a contradiction. Similarly, when (ii) holds, one can prove that the conclusion of
Theorem . also is satisfied. This and Lemma . complete the proof. �
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Theorem . Suppose that (H)-(H) hold, P is normal,

∥
∥f (t, y, y, . . . , yn–)

∥
∥ <

A
λ

n–∑

i=

‖yi‖, ∀yi ∈ P (i = , , . . . , n – ),
n–∑

i=

‖yi‖ > ,

and

∥
∥g(t, y, y, . . . , yn+)

∥
∥ <

A
λ

n+∑

i=

‖yi‖, ∀yi ∈ P (i = , , . . . , n + ),
n+∑

i=

‖yi‖ > ,

then the BVP (.)-(.) has no positive solution.

Proof Suppose to the contrary that y(t) is a positive solution of the BVP (.)-(.). Then
y ∈ K , ‖y‖c >  for t ∈ J , and

‖y‖c = sup
t∈[,]

∥
∥y(t)

∥
∥

≤ ρ

[
λ

∫ 


m(s)a(s)

∥
∥f

(
s, In–y(s), . . . , Iy(s), y(s)

)∥∥ds

+ λ

∫ 


m(s)b(s)

∥∥g
(
s, In–y(s), . . . , Iy(s), y(s), T

(
In–y(s)

)
, S

(
In–y(s)

))∥∥ds
]

< ρA

[∫ 


m(s)

(
a(s) + b(s)

)
[ n–∑

i=

∥∥Iiy(s)
∥∥ +

∥∥y(s)
∥∥
]

ds

+
∫ 


m(s)b(s)

[∥∥T
(
In–y(s)

)∥∥ +
∥∥S

(
In–y(s)

)∥∥]
ds

]

≤ ρA‖y‖c

[ n–∑

i=


i!

∫ 


m(s)

(
a(s) + b(s)

)
ds +

k∗ + h∗

(n – )!

∫ 


m(s)b(s) ds

]

= ‖y‖c,

which is a contradiction. This and Lemma . complete the proof. �

4 An example
To demonstrate how our main results can be used in the application of our results, we give
an example.

Example . Consider the following fractional boundary value problem of a finite system
of scalar fractional differential equations:

cD/xn(t) = λ
e–t
√

t
(
xn + x′

n + x′′
n
) + λ

e–t

( – t)/

(
xn + x′

n + x′′
n

+
∫ t


sin(t + s)e–sxn(s) ds +

∫ 


cos(t – s)e–sxn(s) ds

)

,

t ∈ (, ), n = (, , . . . , m), (.)
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xn() = x′
n() = ,

x′′
n() + x′′′

n () =



√

π

∫ /



(



– s
)/

x′′
n(s) ds,

x′′
n() + x′′′

n () +



√

π

∫ /



(



– s
)/

x′′
n(s) ds = .

(.)

Conclusion System (.), (.) has at least one positive solution.

Proof Let the Banach space

E = R
m =

{
x = (x, x, . . . , xm) : xn ∈R, n = , , . . . , m

}

with the norm ‖x‖ = max≤n≤m |xn| and P = {x = (x, x, . . . , xm) : xn ≥ , n = , , . . . , m}.
Then P is a normal cone in E and problem (.), (.) can be taken into consideration as
a BVP form (.), (.) in E. Here, λ,λ >  are real numbers, α = 

 , δ = 
 , η = 

 , μ = 
 ,

a(t) = √
t , b(t) = 

(–t)/ , K(t, s) = sin(t + s)e–s, H(t, s) = cos(t – s)e–s, x = (x, x, . . . , xm), f =
(f, f, . . . , fm), g = (g, g, . . . , gm), where

fn(t, u, v, w) = e–t(un + vn + wn),

gn(t, u, v, w, z, τ ) = e–t(un + vn + wn + zn + τn).

Clearly, f ∈ C[J × P, P], g ∈ C[J × P, P] (J = [, ]), and P∗ = P, thus we can choose ψ =
(, , . . . , ); then for any x ∈ P we get

ψ
(
f (t, u, v, w)

)
=

m∑

n=

fn(t, u, v, w).

Now, conditions (H)-(H) will be verified. It is easy to see that (H) holds. Observe that,
for any t ∈ (, ) and r > , we have

fr(t) ≤ e–tr, gr(t) ≤ e–tr.

Thus (H) is satisfied. Furthermore, assumption (H) is satisfied automatically since E is
finite dimensional.

On the other hand,

f  = lim
(‖u‖+‖v‖+‖w‖+‖z‖)→

sup max
t∈J

‖f (t, u, v, w)‖
‖u‖ + ‖v‖ + ‖w‖ = ,

g = lim
(‖u‖+‖v‖+‖w‖+‖z‖+‖τ‖)→

sup max
t∈J

‖g(t, u, v, w, z, τ )‖
‖u‖ + ‖v‖ + ‖w‖ + ‖z‖ + ‖τ‖ = ,

and

ψ(f (t, u, v, w))
‖u‖ + ‖v‖ + ‖w‖ ≥ ‖f (t, u, v, w)‖

‖u‖ + ‖v‖ + ‖w‖ → ∞ (‖u‖ + ‖v‖ + ‖w‖ → ∞)
,

which means (ψ f )∞ = ∞. Therefore, Corollary . shows that (.), (.) has a solution.
�
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