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1 Introduction

As we know, the Chebyshev polynomials and Fibonacci polynomials are usually defined
as follows: Chebyshev polynomials of the first kind are T},5(x) = 2xT),41(x) — T (x), n > 0,
with the initial values To(x) = 1, T1(x) = x; Chebyshev polynomials of the second kind are
U, .2 (x) = 2xU,.1(x) — U, (x), n > 0, with the initial values Uy(x) = 1, U;(x) = 2x; Fibonacci
polynomials are F,,5(x) = xF,.,1(x) + F,,(x), n > 0, with the initial values Fy(x) = 0, Fy(x) = 1.

From the second-order linear recurrence sequences, we have

T,(x) = %[(x + Va2 —1)" + (x - Va2 -1)"],

1 2 n+l 2 n+l
U,,(x):T\/Z__l[(x+«/x -1 - (k- Va2 -1)",

1 2 n 2 n
Fn(x)=m[(x+vx +4) —(x—vx +4<) ]

These polynomials play a very important role in the study of the theory and application
of mathematics, and they are closely related to the famous Fibonacci numbers {F,} and

Lucas numbers {L,} which are defined by the second-order linear recurrence sequences
Fn+2 =Fn+l +Fn;
Ln+2 = Ln+1 + Ln:

where n >0, Fy =0, F; =1, Ly =2 and L, = 1. Therefore, many authors have investigated

these polynomials and got many properties and corollaries. For example, Zhang [1] uses
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the Chebyshev polynomials and has obtained the general formulas involving F,, and L,,,

Z Fm(a1+1) . Fm(a2+1) e Fm(ak+1+1)

ay+ax+--+ap,1=n

( l)mn Fr]::l ( lmLm
B 2k . k! Ui 2 )

Z Lm(a1+1) . Lm(a2+1) o 'Lm(ak+1+l)

ay+ag+--+ag=n+k+1

k+1

2 2L NP (k1) L
_ m(n+k+1) < m (k) m
= (=) k! Z( 2 ) ik + 1—h)zu"+2k“-h< 2 )
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where k, m are any positive integers, ai,4ds,...,dk,1 are nonnegative integers and i is the

square root of —1. Falcdn and Plaza [2, 3] presented many formulas about Fibonacci poly-

nomials. This fact allowed them to present a family of integer sequences in a new and

direct way. Zhang [1] also used the Chebyshev polynomials to solve some calculating prob-

lems of the general summations. Wu and Yang [4] studied Chebyshev polynomials and got

a lot of properties.

In this paper, we combine Sergio Falcdn and Wenpeng Zhang’s ideas. Then we obtain

the following theorems and corollaries. These results strengthen the connections of two

kinds of polynomials. They are also helpful in dealing with some calculating problems of

the general summations or studying some integer sequences.

Theorem 1 For any positive integer n, we have the identities

ntl n

2%k . (2sm - n)(n + k —1)!Fs1(x)
Ton() = 21: kXO: C) = Rk + 9k —s + 1)V’

2%1(2ns — §)(n + k — 2)!Faq(x)
Toua(x) = SXI:; (1)t (1 — k)!(k + 5)!(k — 5)! .

Theorem 2 For any positive integer n, we have

n+l n

2211 — 26)(m + k)1 Fs1 (%)
Un@) = 1 (= )k + )k —s + 1)’

s=1 k=0

n n-1

22K 2511 + k — 1))(=1)**" Fyq(x)
Uny (%) =
2n-1(x) = 21:]2(;(1/1 k+1)i(k+s+D)k—s+1)

Theorem 3 For any positive integer n, we have the following forms:

~ 25427212k + 1) (n —j —1)!
Fon- 1(x‘zz T Ty

22/ 2n+2k 2 — ] 1)
Jn—k=j)in+k—j)

Ui (x).

M
0

k=1 j=1
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Theorem 4 For any positive integer n, we have the following forms:

n n-1

294222 — j = I Topa ()
F n ’
() = Z]Z 127 + 2k — 2 — 2)1(2n — 2k — 2))!

n-1 n-1

2932 —j - ) Top(x) e 2722 (2n—j - 2))!
+ .
Jin+k—j-1ln—k—-j-1)! jzlj!(n—j—l)!(n—j—l)!

k=1 j=1

Corollary 1 For any positive integer n, we have the following identities:

o (1L LG 292210k + 1) (1 — j — 1) Fpuaenny
o T i~k = j = )i+ k= -)FE,,

e (UL ”‘1”2‘1: 2521221 — j — 1)(~i) Eatom
2 S (DR — k=)l + k= j)IEy

Corollary 2 For any positive integer n, we have the following identities:

’

o (UL _ Z 2 272272 — j = DD (=) Lotom-m
»\ 2 J1(2n + 2k — 2 — 2)1(21 — 2k — 2j)!

n-1 n-1
ML 22]+3 2n 21’1 ] 2);( l)kmszm
F,_ =
2 1( ) 2.2 Arn+k—j—1)n—k—j—1)

k=1 j=1

n-1

22j+2—2n(2n —j _ 2)!
+ - ; ; .
p= Jn—j-(n-j-1)!

2 Some lemmas

Lemma 1 For any nonnegative integers m and n, we have these identities

0, m+#n
1 Tm Tn 7 7
Ma]x: %, m=n>0, (1)
-1 1—x2
w, m=n=0;
! 0, m#n,
/ U ) U, (V1 —x?dx = (2)
-1 5 m = n;
T, (cos @) = cos nb; (3)
i 1)6
U,(cosh) = M (4)
sin 6
Proof See reference [5]. O

Lemma 2 For any positive integers m and n, we have these identities

i )
u, <E) =i"Fu,
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T, <Tm<%>) = ianmm
i . F
Un(Tm(E)) = lmn—mf(v::rl)'

Proof See reference [1].

Lemma 3 For any positive integer n, we have

T, (Tm (x)) = Tm(x),

Um(n+1)—1 (%)

Un(Tm (x)) B U1 (%)

Proof See reference [1].

Lemma 4 For any positive integer n, let

Fo(%) = Y anli(x)

k=0
and
1 +0Q0
Fu@) = ShuoTo@) + 3 buTi(),
k=1
then we can get
L”T’lj 2(k+1)(n—j-1)! .
i = p, Tk ki K +nisodd,
0, otherwise,
L% 2(n—j-1)! .
bt = P Tk i ki K +nis odd,
0, otherwise.

Page 4 of 12

(5)

(6)

7)

(8)

Proof To begin with, we multiply v/1 — x2U,,(x) to both sides of (5), then integrate it from

-1 to 1, we can get the following identity by applying property (2):

1 S
f V1 —-x2F,(x)U,,(x)dx = Z / AN 1 = x2U,, (x) Ui (x) dx = %anm,
-1 k=1 -1

and then we have
2 1

Ay = — / V1 -=x2F,(x)U,,(x) dx.
T Ja

From reference [2] we know

L5t

Fn(x) _ Z <l’l _j:_ 1)xn—2]—1’

j=0

)
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where n > 1. We define
2 (7 . .
Wk = — / cos” @ sin(k + 1)0 sin do.
T Jo
From reference [6] we know

(n+k+2)!(n—k)!"?
0, otherwise,

_2erlnt k +nisevenandn >k,
Wk = (10)

where # and k are any nonnegative integers. Let x = cos 6, then we can get the following

identity by applying property (2) and property (9):

anm -

|

/ F,(cos@)sin(m +1)0 sin6 d6
0

_1J

,_
N
|

—j-1\ [7 ,
<n } ) / cos” %19 sin(m +1)0 sin6 do
J 0

|

Jj=1
7]

n—-j—1
= ( ] )Wn—2j—1,m;
: ]

j=1

—

and then we have a,,,, = 0 if n + m is even. If n + m is odd, we have

n-1
2

ﬁ
LR
—

Aypm =

n—j-1 2(m +1)(n—2j - 1)!
( j >'(n-m-2j-1)!!(n+m+1-2j)!!

]

j=1

L7 , ‘
(m—j-1 2(m +1)(n—2j—1)!

Jn=2j-1)! m-m-2j—-)n+m+1-2))!

n-1
Lz} 2m+1)(n—j—1)!

- }21: Jn—m—2— )+ m+1— 2N

We finish proving property (7).
In order to prove property (8), we must multiply 22 «/_ to both sides of (6), then integrate
it from -1 to 1, we can get the following identity by applying property (1):

L E, (%) Ty (x) 10 To (%) T (x) ik Ty () Ty (%) n
_— d = d d =7 bnm;
1 A1—x2 x /_1 241 — x2 Z[ V1 — a2 * 2

and then we have

1
b,y = E F(x) T (x)

dx.
7Ja V1-«?

We define

2 b
Gnk = — / cos” 6 cos k6 db.
7 Jo
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From reference [6] we know

(n+k)(n=k)!”?

—2n__ . J 4 pisevenand n >k,
qnk = : .
0, otherwise,

where 7 and k are any nonnegative integers. Let x = cos 6, then we can get the following

identity by applying property (2) and property (11):

noédo

/” T,,(cosO)F,(cosb) .
si

0 sin @

(n _], - 1) / cos" %710 cos mb do
J 0

n-j-1
= ( ] )qn—2j—1,m:
: J

and then we have b,,,,, = 0 if n + m is even. If n + m is odd, we have

n=1
b :Lf n=j=1\ 2(n—2j 1)
" 1 J m+m=-2j-D(n-—m-2j-1"
"] , ‘
_ (n—j-1)! 2(n—2j—1)!

'jﬂﬂm—y—m'm+m—y—mw—m—m—m!

) 2n—j-1)!

M+ m =2 = 1)~ — 2~ I

This proves Lemma 4. O
Lemma 5 For any positive integers m and n, we have the following identities:
) "3 sin né
F,(2icosf) = ———, (12)
sinf
'2m—17.[’ — 0'
m=n> 13)

2
Va2 + 4F,, (x)F,(x) dx =
2

, otherwise.

Proof As we know,

[(x+ Va2 + 4)" - (x— Va2 + 4)"].

Fn(x) =

1
21/x% + 4

Let x = 2icos 6, then we have

1
F,(2icos0) = _—[(icos@ +sin0)” — (icosf — sin@)"]
2sin6

1 . .
— : (lne—me _ lnemO)
2sinf
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A

(cosnf — isinnf — cos n6 — isin nd)

- 2sinf

"3 sin né

sin 6

This proves property (12). Let x = 2icos 6§ in the following identity:

2i
A= V&2 + 4F,,(x)F,(x) dx,
2i
then we can get

e
A= / 2sinOF,(2icos0)F,,(2icos6)2isinb db
0

T, "3 sinnf i3 sinmb
= 4jsin” 0 - ; do
0 sinf sinf

T
= 4L / sin 16 sin m® do
0
T
= 2l f cos (n—m)0 — cos (m + n)0 db.
0

Then we can get property (13). This proves Lemma 5. d

Lemma 6 For any positive integer n, we have

no_1\yn-k o2k |
Ty () = Z (-1) 2°K . n <n + k)ka,

pary n+k 2k
s
T
U (3) = kXOj (‘l)n_kn' fzkkfz(k +1) (” o *22)x2k+1.

Proof From Theorem 2 of reference [4], we can get the following result easily:

n

Toux) = Y _(-1)"* |:22k (Z i Ili) _ g2kl (VIZJ;( k_ —1 1) ]xzk

k=0

_ " nk  o2k-1 2+ k! (n+k-1)! "
_kX:O:(_l) ? [(2k)!(n—k)! (2k—1)!(n_k)1]x

_ - ik g k=1 o
- k:zo( D2 =
_ 2L (-1 2%y (n + k)ka.

pary n+k 2k
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From Theorem 2 of reference [4], we know
n

_ _1\r—k| 92k+1 n+k+1 _ 92k n+k 2k+1
Tona(x) = ) (1) [2 (n_k) 2 (2k w2,

k=0
In a similar way, we can get
n

(1% 226 2n+1) (n+ k+1\ gy
szl(x)zz n+k+1 2k+1 )F =
k=0

We can get T, (x) = nll,_1(x) easily from the definition of the Chebyshev polynomials. If
we derive both sides of the above properties, we will get

no nk o2k
Uzn(x)=z( 1) 2 (2k+1)(n+k+1)x2k,

Py n+k+1 2k +1
Uy (o) = Xn: (1) %2242 (k4 1) (m+k+2 2ot
" pa n+k+2 2k +2 ’
This proves Lemma 6. 0
Lemma 7 For any positive integer n, let
+00
Ton(®) = Y consFil) (14)
s=1
and
+00
Ty (x) = Z can-1,Fs(%), (15)
s=1
then we can get
n 94k+1 ,'35+2n+1( k-1)! N
o= 2 k=0 GrmiEkes ks S i 0dd, (16)
21,8 .
0, otherwise,

n (2159352 (n+k=2)! .
Conots = { 2k PR (k) 2krs) ks S LS EVer 17)

0, otherwise.

Proof At first, we multiply v/x2 + 4F,,(x) to both sides of (14), then integrate it from —2i
to 2i. We can get the following identity by applying Lemma 5, where m is any positive

integer:
2 Y
V2 + 4F,, (x) Tou(x) dx = Z ConsV a2 + AF,(x)F,(x) dx = 28" 1w o0y
~2i o J-2i
and then we have
(_i)2m—1 2i
Comm = V&2 + 4F,,(x) T, (x) dx.

2 —2i
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Let x = 2icos 0, then we can get the following identity by applying Lemma 5 and property
(10):

(_i)2m—1
21

i 7 ) i"*3 sin m6
= — T, (2icosB) - -

2w Jo sin 6

s
Conpm = / T2, (2i c0s 0)F,,(2i cos 0)4i sin’ 6 do
0

-(2sin6)*do

2i3m+1

T
= / T5,,(2icos0) sin m6 sin6 do
T 0

i 04k |y . Bm2ntl /b
= - Wok,m-1
pary n+k 2k "

so when m is even, we have ¢y, = 0. When m is odd, we have

n o
2%k g PEmrnl -y e 2m - (2k)!
B (1)

pry n+k 2k 2k + m + D)2k —m + 1)1
2% Bl (4 ) 2m - (2K)!
- — n+k QK n—k)! 2k +m+ D)2k —m +1)!!

n 24k+1 | l’3m+2n+1(n +k— 1);
(n =)'k + m + D)2k —m + 1)

k=0
In a similar way, we can get the following result easily:

(_i)2m—1 T
> / Tou1(2i cos 0)F,,(2i cos )4i sin® 6 do
us 0

Con-1,m =

R VR A P S |
Wak-1,m-1,

n+k-1 2k -1
k=1

and we have ¢y;,_1,, = 0 if m is odd. If m is even, we have

2% @2n-1) B (k-1 2m(2k —1)!
Kt ~ n+k—1 %=1 ) 2k + m)2k — m)!

n

_ Z (2nm — m)i¥" 2" (n + k - 2)!
T L 224 (i — )12k + m)N(2k — m)!

k=1

This proves Lemma 7.

g
Lemma 8 For any positive integer n, let
+00
Uny(®) =) dopsFi(%) (18)
s=1
and
+00
Uzp1(x) = Z dap-1,5Fs(x), (19)

s=1
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then we can get

24k+] 35+2n+1s(n+k)y .

sisodd

k 0 ( 1(2k—. n’ )

d2ns — (n—k)!(2k+s+1)11(2k—s+1)!! . (20)
otherwise,

dZn—l,s =

24k+3 35+2n (n+k-1)! B
{Zk 0 i—k—D)i2k+s+2)i2kr2—s)1? S IS €ven, 1)

otherwise.

Proof At first, we multiply v/«? + 4F,,(x) to both sides of (18), then integrate it from —2i
to 2i, we can get the following identities by applying Lemma 5, where m is any positive

integer:
2i 00 a9
Va2 + 4F,, (%) Uy, (x) dx = Z/ dusV &2 + 4F(x)F,,(x) dx = 2" Y dyy

~2i o -2

then we have

( l)2m 1
d2n,m = 9 \ x2 F x)UZn
T

Let x = 2icos 0, then we can get the following identity by applying Lemma 5 and property
(10):

2m+1

dopm = / Uy, (2icos 0)F,,(2i cos 0)4isin® 6 do

l-2m+2 m+3

sin m6
= / U, (2icos 6)%
2w Jo sin 6

3m+1

= / U5, (2icos0) sin mb sin 6 db

_Z Kok +1) - #3124 ke 1 y
- pry n+k+1 2k +1 2hom=1

(2sin6)*do

so we have d,,,, = 0 if m is even. If m is odd, we have

g 2”: 2% 2k +1) - B g h e+ 1 2m - (2Kk)!
2mm = P nik+l 2%k +1 ) Qk+m+)N2k—m+ 1)
~ Z 2% 2k +1) - P (p4k+1)! 2m - (2k)!
- pary n+k+1 Qk+D(n-k)! Qk+m+ 12k —m+1)!

24k+1 . l'3m+2n+1m(n + k)‘
) ; (n- /()'(2/( +m+ D2k —m + 1)”

In a similar way, we have

(_l-)Zm—l
dop-1m = / Uny-1(2icos O)F,,(2i cos 0)4isin® 6 do

21 0

2443 (k1) P ke+ 1
w
n+k+1 2k 42 ) Akdml

—_

n—
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When m is odd, we have ds,,_1 ,, = 0. When m is even, we have

p ) n-1 24k+3 . (k + 1) . i3m+2n nik+l 2m(2k .\ 1)!
2n-1m = k=0 n+k+1 2k+2 ) 2k +m+2)1(2k +2 — m)!!
B n-1 24k+3 3m+2nm(n +k—1)!
) k=0 (n—k =112k +m + 2)!"(2k + 2 — m)!’
This proves Lemma 8. _

3 Proof of the theorems and corollaries
In this section, we will prove our theorems and corollaries. First of all, we can prove all the

theorems from Lemma 4, Lemma 7 and Lemma 8 easily.

Proof of Corollary 1 We can get the following properties from Lemma 2 and Lemma 3 by
letting x = T},(x) in Theorem 3:

n-1 n-1 22j+2- 2n(2/ 1)( _ )!
F2n—1(Tm(x)) = ln—k = ]( +1)( ])IUZk(Tm(x));

2j—2n+2 .
) Z 2 k(2n—j—1)! UZk(Tm(x))'
j=1

~ =k = j)in+ k= ))!
Then, taking x = é in the above identities, according to Lemma 2, we can get Corollary 1.
O

Proof of Corollary 2 We can get the following properties from Lemma 2 and Lemma 3 by
letting x = T,(x) in Theorem 4:

" 294222 — j — W Top_1 (T (%))
Fou(Ty
on(Tn(@) = Z]Z 1(2m + 2k — 2 — 2)(2n — 2k — 2j)!°

n-1 n-1
27372123 — j — D) o (T (%))
Fy,_ T
> 1 (x 21;:21 m+k—j—-Dn—k—-j-1)!
n-1

27221 (2p — j - 2)!
By oy R

Then, taking x = é in the above identities, according to Lemma 2, we can get Corollary 2.
O
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