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Abstract
The presence of a self-mapping increases the difficulty in proving the existence and
uniqueness of solutions for general iterative fractional differential equations. In this
article, we provide conditions for the existence and uniqueness of solutions for the
initial value problem. We also determine the Burton stability of such equations. The
arbitrary order case is taken in the sense of Riemann-Liouville fractional operators.

1 Introduction
Fractional calculus is an area of specialization in mathematics that is concerned with dif-
ferential and integral operators of arbitrary orders. Fractional derivatives are considered
excellent tools for the description of nonlinearity. Fractional derivatives are mainly used
with classical integer order patterns, in which such effects are neglected. The significance
of fractional derivatives is manifested in modeling, electrical properties of real materials,
capacity of rheological properties of rocks, and many other fields. Fractional derivatives
and fractional integrals have various definitions. The most famous operators are Riesz,
Grunwald-Letnikov, Riemann-Liouville, and Caputo [–].

Existence and uniqueness theory is studied widely in fractional differential equations.
Agarwal et al. studied the existence of solutions for the Riemann-Liouville operator for a
class of integro-differential equations of high fractional order []. Moreover, Agarwal et
al. presented some existence and uniqueness outcomes for a class of fuzzy fractional inte-
gral equations utilizing the Schauder fixed point theorem in semilinear Banach spaces
[]. Li et al. established the existence of a class of nonlinear fractional q-difference
equations with mixed nonlinear assumptions, including the fractional q-derivative of
Riemann-Liouville type, employing the Guo-Krasnoselskii fixed point theorem on cones
[]. Ibrahim applied the Tarski fixed point theorem to study the existence of extremal so-
lutions for fractional differential equations with maxima []. The existence and unique-
ness in complex domains have been imposed considering the Srivastava-Owa fractional
operators [, ].

In this study, we introduce some conditions for the existence and uniqueness of solutions
for the initial value problems of iterative equations. We also determine the Burton stability
of such equations. The arbitrary order case is taken in the sense of Riemann-Liouville
fractional operators, as well as Caputo derivative.
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2 Preliminaries
This section deals with some preliminaries and notations regarding fractional calculus.

Fractional calculus originated from the Riemann-Liouville definition of fractional inte-
gral of order α in the form

Iα
a ψ(t) =

∫ t

a

(t – τ )α–

�(α)
f (τ ) dτ ,

where ψ is continuous.
The fractional (arbitrary) order differential of the continuous function ψ of order α > 

is defined by

Dα
aψ(t) =

d
dt

∫ t

a

(t – τ )–α

�( – α)
ψ(τ ) dτ .

When a = , we conclude that

Dαtm =
�(m + )

�(m – α + )
tm–α , m > –;  < α < 

and

Iαtm =
�(m + )

�(m + α + )
tm+α , m > –;α > .

Let ψ be a continuously (n) differentiable function. The Caputo derivative can then be
realized by the following form:

Dγ
t f (t) =


�(n – γ )

∫ t

a

ψ (n)(ζ )
(t – ζ )γ –n+ dζ , (n – ) ≤ γ < n,

where n is an integer and γ is a real number.

3 Related work
Differential equations with state-dependent delays attract interest of specialists because
they arise from application models, such as the two-body problem of classical electrody-
namics, transmission, mechanical models, population models, infection disease, position
control, and dynamics of economical systems. As a special type of state-dependent delay
differential equations, iterative differential equations have distinct characteristics. Such
equations have been investigated in recent years in terms of their smoothness, analyticity,
monotonicity, convexity, and numerical solution. In the theory of differential equations,
one of the essential and important problems is the initial value problem. Numerous ex-
istence results on special iterative differential equations can be found in the literature. In
, Eder proved the existence of the unique monotone solution for the second iterative
differential equation [] using the contraction principle as follows:

y′(t) = y
(
y(t)

)
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linked with y(t) = t (t ∈ [–, ]). Fečkan investigated the general second iterative differ-
ential equation []

y′(t) = f
(
y
(
y(t)

))

with the initial value y() = . Modified iterative functional differential equations have
been recently suggested by Zhang and Gong [] to determine approximate solutions.
They studied the following iterative functional differential equation:

y′(t) = f
(
t, y[](t), y[](t), . . . , y[n](t)

)
,

y(t) = y,

which satisfies the following result.

Lemma . Let

ϕM =
{

y ∈ C([t – h, t + h]
)

:
∣∣y(t) – y(s)

∣∣ ≤ M|t – s|,∀t, s ∈ [t – h, t + h]
}

,

where M < . If f , g ∈ ϕM , then

∥∥f [i] – g[i]∥∥
[t–h,t+h] ≤  – Mi

 – M
‖f – g‖[t–h,t+h], i = , , . . . .

Ibrahim utilized nonexpansive operators to establish the existence and uniqueness of
iterative fractional differential equations of various forms [, ]. Recently, Ibrahim and
Darus established sufficient conditions for fractional differential equations as follows:

Dγ y(t) = f
(
t, y(t), y(βt), y

(
y(t)

))
, β ∈ (, ],

with the initial value y() = y, see [].
In this study, we aim to establish the existence and uniqueness of the fractional iterative

Dγ y(t) = f
(
t, y[](t), y[](t), . . . , y[n](t)

)
()

subject to the initial value

y(t) = y,

where y[j](t) := y(y[j–](t)) indicates the jth iterate of self-mapping y, where j = , , . . . , n.

4 Existence and uniqueness
We start with the following result.

Theorem . Suppose that f : �n+ → � is continuous. If positive r exists, such that

( – M)r ≥ l, l > , ()

where M = ‖f ‖B̄(z,r) ≤  and B̄(z, r) denotes the closed ball centered at z = (t, y, . . . , y)
with radius r, then Eq. () has a solution defined on [t – l, t + l] for any l ∈ [l/( – M), r].
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Proof The existence of solutions of Eq. () is equivalent to finding a continuous solution
of the integral equation

y(t) = y +
∫ t


f
(
s, y[](s), y[](s), . . . , y[n](s)

) (t – s)γ –

�(γ )
ds. ()

Define a set ϕM as follows:

ϕM =
{

y ∈ C([t – l, t + l]
)

: y(t) = y,
∣∣y(t) – y(s)

∣∣ ≤ M
|t – s|γ
�(γ + )

,

∀t, s ∈ [t – l, t + l]
}

for any l ∈ [l/( – M), r]. Then, for y ∈ ϕM , we prove that y[j](t) (j = , , . . . , n) are well
defined on [t – l, t + l]. It suffices to establish

∣∣y[j](t) – y
∣∣ ≤ l ()

for j ∈ N by induction. In fact, for t ≤ s ≤ t, we have

∣∣y(t) – y
∣∣ ≤ ∣∣y(t) – y(s)

∣∣ +
∣∣y(s) – y

∣∣ ≤ Ml + M
|t – s|γ
�(γ + )

≤ l.

We let |y[j](t) – y| ≤ l for a positive integer j ≥ , then

∣∣y[j+](t) – y
∣∣ ≤ M

∣∣y[j](t) – y(s)
∣∣ +

∣∣y(s) – y
∣∣ ≤ l.

On the basis of induction, () holds and y[j]([t – l, t + l]) are well defined for any y ∈ ϕM .
In the sequel we apply the Schauder fixed point theorem to prove the existence of the
continuous solution of Eq. (). To this end, we define the integral operator G : ϕM →
C([t – l, t + l]) by

Gy(t) := y +


�(γ )

∫ t


f
(
s, y[](s), y[](s), . . . , y[n](s)

)
(t – s)γ – ds. ()

Clearly,

Gy(t) = y +


�(γ )

∫ t


f
(
s, y[](s), y[](s), . . . , y[n](s)

)
(t – s)γ – ds ()

for any y ∈ ϕM . In view of

∥∥(
t, y[](t), y[](t), . . . , y[n](t)

)
– (t, y, y, . . . , y)

∥∥
= max

{|t – t|,
∣∣y[](t) – y

∣∣, ∣∣y[](t) – y
∣∣, . . . ,

∣∣y[n](t) – y
∣∣}

≤ max
{|t – t|, M|t – t|, M

∣∣y[](t) – y
∣∣, . . . , M

∣∣y[n–](t) – y
∣∣}

≤ max{l, Ml, Ml, . . . , Ml} ≤ l ≤ r,
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we get

∣∣Gy(t) – Gy(t)
∣∣ ≤

∣∣∣∣
∫ t


f
(
s, y[](s), y[](s), . . . , y[n](s)

)∣∣∣∣ (t – s)γ –

�(γ )
ds

–
∫ t


f
(
s, y[](s), y[](s), . . . , y[n](s)

)∣∣∣∣ (t – s)γ –

�(γ )
ds

∣∣∣∣
≤ M

|t – t|γ
�(γ + )

, t, t > s.

Then ϕM is a nonempty convex and compact subset of the Banach space C([a, b]). We
consider the mapping T : ϕM → C([a, b]) defined by

T y(t) := y +


�(γ )

∫ t


f
(
s, y[](s), y[](s), . . . , y[n](s)

)
(t – s)γ – ds. ()

To show T is a self-mapping, we note that for any t, t ∈ [t – l, t + l]. Therefore Eqs.
()-() yield Gy ∈ ϕM ; (i.e., G is a self-mapping operator). It remains to show that G is
continuous. For this purpose, taking any y, y ∈ ϕM , we obtain

∣∣Gy(t) – Gy(t)
∣∣ ≤

∫ t



∣∣f (s, y[]
 (s), y[]

 (s), . . . , y[n]
 (s)

)

– f
(
s, y[]

 (s), y[]
 (s), . . . , y[n]

 (s)
)∣∣ (t – s)γ –

�(γ )
ds, t > s.

By Lemma ., we conclude that

∥∥(
s, y[]

 (s), y[]
 (s), . . . , y[n]

 (s)
)

–
(
s, y[]

 (s), y[]
 (s), . . . , y[n]

 (s)
)∥∥

= max
{∣∣y[]

 (s) – y[]
 (s)

∣∣, ∣∣y[]
 (s) – y[]

 (s)
∣∣, . . . ,

∣∣y[n]
 (s) – y[n]

 (s)
∣∣}

≤ max

{
‖y – y‖[t–l,t+l],

 – M


 – M
‖y – y‖[t–l,t+l], . . . ,

 – Mn


 – M
‖y – y‖[t–l,t+l]

}

=
 – Mn


 – M

‖y – y‖[t–l,t+l] <


 – M
‖y – y‖[t–l,t+l].

Given the uniform continuity of f on B̄(z, r), for any ε > , there exists δ(ε) > , the in-
equality

‖Gy – Gy‖ < εl

holds for ‖y – y‖[t–l,t+l] < δ, which yields G is continuous. �M is a convex, compact
subset of the Banach space C([t – l, t + l]) and G is a continuous operator that satisfies
all conditions of the Schauder fixed point theorem, G has a fixed point g ∈ ϕM and g is a
solution for Eq. () on the interval [t – l, t + l]. This completes the proof. �

Theorem . Suppose that f : �n+ → � is continuous and any compact interval [a, b]
includes t and y. If

MAt ≤ By , ()
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where At = max{t –a, b–t}, By = min{y –a, b–y}, M = ‖f ‖[a,b]n+ and [a, b]n+ denotes
the product of n +  intervals [a, b], then Eq. () has a solution defined on [a, b].

Proof Let

ϕM =
{

y ∈ C([a, b], [a, b]
)

: y(t) = y,
∣∣y(t) – y(s)

∣∣ ≤ M
|t – s|γ
�(γ + )

,∀t, s ∈ [a, b]
}

, ()

then ϕM is a nonempty convex and compact subset of the Banach space C([a, b]). We
consider the mapping T : ϕM → C([a, b]) to be defined by

T y(t) := y +


�(γ )

∫ t


f
(
s, y[](s), y[](s), . . . , y[n](s)

)
(t – s)γ – ds. ()

To show T is a self-mapping, we note that

∣∣T y(t)
∣∣ ≤ y +


�(γ )

∣∣∣∣
∫ t


f
(
s, y[](s), y[](s), . . . , y[n](s)

)
(t – s)γ – ds

∣∣∣∣, t > s

≤ y + M
(t – t)γ

�(γ + )
, t > t

≤ y + MAt ≤ y + Bt ≤ b, ()

∣∣T y(t)
∣∣ ≥ y –


�(γ )

∣∣∣∣
∫ t


f
(
s, y[](s), y[](s), . . . , y[n](s)

)
(t – s)γ – ds

∣∣∣∣, t > s

≥ y – M
|t – t|γ
�(γ + )

≥ y – MAt

≥ y – By ≥ a. ()

Clearly, T y(t) = y. Moreover, for any t, t ∈ [a, b], we obtain

∣∣T y(t) – T y(t)
∣∣ ≤ 

�(γ )

∫ t

t

∣∣f (s, y[]
 (s), y[]

 (s), . . . , y[n]
 (s)

)∣∣(t – s)γ – ds, t > s

≤ M
|t – t|γ
�(γ + )

. ()

Therefore, () and () yield that T maps ϕM into itself. The definitions of At and By

prove that M ≤ , thus for any y, y ∈ ϕM , according to Lemma ., we have

∥∥(
s, y[]

 (s), y[]
 (s), . . . , y[n]

 (s)
)

–
(
s, y[]

 (s), y[]
 (s), . . . , y[n]

 (s)
)∥∥

= max
{∣∣y[]

 (s) – y[]
 (s)

∣∣, ∣∣y[]
 (s) – y[]

 (s)
∣∣, . . . ,

∣∣y[n]
 (s) – y[n]

 (s)
∣∣}

≤ max

{
‖y – y‖[a,b],

 – M


 – M
‖y – y‖[a,b], . . . ,

 – Mn


 – M
‖y – y‖[a,b]

}

=
 – Mn


 – M

‖y – y‖[a,b]

<


 – M
‖y – y‖[a,b].
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By the uniform continuity of f on [a, b]n+, for any ε > , there exists δ(ε) > . When ‖y –
y‖[a,b] < δ, we obtain

∣∣f (s, y[]
 (s), y[]

 (s), . . . , y[n]
 (s)

)
– f

(
s, y[]

 (s), y[]
 (s), . . . , y[n]

 (s)
)∣∣ < ε.

Consequently,

∣∣T y(t) – T y(t)
∣∣ ≤

∫ t



∣∣f (s, y[]
 (s), y[]

 (s), . . . , y[n]
 (s)

)

– f
(
s, y[]

 (s), y[]
 (s), . . . , y[n]

 (s)
)∣∣ (t – s)γ –

�(γ )
ds, t > s

< ε(b – a),

which means that T is a continuous operator. It follows that ϕM is a convex, compact
subset of the Banach space C([a, b]). By the Schauder fixed point theorem, T has a fixed
point h ∈ ϕM and h is a solution of Eq. () on the interval [a, b]. This completes the proof.

�

5 Applications
In this section, our theorems are illustrated by the following example. First, we prove the
existence of smooth solutions of () based on the results provided by Si and Wang []. In
this paper, smooth function g ∈ Cn means that the function g has a number of continuous
derivatives, and its nth continuous derivative is Lipschitzian. We require the following
result.

Lemma . Let

(N, . . . , Nn+; I) =
{

g ∈ Cn(I, I) :
∣∣g(i)(t)

∣∣ ≤ Ni, i = , , . . . , n;
∣∣g(n)(t) – g(n)(s)

∣∣ ≤ Nn+|t – s|, t, s ∈ I
}

.

Then, for any x(t) ∈ (N, . . . , Nn+; I), there exist a function

y∗ik(t) = Pik
(
y(t), . . . , y,i–(t); . . . ; yk(t), . . . , yk,i–(t)

)

and positive constants Nik
uv such that

∣∣Pik(λ̄, . . . , λ̄k,i–) – Pik(λ̃, . . . , λ̃k,i–)
∣∣ ≤

k∑
u=

i–∑
v=

Nik
uv|λ̄uv – λ̃uv|

for (λ̄, . . . , λ̄k,i–), (λ̃, . . . , λ̃k,i–) belong to compact sets [, N]i × [, N]i × · · · × [, Nk]i,
where yri(t) = y(r)(y[i](t)), y∗ik(t) = (y[i](t))(k) and Pik is a uniquely defined multivariate poly-
nomial with nonnegative coefficients and  ≤ u ≤ k,  ≤ v ≤ i – .

Theorem . Consider the equation

Dγ y(t) =
m∑

i=

ai(t)y[i](t) + F(t) ()

associated with y(t) = y, where ai(t), F(t) ∈ Cn are given smooth functions.
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Proof For R > , by the smoothness of the given functions, we have positive Maj and MF

such that

∣∣ai(t)
∣∣ ≤ Mai ,

∣∣F(t)
∣∣ ≤ MF , t ∈ [t – R, t + R], i = , , . . . , m.

Denote

Ma = max
≤i≤m

{Mai}, N = mMa
(|t| + R

)
+ MF .

If ( – N)R ≥ |y – t|, then Eq. () has a solution in the function set

�N =
{

y ∈ C([t – l, t + l]
)

: y(t) = y,
∣∣y(t) – y(s)

∣∣ ≤ N|t – s|,∀t, s ∈ [t – l, t + l]
}

by Theorem ., where arbitrary l ∈ [|y – t|/( – N), R]. In fact, for any y ∈ ϕN , we see
that the function

f
(
t, y[](t), y[](t), . . . , y[m](t)

)
=

m∑
i=

ai(t)y[i](t) + F(t)

is continuous on [t – l, t + l] and

∣∣f (t, y[](t), y[](t), . . . , y[m](t)
)∣∣

=

∣∣∣∣∣
m∑

i=

ai(t)y[i](t) + F(t)

∣∣∣∣∣

≤
m∑

i=

Ma
(|t| + R

)
+ MF

= mMa
(|t| + R

)
+ MF = N.

Since ( – N)R ≥ |y – t|, the condition of Theorem . is satisfied, there exists a solution
y = ψ(t) of Eq. () in the functional set ψN . In the sequel, we show that ψ (n+)(t) also is
Lipschitzian on the compact interval [t – l, t + l]. In view of Lemma ., we obtain

y∗ik(t) = Pik
(
y(t), . . . , y,i–(t); . . . ; yk(t), . . . , yk,i–(t)

)

= Pik
(
y′(t), y′(y), . . . , y′(yi–); . . . ; y(k)(t), y(k)(y), . . . , y(k)(yi–)

)
,

where yn = y[n](t), n = , , . . . , i – .
Denote

Hik = Pik
( i terms︷ ︸︸ ︷
N, . . . , N;

i terms︷ ︸︸ ︷
N, . . . , N; . . . ;

i terms︷ ︸︸ ︷
Nk , . . . , Nk

)
,

ai(t) ∈ 
(
Li, . . . , Li(n+); [t – l, t + l]

)
,

F(t) ∈ 
(
M, . . . , Mn+; [t – l, t + l]

)
.
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Then, for any t, t ∈ [t – l, t + l], we get

∣∣ψ (m+)(t) – ϕ(m+)(t)
∣∣

≤
n∑

i=

m∑
s=

Cs
m
∣∣a(m–s)

i (t)
(
ψ [i](t)

)(s) – a(m–s)
i (t)

(
ψ [i](t)

)(s)∣∣

+
∣∣F (n)(t) – F (n)(t)

∣∣

≤
n∑

i=

{∣∣a(m)
i (t) – a(m)

i (t)
∣∣ · ∣∣ψ [i](t)

∣∣ +
∣∣a(m)

i (t)
∣∣ · ∣∣ψ [i](t) – ψ [i](t)

∣∣}

+
n∑

i=

m∑
s=

Cs
m
(∣∣a(m–s)

i (t) – a(m–s)
i (t)

∣∣ · ∣∣(ψ [i](t)
)(s)∣∣

+
∣∣a(m–s)

i (t)
∣∣ · ∣∣ψ(

ψ,(t), . . . ,ψs,i–(t)
)

– ψ
(
ψ,(t), . . . ,ψs,i–(t)

)∣∣)

+ Mn+
|t – t|γ
�(γ + )

≤
n∑

i=

(
Li(m+)

(|t| + l
)

+ LimNi

) |t – t|γ
�(γ + )

+
n∑

i=

m∑
s=

Cs
m

(
Li(m+–s)His|t – t| + Li(m–s)

s∑
u=

i–∑
v=

Nis
uv

∣∣ψuv(t) – ψuv(t)
∣∣
)

+ Mn+|t – t|.

Since

∣∣ψuv(t) – ψuv(t)
∣∣ ≤ Nu+

∣∣ψ [v](t) – ψ [v](t)
∣∣ ≤ Nu+Nv


|t – t|γ
�(γ + )

,

we attain

∣∣ψ (m+)(t) – ψ (m+)(t)
∣∣

≤
n∑

i=

(
Li(m+)

(|t| + l
)

+ LimNi

) |t – t|γ
�(γ + )

+
n∑

i=

m∑
s=

Cs
m

(
Li(m+–s)His|t – t|

+ Li(m–s)

s∑
u=

i–∑
v=

Nis
uv

∣∣ψuv(t) – ψuv(t)
∣∣
)

+ Mn+
|t – t|γ
�(γ + )

=

{( n∑
i=

Li(m+)
(|t| + l

)
+ LimNi



)

+

( n∑
i=

m∑
s=

Cs
m

(
Li(m+–s)His + Li(m–s)

s∑
u=

i–∑
v=

Nis
uvNu+Nv



))
+ Mn+

}
|t – t|γ
�(γ + )

,

which implies that ψ (m+)(t) is Lipschitzian. �

Example . Consider the equation

D

 y(t) =




y
(
y(t)

)
–




()
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associated with

y(–) = –



. ()

Now we check the conditions of Theorem .. For the compact interval [–, ], we see
that y = – 

 , t = –, γ = 
 , �( 

 ) = . for all t ∈ [–, ]. Since M = ‖y‖[–,]n+ = / +
/ = / < ., also At = max{t – a, b – t} = max{– + ,  + } = max{, } = , By =
min{y – a, b – y} = min{–

 + ,  + 
 } = min{ 

 , 
 } = /, and �( 

 ) = ., then M
�( 

 )
= 

. ,
which satisfies the conditions of Theorem .. Then Eq. () associated with Eq. () has
a solution.

Remark . In the proof of an invariant set, they require the inequalities

∣∣(Fx)(t)
∣∣ ≤ |x| +

∣∣∣∣
∫ t


f
(
s, x(s), x

(
x(s)

)) (t – s)γ

�(γ + )
ds

∣∣∣∣ ≤ |x| + M · |t – x|γ
�(γ + )

≤ b,

∣∣(Fx)(t)
∣∣ ≥ |x| –

∣∣∣∣
∫ t


f
(
s, x(s), x

(
x(s)

)) (t – s)γ

�(γ + )
ds

∣∣∣∣ ≥ x – Cx ≥ a.

The right-most inequality of Eq. () contradicts the definition of Cx . We overcome this
difficulty by defining By .

6 Burton stability
In this section, we aim to discuss the stability of solutions of a class of iterative fractional
differential equations. We need the following observations.

Definition . Let g : [,∞[ �→ [,∞[ be an arbitrary continuous strictly increasing func-
tion with g(t) �→ ∞ as t �→ ∞ and define a Banach space (W , | · |g) of continuous functions
� : [,∞[ �→ �n with the property that

|�|g = sup
≤t≤∞

|�(t)|
g(t)

< ∞. ()

Definition . [] Let B be a closed and densely defined operator on Y and l ∈ C(�+)
be a scalar kernel. A family t≥ is called a k-regularized resolvent family if the following
conditions are satisfied:

(a)  is strongly continuous on �+ and () = k()I ;
(b) y ∈ D(B) and B(t)(y) = (t)By for all y ∈ D(B) and t ≥ ;
(c) the k-regularized resolvent equation holds

(t)(y) = K(t)(y) –
∫ t


BK(t – s)(s)y ds.

Lemma . [] Let N be a closed ball in AB, let P : N → N be continuous, and let PN be
locally equicontinuous. Then there exists a point � ∈ N with P� = � .

Lemma . [] Let N be a convex, nonempty, bounded subset of AB, let P : N �→ N , and
let PN be locally equicontinuous. If, in addition, the g-norm closure of PN is in N , then
there exists a point � ∈ M with P� = � .
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Next, we discuss the stability of Eq. () for a special case by putting

F(t) =
m∑

i=

Bi(t)(t)y[i](t – r(t)
)
.

Theorem . Consider the fractional differential equation

Dγ y(t) =
m∑

i=

[
–Ai(t)y[i](t) + Bi(t)y[i](t – ri(t)

)]
, y() = y,  < γ < , ()

where Ai, Bi, ri : [,∞) �→ [,∞) are continuous. Moreover, suppose that
(a) ai := –Ai(t), Ai(t) is bounded on [,∞[;
(b) Ai(t) – Bi(t) ≥ δ for all t ≥ , and a constant δ > ;
(c) ri(t) ≥  for all t ≥ .

Then the zero solution of Eq. () is stable.

Proof Consider problem (). Assume that ∃ζ >  and maxi[supt≥ Ai(t)] < ζ for all t ≥ 
such that

K(t) =
ζ

�(γ )
tγ –.

Then for the Lizama resolvent (γ ), which satisfies

(t) = K(t) –
∫ t


K(t – s)(s) ds,

we have

 ≤ (t) ≤ K(t), t(t) →  as t → ∞ and
∫ ∞


(s) ds = .

Rewrite Eq. () as follows:

Dγ y(t) =
m∑

i=

[
–Ai(t)y[i](t) + Bi(t)y[i](t – ri(t)

)]

=
m∑

i=

[
–ζy(t) + ζ

[
y – yi] + [ζ – Ai](t)y[i] + Bi(t)(t)y[i](t – ri(t)

)]
.

Therefore, the solution y(t) of Eq. () achieves

y(t) =
m∑

i=

[
w(t) +

∫ t


γ (t – s)

[
y – y[i]](s) ds

+
∫ t


γ (t – s)

(
 –

Ai(t)
ζ

)
y[i](s) ds +

∫ t


γ (t – s)

Bi(t)
ζ

y[i](s – ri(s)
)]

=: (Py)(t),

where w(t) = y( –
∫ ∞

 (s) ds).
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Let  < ε <
√


 , we may assume that ζ ≥  and  < δ <  so that δε

ζ
< ε. Now set

n = min
i

[
inf

{
s – ri(s); s ≥ 

}]
.

Let φ : [n, ] → � be a given continuous initial function with ‖φ‖ < δε

ζ
< ε. Define

N =
{
� ∈ AB | ‖�‖ ≤ ε

}
.

For the natural mapping defined above with y(s) = φ(s) for s ≤ , we can show that
P : N �→ N . We observe that

∑m
i=[r – ri] is increasing on [, ε] and we obtain

∣∣(Py)(t)
∣∣ ≤

m∑
i=

[∣∣w(t)
∣∣ +

(
ε – ε[i]) + ε[i]

∫ t


γ (t – s)

(
 –

Ai(t)
ζ

+
|Bi(t)|

ζ

)
ds

]

≤
m∑

i=

[∣∣φ()
∣∣ +

(
ε – ε[i]) + ε[i]

(
 –

δ

ζ

)]
< ε.

It is clear that PN is equicontinuous on [,∞) and the g-norm closure of PN is in N
(Lemma .). Consequently, in view of Lemma ., P has a fixed point y ∈ N which is a
solution of Eq. (). Thus, the zero solution of Eq. () is stable. This completes the proof.
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