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Abstract
In this study we examine generating functions for the Bernstein type polynomials
given in (Simsek in Fixed Point Theory Appl. 2013:80, 2013). We expand these
generating functions using the parameters u and v. By applying these generating
functions, we obtain some functional equations and partial differential equations. In
addition, using these equations, we derive several identities and relations related to
these polynomials. Finally, numerical values of these polynomials for selected cases
are demonstrated with their plots.
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1 Introduction
With the advances in computer graphics and CAD, there has been renewed interest by
researchers to study Bézier curves and surfaces [, ]. According to Goldman [], free-form
curves and surfaces are smooth shapes often describing man-made objects. For instance,
the hood of a car, the hull of a ship, and the fuselage of an airplane are all examples of
free-form shapes that differ from the typical surfaces as they can be described with a few
parameters. On the other hand, free-form shapes such as the hood of car may not easily be
described with a few parameters. Therefore, mathematical techniques for describing these
surfaces focused on Bernstein polynomials and their various generalizations (cf. [–]).

Curves obtained by using Bernstein polynomials range from the design of new fonts
to the creation of mechanical components and assemblies for large scale industrial de-
sign and manufacture. By using the Bernstein polynomials, one can easily find an explicit
polynomial representation of a Bézier curves.

In addition to computer graphics, the Bernstein polynomials are also used in the ap-
proximation of functions, in statistics, in numerical analysis, in p-adic analysis, and in the
solution of differential equations. Therefore, the goal of this paper is to develop a more
flexible Bernstein type polynomial using its generating function and visualize the curves
obtained with this function over a finite domain with set parameters.

The organization of the paper is as follows.
In Section , we give the definition, generating functions, and some properties of the

Bernstein type basis functions with respect to u and v. In Section , we differentiate the
generating function with respect to x and t and obtain select partial differential equations
(PDEs). Using these equations, we derive a recurrence relation and derivative formula for
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Bernstein type basis functions. Finally curves are plotted using the Bernstein type basis
function.

2 Properties of the Bernstein type basis functions
In this section, we give fundamental properties of the Bernstein basis functions and their
generating functions. By using generating functions, we derive various functional equa-
tions and PDEs. Next, using these equations and PDEs, we obtain several identities related
to the Bernstein type basis functions.

2.1 Generating functions
Recently the Bernstein polynomials have been defined and studied in many different ways,
for example, by q-series, by complex functions, by p-adic Volkenborn integrals, and many
algorithms (cf. [, , –]). Here by using an analytic function we construct generating
functions for the Bernstein type basis functions related to nonnegative real parameters.

The Bernstein type basis functions Sn
k (x; b; u, v) are defined as follows.

Definition  Let u and v be real parameters with u < v. Let n, k and b be nonnegative
positive integers and let x ∈ [u, v]. Let n be nonnegative integer. The Bernstein type basis
functions Sn

k (x; b; u, v) can be defined by

Sn
k (x; b; u, v) = –b

(
n
b

)(
x – v
v – u

)k(x – u
v – u

)n–b–k

, (.)

where

n ≥ b + k,

k = , , . . . , n,

b = , , . . . , n

and
(

n
b

)
=

n!
b!(n – b)!

.

Remark  Substituting u = – and v =  into (.), we have

Sn
k (x; b; –, ) = Y n

k (x; b) = –b
(

n
b

)
xk( + x)n–k–b,

where k = , , . . . , n; b = , , . . . , n; n ≥ b + k, and x ∈ [–, ] (cf. []).

Definition  The Bernstein type basis functions can be defined by means of the following
generating function:

fS,k(x, t; b; u, v) :=
∞∑

n=

Sn
k (x; b; u, v)

tn

n!
, (.)

where k, b = , , . . . , n and n ≥ b + k.
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We construct generating functions for the Bernstein type basis functions explicitly by
the following theorem.

Theorem  Let u and v be real parameters with u < v. Let t ∈ C. Let b and k be positive
integers and let x ∈ [u, v]. Then we have

fS,k(x, t; b, u, v) =
( t

 )b( x–v
x–u )ke( x–u

v–u )t

b!
. (.)

Proof By using (.) and (.), we have

∞∑
n=b

Sn
k (x; b; u, v)

tn

n!
=

∞∑
n=b

–b
(

n
b

)(
x – v
v – u

)k(x – u
v – u

)n–b–k tn

n!
.

By using the above equation, we get

∞∑
n=b

Sn
k (x; b; u, v)

tn

n!
=

–b

b!

(
x – v
x – u

)k ∞∑
n=b

(
x – u
v – u

)n–b tn–btb

(n – b)!
.

The series on the right-hand side is the Taylor series for e( x–u
v–u )t . Consequently, we obtain

(.), asserted by Theorem . �

Some of the properties of fS,k(x, t; b, u, v) are given as follows:

fS,k(v, t; b, u, v) =  (k �= ),

fS,k(u, t; b, u, v) = ∞ (k �= ).

Therefore the function fS,k(x, t; b, u, v) is a meromorphic function which has a pole at x = u.
If k = , then

fS,(x, t; b, u, v) =
( t

 )be( x–u
v–u )t

b!

is an analytic function. Thus using the Taylor expansion of ext , we get

( t
 )be( x–u

v–u )t

b!
= –b

∞∑
n=

(
n
b

)(
x – u
v – u

)n–b tn

n!
.

Therefore,

Sn
(x; b; u, v) = –b

(
n
b

)(
x – u
v – u

)n–b

.

Substituting b =  into (.), we get

fS,k(x, t; , u, v) = 
(

x – v
x – u

)k

e( x–u
v–u )t ,
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which gives us generating functions for the beta-type polynomials associated with real
parameters u and v (u < v). Note that fS,k(x, t; , –, ) is a generating function for the beta-
type polynomials (cf. [, ]).

2.2 Bernstein type polynomials
A Bernstein type polynomial P(x; b; u, v) is a polynomial represented as the Bernstein type
basis function:

P(x, a, b, m) =
n∑

k=

cn
k Sn

k (x; b; u, v), (.)

where cn
k are real numbers.

Remark  If we set v =  and u = – in (.), and Sn
k (x; b – , ) = Y n

k (x; b) then we have

P(x) =
n∑

k=

cn
k Y n

k (x; b)

(cf. []).

Remark  A Bézier type curve B(x; b; u, v) with control points

P, . . . , Pn

may be defined as follows:

B(x; b; u, v) =
n∑

k=

PkSn
k (x; b; u, v). (.)

2.3 Sum of the Bernstein type basis functions
Using the same method as proposed in [], we get the following functional equation:

∞∑
b=

fS,k(x, t; b, u, v) = 
(

x – v
x – u

)k

e
t
 ( x–u+v

v–u ).

From the above equation, we get the sum of the Bernstein basis functions by the following
theorem.

Theorem 

n∑
b=

Sn
k (x; b; u, v) = –n

(
x – v
x – u

)k(x – u + v
v – u

)n

.

Similarly, we have

∞∑
k=

fS,k(x, t; b, u, v) =
( t

 )be( x–u
v–u )t

b!

∞∑
k=

(
x – v
x – u

)k

.
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We assume that | x–v
x–u | < . Thus we have

∞∑
k=

fS,k(x, t; b, u, v) =
( t

 )be( x–u
v–u )t

b!

∞∑
k=

(
x – v
x – u

)k

=
( t

 )b( x–u
v–u )e( x–u

v–u )t

b!
.

From the above equation, we obtain the following theorem.

Theorem 

n∑
k=

Sn
k (x; b; u, v) = –b

(
n
b

)(
x – u
v – u

)n+

.

2.4 Alternating sum of the Bernstein type basis functions
Using the same method as proposed in [], we get the following functional equation:

∞∑
b=

(–)bfS,k(x, t; b, u, v) = 
(

x – v
x – u

)k

et( x–u
v–u – 

 ).

From the above equation, we get the following theorem.

Theorem 

n∑
b=

(–)bSn
k (x; b; u, v) = 

(
x – v
x – u

)k(x – u
v – u

–



)n

.

3 Differentiating the generating function
In this section, we give derivative of the Bernstein type basis functions. By differentiating
the generating function in (.) with respect to x, we arrive at the following theorem.

Theorem  We have

∂fS,k(x, t; b, u, v)
∂x

=
k(v – u)
(x – u) fS,k–(x, t; b, u, v) +

t
v – u

fS,k(x, t; b, u, v).

By using Theorem , we obtain the derivative of the Bernstein type basis functions by
the following theorem.

Theorem  Let u and v be nonnegative real parameters with u < v. Let x ∈ [u, v]. Let k and
b be nonnegative integers and n be a positive integer with n ≥ k + b. Then

dSn
k (x; b; u, v)

dx
=

k(v – u)
(x – u) Sn

k–(x; b; u, v) +
n

v – u
Sn–

k (x; b; u, v).

Remark  Substituting v =  and u = – into Theorem , we have

dY n
k (x; b)
dx

=
k

(x + ) Y n
k–(x; b) + nY n–

k (x; b)

(cf. [], Theorem ).
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3.1 Recurrence relation
Here, by using higher order derivatives of the generating function with respect to t, we de-
rive a partial differential equation. Using this equation, we shall give a recurrence relation
for the Bernstein type basis functions. Here we use the same method as in [].

Differentiating (.) with respect to t, we prove a recurrence relation for the Bernstein
type basis functions. By using Leibnitz’s formula for the lth derivative, with respect to t,
of the product fS,k(x, t; b, u, v) of two functions

g(t, x; b, u, v; k) =
( t

 )b( x–v
x–u )k

b!
(u < v)

and

h(t, x; u, v) = e( x–u
v–u )t ,

we obtain a higher order partial differential equation as follows:

∂ lfS,k(x, t; b, u, v)
∂tl =

l∑
j=

(
l
j

)(
∂ jg(t, x; b, u, v; k)

∂tj

)(
∂ l–jh(t, x; u, v)

∂tl–j

)
. (.)

By using (.), we arrive at the following theorem.

Theorem  Let l ∈N. Then

∂ lfS,k(x, t; b, u, v)
∂tl =




l∑
j=

Sl
(x; j; u, v)fS,k(x, t; b – j, u, v),

where fS,k(x, t; b, u, v) and Sl
j(x; b; u, v) are defined in (.) and (.), respectively.

Proof The proof of Theorem  follows immediately from (.). �

Using definition (.), (.), and Theorem , we obtain a recurrence relation for the
Bernstein type basis functions by the following theorem.

Theorem  Let u and v be real parameters with u < v. Let b be a positive integer and let
x ∈ [u, v]. Let k, l, and n be nonnegative integers with n ≥ k + b and b ≥ l. Then

Sn
k (x; b; u, v) =




l∑
j=

Sl
(x; j; u, v)Sn–v

k (x; b – j; u, v).

Substituting l =  into Theorem , we have the following PDE:

∂fS,k(x, t; b, u, v)
∂t

=
x – u
v – u

fS,k(x, t; b, u, v) +



fS,k(x, t; b – , u, v).

By using the above PDE, we arrive at the following theorem.
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Theorem  Let n ≥ . Then we have

Sn
k (x; b; u, v) =

(
x – u
v – u

)
Sn–

k (x; b; u, v) +



Sn–
k (x; b – ; u, v).

Remark  Substituting v =  and u = – into Theorem , we have

Y n
k (x; b) = (x + )Y n–

k (x; b) +
n


Y n–
k (x; b – ).

This recurrence formula is different from that of Theorem  in [].

4 Identities
In this section, we give a functional equation which is related to the generating function
in (.). By using this functional equation, we derive two identities for the Bernstein type
basis functions.

By using (.), we derive the following functional equation:

fS,k(x, t; b, u, v)e–mt( x–u
v–u ) =

( t
 )b( x–v

x–u )ke–t(m–)( x–u
v–u )

b!
, (.)

where m is a positive integer.
Combining (.) with (.), we obtain

∞∑
n=

Sn
k (x; b; u, v)

tn

n!

∞∑
n=

(–m)n
(

x – u
v – u

)n tn

n!

= –b
(

x – v
v – u

)k ∞∑
n=

(
n
b

)
( – m)n–b

(
x – u
v – u

)n–b tn

n!
.

By using the Cauchy product on the right-hand side of the above equation and then equat-
ing the coefficients of tn

n! on both sides of the final equation, we arrive at the following
theorem.

Theorem  Let m be a positive integer, then we have

n∑
j=

(
n
j

)
Sj

k(x; b; u, v)(–m)n–j
(

x – u
v – u

)n–j

= ( – m)n–b
(

x – u
v – u

)k

Sn
k (x; b; u, v). (.)

Substituting m =  into (.), we obtain the following corollary:

Corollary 

b∑
j=

(–)b–j
(

b
j

)
Sj

k(x; b; u, v)
(

x – u
v – u

)b–j

=
(

x – u
v – u

)k

Sb
k (x; b; u, v).
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5 Simulation of the Bernstein type basis functions
Graphics of the Bernstein type polynomials are provided to visualize the shape of poly-
nomials on finite domain. The effects of k, b, and n on the shape of the curve are demon-
strated for the given range. These graphics may not only be used in Computer Aided Ge-
ometric Design (CAGD) but also in other areas (cf. [–]).

The figures below are obtained by varying b and k values using (.) for x values given
between [–, ]. Since n ≥ b + k, it is written as

n = k + b + offset, (.)

where offset is valid between  and n – . Figures - show that as the offset increases the
amplitude of the plots decreases, while the center of gravity shifts to the left for fixed b = .
In addition an increase in k results in a narrower curve.

Figures - look similar to the probability distribution functions for k = . As the offset
increases the plots shift from left to right. Furthermore, as b increases the curves distribute
more evenly within the plot. Note that for k =  and offset = , the plot looks like a normal
distribution plot.

We also plot the surface obtained using (.) for fixed k =  and b = , respectively. Fig-
ure  and Figure  surfaces obtained by varying b values for k. We note that with its wing
like shape the plot shown in Figure  may potentially be used in designing airplane wings.

Figure 1 Varying k values for b = 1, n = b + k + 0.

Figure 2 Varying k values for b = 1, n = b + k + 1.
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Figure 3 Varying k values for b = 1, n = b + k + 2.

Figure 4 Varying k values for b = 1, n = b + k + 3.

Figure 5 Varying b values for k = 2 and
n = b + k + 1.

Figure 6 Varying b values for k = 2 and
n = b + k + 2.
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Figure 7 Varying b values for k = 2 and
n = b + k + 3.

Figure 8 Varying b values for k = 2 and
n = b + k + 4.

Figure 9 Surface obtained by varying b values
for k = 2.

Figure 10 Wing type surface obtained by
varying k values for b = 1.
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