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Abstract
A modified Leslie-Gower predator-prey system with Beddington-DeAngelis
functional response and feedback controls is studied. By applying the differential
inequality theory, sufficient conditions which guarantee the permanence of the
system are obtained. Our results improve the main results of Zhang et al. (Abstr. Appl.
Anal. 2014:252579, 2014). One example is presented to verify our main results.
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1 Introduction
Let f (t) be a continuous bounded function on R, and we set

f l = inf
t∈R

f (t), f u = sup
t∈R

f (t).

Leslie [, ] introduced the following two species Leslie-Gower predator-prey model:

{
ẋ(t) = (r – bx(t))x(t) – p(x(t))y(t),
ẏ(t) = (r – a

y(t)
x(t) )y(t),

(.)

where x(t), y(t) stand for the population (the density) of the prey and the predator at time
t, respectively. The parameters r and r are the intrinsic growth rates of the prey and
the predator, respectively. b measures the strength of competition among individuals of
species x. The value r

b
is the carrying capacity of the prey in the absence of predation.

The predator consumes the prey according to the functional response p(x) and grows lo-
gistically with growth rate r and carrying capacity rx

a
proportional to the population size

of the prey (or prey abundance). The parameter a is a measure of the food quantity that
the prey provides and converted to predator birth. The term y/x is the Leslie-Gower term
which measures the loss in the predator population due to rarity (per capita y/x) of its
favorite food. Leslie model is a predator-prey model where the carrying capacity of the
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predator is proportional to the number of prey, stressing the fact that there are upper lim-
its to the rates of increase in both prey x and predator y, which are not recognized in the
Lotka-Volterra model.

The main shortcoming of (.) is that in the case of severe scarcity, y can switch over
to other populations but its growth will be limited by the fact that its most favorite food
x is not available in abundance. In order to overcome this shortcoming, recently, Aziz-
Alaoui and Daher Okiye [] suggested to add a positive constant d to the denominator and
proposed the following predator-prey model with modified Leslie-Gower and Holling-
type II schemes:

{
ẋ(t) = (r – bx(t) – ay(t)

x(t)+k
)x(t),

ẏ(t) = (r – ay(t)
x(t)+k

)y(t),
(.)

where r, b, r, a have the same meaning as in models (.). a is the maximum value of the
per capita reduction rate of x due to y, k (respectively, k) measures the extent to which the
environment provides protection to prey x (respectively, to the predator y). They obtained
the boundedness and global stability of positive equilibrium of system (.). Yu [] studied
the structure, linearized stability and the global asymptotic stability of equilibria of (.).
Zhu and Wang [] obtained sufficient conditions for the existence and global attractivity
of positive periodic solutions of system (.) with periodic coefficients. Yu and Chen []
further considered the permanence and existence of a unique globally attractive positive
almost periodic solution of system (.) with almost periodic coefficients and mutual in-
terference. Considering that Beddington-DeAngelis functional response preformed better
than Holling-type II functional response, Yu [] incorporated the Beddington-DeAngelis
functional response into system (.) and considered the following model which is the
generalization of model (.):

{
ẋ(t) = (r – bx(t) – ay(t)

α+βx(t)+γ y(t) )x(t),
ẏ(t) = (r – ay(t)

x(t)+k
)y(t).

(.)

Sufficient conditions on the global asymptotic stability of a positive equilibrium were ob-
tained by Yu []. Pal and Mandal [] considered the Hopf bifurcation of system (.) with
strong Allee effect. Zhang [] studied the permanence and existence of an almost periodic
solution of system (.) with almost periodic coefficients.

Based on Zhang [], Zhang et al. [] incorporated the feedback control into model (.)
with almost periodic coefficients and considered the following model:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = x(t)(a(t) – b(t)x(t) – c(t)y(t)
α(t)+β(t)x(t)+γ (t)y(t) – e(t)u(t)),

ẏ(t) = y(t)(a(t) – r(t)y(t)
x(t)+k(t) – e(t)v(t)),

u̇(t) = –d(t)u(t) + p(t)x(t – τ ),
v̇(t) = –d(t)v(t) + p(t)y(t – τ ),

(.)

where b(t), c(t), r(t), k(t), α(t), β(t), γ (t), ai(t), di(t), pi(t) and ei(t) (i = , ) are all contin-
uous, almost periodic functions and satisfy

min
i=,

{
bl, cl, rl, kl,αl,β l,γ l, al

i, dl
i , pl

i, el
i
}

> ,

max
i=,

{
bu, cu, ru, ku,αu,βu,γ u, au

i , du
i , pu

i , eu
i
}

< +∞.
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Set

M =
au


bl , M =

au
(M + ku)

rl , L =
pu

 M

dl


, L =
pu

M

dl


. (.)

Suppose that system (.) holds together with the following initial conditions:

x(s) = φ(s) ≥ , s ∈ [–τ , ], φ() > ,

y(s) = ϕ(s) ≥ , s ∈ [–τ , ], ϕ() > , (.)

u() > , v() > .

By using the comparison theorem of differential equation, Zhang et al. [] obtained the
following result.

Theorem A ([]) Assume that

(H) al
 –

cu

γ l – eu
 L >  and al

 – eu
L > 

hold, then system (.) with initial conditions (.) is permanent, i.e., any positive solution
(x(t), y(t), u(t), v(t))T of system (.) with initial conditions (.) satisfies

m ≤ lim inf
t→+∞ x(t) ≤ lim sup

t→+∞
x(t) ≤ M, m ≤ lim inf

t→+∞ y(t) ≤ lim sup
t→+∞

y(t) ≤ M,

l ≤ lim inf
t→+∞ u(t) ≤ lim sup

t→+∞
y(t) ≤ L, l ≤ lim inf

t→+∞ v(t) ≤ lim sup
t→+∞

y(t) ≤ L,

where mi, li, Mi and Li (i = , ) are positive constants.

Theorem A shows that feedback control variables play important roles in the persistent
property of system (.). But the question is whether or not the feedback control variables
have influence on the permanence of the system. Many papers (see [–] and the refer-
ences cited therein) have showed that feedback control variables have no influence on the
permanent property of continuous system with feedback control. Thus, in this paper, we
will apply the analysis technique of Chen et al. [] to establish sufficient conditions, which
is independent of feedback control variables, to ensure the permanence of the system. In
fact, we obtain the following main result.

Theorem B Assume that

(H) al
 –

cu

γ l > 

holds, then system (.) with initial conditions (.) is permanent.

Comparing with Theorem A, it is easy to see that (H) in Theorem B is weaker than
(H) in Theorem A, and feedback control variables have no influence on the permanent
property of system (.), so our results improve the main results in Zhang et al. [].
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The organization of this paper is as follows. In Section , we introduce several lemmas,
and the permanence of system (.) is then studied in this section. In Section , a suitable
example together with its numerical simulations is given to illustrate the feasibility of the
main results.

2 Permanence
Now let us state several lemmas which will be useful in proving the main results of this
section.

Lemma . ([]) If a > , b >  and ẋ ≥ x(b – ax), when t ≥  and x() > , we have

lim inf
t→+∞ x(t) ≥ b

a
.

If a > , b >  and ẋ ≤ x(b – ax), when t ≥  and x() > , we have

lim sup
t→+∞

x(t) ≤ b
a

.

Lemma . ([]) Assume that a > , b(t) >  is a bounded continuous function and
x() > . Further suppose that:

(i)

ẋ(t) ≤ –ax(t) + b(t),

then for all t ≥ s,

x(t) ≤ x(t – s) exp{–as} +
∫ t

t–s
b(τ ) exp

{
a(τ – t)

}
dτ .

Especially, if b(t) is bounded above with respect to M, then

lim sup
t→+∞

x(t) ≤ M
a

.

(ii)

ẋ(t) ≥ –ax(t) + b(t),

then for all t ≥ s,

x(t) ≥ x(t – s) exp{–as} +
∫ t

t–s
b(τ ) exp

{
a(τ – t)

}
dτ .

Especially, if b(t) is bounded above with respect to m, then

lim inf
t→+∞ x(t) ≥ m

a
.

The following lemma is a direct conclusion of [].
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Lemma . For any positive solution (x(t), y(t), u(t), v(t))T of system (.) with initial con-
ditions (.), there exist four positive constants Mi and Li (i = , ) such that

lim sup
t→+∞

x(t) ≤ M, lim sup
t→+∞

y(t) ≤ M,

lim sup
t→+∞

u(t) ≤ L, lim sup
t→+∞

v(t) ≤ L,
(.)

where Mi and Li (i = , ) are defined in (.).

Lemma . Suppose that (H) holds, then there exist two positive constants m and l such
that any positive solution (x(t), y(t), u(t), v(t))T of system (.) with initial conditions (.)
satisfies

lim inf
t→+∞ x(t) ≥ m, lim inf

t→+∞ u(t) ≥ l,

where m and l are defined in the proof.

Proof According to Lemma ., there exists enough large T >  such that for t ≥ T,

x(t) ≤ M, u(t) ≤ L. (.)

Thus, it follows from (.) and the first equation of system (.) that

ẋ(t) = x(t)
(

a(t) – b(t)x(t) –
c(t)y(t)

α(t) + β(t)x(t) + γ (t)y(t)
– e(t)u(t)

)

≥ x(t)
(

al
 – buM –

cu

γ l – eu
 L

)

� Qx(t), (.)

where Q = al
 – buM – cu

γ l – eu
 L < al

 – buM < au
 – bl au


bl = –au

 < .
Integrating both sides of (.) from η (η ≤ t) to t leads to

x(t)
x(η)

≥ exp
{

Q(t – η)
}

or

x(η) ≤ x(t) exp
{

–Q(t – η)
}

. (.)

Particularly, take η = t – τ , one can get

x(t – τ ) ≤ x(t) exp{–Qτ }. (.)

Substituting (.) into the third equation of system (.) leads to

u̇(t) ≤ –dl
u(t) + pu

 x(t) exp{–Qτ }. (.)



Yue Advances in Difference Equations  (2015) 2015:81 Page 6 of 10

Applying Lemma .(i) to the above differential inequality, for  ≤ s ≤ t, one has

u(t) ≤ u(t – s) exp
{

–dl
s

}
+

∫ t

t–s
pu

 x(η) exp{–Qτ } exp
{

dl
(η – t)

}
dη

from (.)≤ u(t – s) exp
{

–dl
s

}
+

∫ t

t–s
pu

 x(t) exp
{

–Q(t – η)
}

exp{–Qτ } exp
{

dl
(η – t)

}
dη

≤ u(t – s) exp
{

–dl
s

}
+ pu

 x(t)

Q

(
 – exp{–Qs}) exp{–Qτ }, (.)

where we have used the fact that maxη∈[t–s,t] exp{dl
(η – t)} = exp{} = .

Note that there exists K such that eu
 L exp{–dl

K} < β

 , as s ≥ K , where β = al
 – cu

γ l > 
according to (H). In fact, we can choose K > 

dl


ln
eu

 L
β

. And so, fix K , combined with
(.), we can obtain

u(t) ≤ u(t – K) exp
{

–dl
K

}
+ pu

 x(t)

Q

(
 – exp{–QK}) exp{–Qτ }

≤ L exp
{

–dl
K

}
+ pu

 x(t)

Q

(
 – exp{–QK}) exp{–Qτ }

≤ L exp
{

–dl
K

}
+ Dx(t) (.)

for all t > T + K , where D = pu



Q ( – exp{–QK}) exp{–Qτ } > .

Substituting (.) into the first equation of system (.), for all t > T + K , one has

ẋ(t) ≥ x(t)
(

al
 – bux(t) –

cu

γ l – eu
 L exp

{
–dl

K
}

– eu
 Dx(t)

)

≥ x(t)
(

β


–

(
bu + eu

 D
)
x(t)

)
. (.)

By Lemma ., we have

lim inf
t→+∞ x(t) ≥ β

(bu + eu
 D)

� m. (.)

Thus, there exists T > T + K such that for all t > T,

x(t) ≥ m


. (.)

Inequality (.) together with the third equation of (.) leads to

u̇(t) ≥ –du
 u(t) + pl


m


for all t > T + τ .

By applying Lemma .(ii) to the above differential inequality, we have

lim inf
t→+∞ u(t) ≥ pl

m

du


� l. (.)
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Obviously, m and l are independent of the solution of system (.). Inequalities (.)
and (.) show that the conclusion of Lemma . holds. The proof is completed. �

Lemma . For any positive solution (x(t), y(t), u(t), v(t))T of system (.) with initial con-
ditions (.), there exist two positive constants m and l satisfying

lim inf
t→+∞ y(t) ≥ m, lim inf

t→+∞ v(t) ≥ l,

where m and l are defined in the proof.

Proof The proof of Lemma . is similar to the proof of Lemma .. However, for the sake
of completeness, we give the complete proof here.

According to Lemma ., there exists enough large T >  such that for t ≥ T,

y(t) ≤ M, v(t) ≤ L. (.)

Thus, it follows from (.) and the second equation of system (.) that

ẏ(t) = y(t)
(

a(t) –
r(t)y(t)

x(t) + k(t)
– e(t)v(t)

)

≥ y(t)
(

al
 –

ruM

kl – eu
L

)

� Py(t), (.)

where P = al
 – ruM

kl – eu
L < .

Integrating both sides of (.) from η (η ≤ t) to t, leads to

y(t)
y(η)

≥ exp
{

P(t – η)
}

or

y(η) ≤ y(t) exp
{

–P(t – η)
}

. (.)

Particularly, take η = t – τ , one can get

y(t – τ ) ≤ y(t) exp{–Pτ }. (.)

Substituting (.) into the fourth equation of system (.) leads to

v̇(t) ≤ –dl
v(t) + pu

y(t) exp{–Pτ }. (.)

Applying Lemma .(i) to the above differential inequality, for  ≤ s ≤ t, one has

v(t) ≤ v(t – s) exp
{

–dl
s

}
+

∫ t

t–s
pu

y(η) exp{–Pτ } exp
{

dl
(η – t)

}
dη

from (.)≤ v(t – s) exp
{

–dl
s

}
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+
∫ t

t–s
pu

y(t) exp
{

–P(t – η)
}

exp{–Pτ } exp
{

dl
(η – t)

}
dη

≤ v(t – s) exp
{

–dl
s

}
+ pu

y(t)

P

(
 – exp{–Ps}) exp{–Pτ }, (.)

where we have used the fact that maxη∈[t–s,t] exp{dl
(η – t)} = exp{} = .

Note that there exists K such that eu
L exp{–dl

K} < al


 as s ≥ K. In fact, we can
choose K > 

dl


ln
eu

 L
al


. And so, fix K, combined with (.), we can obtain

v(t) ≤ v(t – K) exp
{

–dl
K

}
+ pu

y(t)

P

(
 – exp{–PK}

)
exp{–Pτ }

≤ L exp
{

–dl
K

}
+ pu

y(t)

P

(
 – exp{–PK}

)
exp{–Pτ }

≤ L exp
{

–dl
K

}
+ By(t) (.)

for all t > T + K, where B = pu



P ( – exp{–PK}) exp{–Pτ }.

Substituting (.) into the second equation of system (.), for all t > T + K, one has

ẏ(t) ≥ y(t)
(

al
 –

ruy(t)
kl – eu


(
L exp

{
–dl

K
}

+ By(t)
))

= y(t)
(

al
 – eu

L exp
{

–dl
K

}
–

(
ru

kl + eu
B

)
y(t)

)

≥ x(t)
(

al



–

(
ru

kl + eu
B

)
y(t)

)
. (.)

By Lemma ., we have

lim inf
t→+∞ x(t) ≥ al

kl

(ru + eu
klB)

� m. (.)

Thus, there exists T > T + K such that for all t > T,

y(t) ≥ m


. (.)

Inequality (.) together with the fourth equation of (.) leads to

v̇(t) ≥ –du
 v(t) + pl


m


for all t > T + τ .

By applying Lemma .(ii) to the above differential inequality, we have

lim inf
t→+∞ v(t) ≥ pl

m

du


� l. (.)

Obviously, m and l are independent of the solution of system (.). Inequalities (.)
and (.) show that the conclusion of Lemma . holds. The proof is completed. �

Lemmas .-. show that the conclusion of Theorem B holds.
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Figure 1 Dynamic behavior of system (3.1) with the initial conditions
(x(0), y(0), u(0), v(0)) = (1.2, 4, 1.5, 3)T , (0.2, 3, 3.5, 1.3)T , and (2.5, 3, 5, 6)T , respectively.

3 Examples and numeric simulations
Consider the following example:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) = x(t)( + cos
√

t – x(t) – (.+. sin
√

t)y(t)
+(+sin

√
t)x(t)+y(t) – .u(t)),

ẏ(t) = y(t)( + . sin
√

t – (+. cos
√

t)y(t)
x(t)+ – .v(t)),

u̇(t) = –.u(t) + ( + sin
√

t)x(t – .),
v̇(t) = –(. + . cos

√
t)v(t) + y(t – .),

(.)

in this case, we have

al
 –

cu

γ l = . > . (.)

Equation (.) shows that (H) holds, so system (.) is permanent according to Theo-
rem B. Our numerical simulation supports our result (see Figure ). However,

al
 –

cu

γ l – eu
 L = –. <  and al

 – eu
L = –. < , (.)

that is to say, (H) does not hold and we cannot obtain the result of the permanence from
Theorem A. Thus our results improve the main results in Zhang et al. [].

Competing interests
The author declares that there is no conflict of interests regarding the publication of this paper.

Author’s contributions
The author wrote the manuscript carefully, read and approved the final manuscript.

Acknowledgements
The author would like to thank the two anonymous referees for their constructive suggestions on improving the
presentation of the paper.



Yue Advances in Difference Equations  (2015) 2015:81 Page 10 of 10

Received: 31 July 2014 Accepted: 25 February 2015

References
1. Leslie, PH: Some further notes on the use of matrices in population mathematics. Biometrika 35, 213-245 (1948)
2. Leslie, PH: A stochastic model for studying the properties of certain biological systems by numerical methods.

Biometrika 45, 16-31 (1958)
3. Aziz-Alaoui, MA, Daher Okiye, M: Boundedness and global stability for a predator-prey model with modified

Leslie-Gower and Holling-type II schemes. Appl. Math. Lett. 16, 1069-1075 (2003)
4. Yu, S: Global asymptotic stability of a predator-prey model with modified Leslie-Gower and Holling-type II schemes.

Discrete Dyn. Nat. Soc. 2012, Article ID 208167 (2012)
5. Zhu, Y, Wang, K: Existence and global attractivity of positive periodic solutions for a predator-prey model with

modified Leslie-Gower Holling-type II schemes. J. Math. Anal. Appl. 384, 400-408 (2011)
6. Yu, S, Chen, F: Almost periodic solution of a modified Leslie-Gower predator-prey model with Holling-type II schemes

and mutual interference. Int. J. Biomath. 7, 1450028 (2014)
7. Yu, S: Global stability of a modified Leslie-Gower model with Beddington-DeAngelis functional response. Adv. Differ.

Equ. 2014, 84 (2014)
8. Pal, P, Mandal, P: Bifurcation analysis of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis

functional response and strong Allee effect. Math. Comput. Simul. 97, 123-146 (2014)
9. Zhang, Z: Almost periodic solution of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis

functional response. J. Appl. Math. 2013, Article ID 834047 (2013)
10. Zhang, K, Li, J, Yu, A: Almost periodic solution of a modified Leslie-Gower predator-prey model with

Beddington-DeAngelis functional response and feedback controls. Abstr. Appl. Anal. 2014, Article ID 252579 (2014)
11. Chen, F, Yang, J, Chen, L: Note on the persistent property of a feedback control system with delays. Nonlinear Anal.,

Real World Appl. 11, 1061-1066 (2010)
12. Chen, F, Yang, J, Chen, L, Xie, X: On a mutualism model with feedback controls. Appl. Math. Comput. 214, 581-587

(2009)
13. Wu, H, Yu, S: Permanence, extinction, and almost periodic solution of a Nicholson’s blowflies model with feedback

control and time delay. Discrete Dyn. Nat. Soc. 2013, Article ID 798961 (2013)
14. Chen, F, Li, Z, Huang, Y: Note on the permanence of a competitive system with infinite delay and feedback controls.

Nonlinear Anal., Real World Appl. 8, 680-687 (2007)


	Permanence for a modiﬁed Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and feedback controls
	Abstract
	Keywords

	Introduction
	Permanence
	Examples and numeric simulations
	Competing interests
	Author's contributions
	Acknowledgements
	References


