
Liu et al. Advances in Difference Equations  (2015) 2015:92 
DOI 10.1186/s13662-015-0427-5

R E S E A R C H Open Access

H∞ Fuzzy filtering for nonlinear singular
systems with time-varying delay
Lili Liu, Ding Zhai, Anyang Lu and Qingling Zhang*

*Correspondence:
qlzhang@mail.neu.edu.cn
College of Sciences, Northeastern
University, Wenhua Road, Shenyang,
China

Abstract
This paper considers the H∞ fuzzy filtering problem for continuous-time nonlinear
singular systems with time-varying delay through the T-S fuzzy model approach.
Firstly, by combining a reciprocally convex combination lemma and the fuzzy
Lyapunov-Krasovskii function method, a new bounded real lemma (BRL) is proposed
such that the resultant closed-loop systems are admissible and satisfy the prescribed
H∞ disturbance attenuation. Then, by using the matrix decoupling technique, we
translate the BRL into another form, which separates the coefficient matrices of
systems and Lyapunov matrices. On the basis of such a new form of BRL, the fuzzy
filter design problem is solved by checking the feasibility of a series of linear matrix
inequalities (LMIs), and the filter gains can also be provided explicitly. Numerical
examples are presented to show the reduction of the conservativeness compared to
some published results in the literature.
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1 Introduction
Nowadays, various approaches have been proposed for the filter design, such as Kalman
filter design [, ], H∞ filter design [–] and so on. Kalman filter is based on the assump-
tion that the systems are exactly known and their disturbances are stationary Gaussian
noises with known statistics, while H∞ filter can determine an asymptotically stable filter
without a certain signal model []. Because in practice the statistical information is often
incomplete, more and more researchers pay attention to the H∞ filter design problem,
and the problem of H∞ filtering has been investigated for a wide range of systems such as
time-delay systems [, ], uncertain systems [, ], fuzzy systems [, ] and singular
systems [–].

It is well known that Takagi-Sugeno (T-S) fuzzy model [, ] is an effective way to ap-
proximate complex nonlinear systems. For the past two decades, a large number of results
on fuzzy systems have been published. For example, a new fuzzy observer-based H∞ con-
troller design scheme was given in [], and the fuzzy filter design was considered in [] by
using Lyapunov function methods. Besides, since the time-delay phenomenon is always
the cause of instability and poor performance, the main methods to study the time-delay
systems are the Lyapunov Razumikhin function methods and Lyapunov-Krasovskii func-
tional [, ]. As pointed out in [], the Lyapunov-Razumikhin approach does not im-
pose restrictions on the derivative of the time delay and is a powerful tool for systems, spe-
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cially when the time-varying delay is nondifferentiable or uncertain. Recently, the study of
time-delay systems by the Lyapunov-Razumikhin approach has received much attention
[, ]. However, the Lyapunov-Razumikhin approach may lead to conservative results
[, ]; as a result, more and more researchers are devoted to the Lyapunov-Krasovskii
approach [, ]. Recently, by using the T-S fuzzy model approach, [] considered the
H∞ filter design for nonlinear systems with time-varying delay where the free-weighting
matrix method and matrix decoupling method are utilized. On the other hand, singular
systems which are also referred to as descriptor systems, generalized state-space systems
and differential algebraic systems, can describe physical systems better than normal state-
space systems, and they have more extensive applications in electrical circuits, power sys-
tems, robots and other areas [, ]. Although plentiful results have been reported on
the H∞ filter design problems for nonlinear systems with time-varying delay [, , ],
few reports have been published with respect to the H∞ filter design problems for nonlin-
ear singular systems with time-varying delay []. As far as we know, the H∞ filter design
problems for nonlinear singular systems with time-varying delay have not been investi-
gated sufficiently, which leaves a room for us to improve.

In this paper, the main aim is the fuzzy filter design for the nonlinear singular delayed
systems such that the corresponding filter error systems are admissible with the prescribed
H∞ attenuation level. Based on a fuzzy Lyapunov-Krasovskii functional (LKF), and by
virtue of a reciprocally convex combination lemma, a new BRL is presented for the non-
linear singular delayed systems, and another form of such BRL is derived by using the
matrix decoupling technique. With the aid of such a new form of BRL, through selecting
the special structure of certain matrices, the fuzzy filter design problems can be tackled
by solving a set of LMIs. Finally, two examples are provided to illustrate the effectiveness
of the proposed fuzzy filter design method.

This paper is organized as follows. The preliminaries and problem formulation are pre-
sented in Section . In Section , the H∞ filter design method is presented based on the
T-S fuzzy model. In Section , two numerical examples are presented to show the im-
provement. Finally, this paper is concluded in Section .

The notation used in this paper is standard. The superscript ‘T ’ stands for matrix trans-
position, �n denotes the n-dimensional Euclidean space. L[,∞) is the space of square
integrable vector-valued function over [,∞). The notation ‖ · ‖ refers to the Euclidean
vector norm. In addition, in symmetric block matrices or long matrix expressions, star ∗
is used as an ellipsis for the terms that are introduced by symmetry and diag{·} stands for a
block-diagonal matrix. Matrices, if their dimensions are not explicitly stated, are assumed
to be compatible for algebraic operation.

2 Preliminaries and problem formulation
Consider a nonlinear singular system with time-varying delay that could be approximated
by a time-delay T-S fuzzy singular model with r plant rules.

Plant rule i: IF θ(x) is Mi, θ(x) is Mi and · · · and θl(x) is Mil THEN

Eẋ(t) = Aix(t) + Adix
(
t – d(t)

)
+ Biw(t),

y(t) = Cix(t) + Cdix
(
t – d(t)

)
+ Diw(t),

z(t) = Fix(t) + Fdix
(
t – d(t)

)
,

x(t) = φ(t), t ∈ [–dM, ],

()
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where x(t) ∈ �n, w(t) ∈ �m, y(t) ∈ �p and z(t) ∈ �q are respectively the state vector, the
disturbance vector which belongs to L[,∞), the measurable output vector and the con-
trolled output vector. E, Ai, Adi, Bi, Ci, Cdi, Di, Fi and Fdi are constant matrices with com-
patible dimensions, and we assume rank E = rE ≤ n. φ(t) is a continuous vector-valued
initial function defined on [–dM, ]. The time-varying delay d(t) is supposed to be contin-
uously differential and satisfies

dm ≤ d(t) ≤ dM, ḋ(t) ≤ μ, ()

where dm > , dM >  and  > μ >  are scalars.
θj(x) and Mij (i = , . . . , r, j = , . . . , l) are the premise variables and the fuzzy sets; more-

over, for simplicity, the premise variables are supposed to be dependent on state vector
only.

By fuzzy blending, the overall fuzzy model is inferred as follows:

Eẋ(t) =
r∑

i=

hi
(
θ (x)

)[
Aix(t) + Adix

(
t – d(t)

)
+ Biw(t)

]
,

y(t) =
r∑

i=

hi
(
θ (x)

)[
Cix(t) + Cdix

(
t – d(t)

)
+ Diw(t)

]
,

z(t) =
r∑

i=

hi
(
θ (x)

)[
Fix(t) + Fdix

(
t – d(t)

)]
,

x(t) = φ(t), t ∈ [–dM, ],

()

where θ (x) = [θ(x), . . . , θl(x)], hi(θ (x)) = ωi(θ (x))/
∑r

i= ωi(θ (x)), ωi(θ (x)) =
∏l

j= Mij(θj(x)),
with Mij(θj(x)) being the grade of membership of θj(x) in Mij and ωi : �l → [, ] denot-
ing the membership function corresponding to plant rule i. It is obvious that the fuzzy
weighting functions hi(θ (x)) satisfy

hi
(
θ (x)

) ≥ ,
r∑

i=

hi
(
θ (x)

)
= . ()

Based on the parallel distributed compensation (PDC), we consider the fuzzy filter in
the following form:

Eẋf (t) =
r∑

i=

hi
(
θ (x)

)[
Afixf (t) + Bfiy(t)

]
, xf () = xf ,

zf (t) =
r∑

i=

hi
(
θ (x)

)
Ffixf (t),

()

where xf (t) ∈ �n and zf (t) ∈ �q are the state vector and the controlled output vector of the
filter, respectively. Ef , Afi, Bfi and Ffi, i = , , . . . , r, are filter parameters to be determined.

Define

η(t) =
[
xT (t), xT

f (t)
]T , e(t) = z(t) – zf (t),
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it follows from system () and filter () that we can obtain the following filter error system:

Ẽη̇(t) = Ã(h)η(t) + Ãd(h)η
(
t – d(t)

)
+ B̃(h)w(t),

e(t) = F̃(h)η(t) + F̃d(h)η
(
t – d(t)

)
,

()

where η(t) = [φT (t), xT
f ]T for t ∈ [–dM, ] and

Ẽ =

[
E 
 E

]

,

Ã(h) =
r∑

i=

r∑

j=

hi
(
θ (x)

)
hj

(
θ (x)

)
[

Aj 
BfiCj Afi

]

=
r∑

i=

r∑

j=

hi
(
θ (x)

)
hj

(
θ (x)

)
Ãij =

[
A(h) 

Bf (h)C(h) Af (h)

]

,

Ãd(h) =
r∑

i=

r∑

j=

hi
(
θ (x)

)
hj

(
θ (x)

)
[

Adj 
BfiCdj 

]

=
r∑

i=

r∑

j=

hi
(
θ (x)

)
hj

(
θ (x)

)
Ãdij =

[
Ad(h) 

Bf (h)Cd(h) 

]

,

B̃(h) =
r∑

i=

r∑

j=

hi
(
θ (x)

)
hj

(
θ (x)

)
[

Bj

BfiDj

]

=
r∑

i=

r∑

j=

hi
(
θ (x)

)
hj

(
θ (x)

)
B̃ij =

[
B(h)

Bf (h)D(h)

]

,

F̃(h) =
r∑

i=

r∑

j=

hi
(
θ (x)

)
hj

(
θ (x)

)
[Fj –Ffi]

=
r∑

i=

r∑

j=

hi
(
θ (x)

)
hj

(
θ (x)

)
F̃ij =

[
F(h) Ff (h)

]
,

F̃d(h) =
r∑

j=

hj
(
θ (x)

)
[Fdj ] =

r∑

i=j

hj
(
θ (x)

)
F̃dj =

[
Fd(h) 

]
.

The filter design problem to be addressed here can be formulated as follows: for the fuzzy
singular system () with time-varying delay () and a prescribed H∞ bound γ > , design
a filter in the form of () such that the filter error system () with w(t) =  is admissible
and under the zero initial condition

∫ ∞


eT (t)e(t) dt < γ 

∫ ∞


wT (t)w(t) dt ()

holds for all w(t) 
=  and w(t) ∈ L[,∞).

Lemma  [] (Jensen inequality lemma) For any constant matrix M ∈ �m×m, M = MT >
, scalar γ > , vector function ω : [,γ ] → �m such that the integrations in the following
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are well defined, then

γ

∫ γ


ωT (t)Mω(t) dt ≥

(∫ γ


ω(t) dt

)T

M
(∫ γ


ω(t) dt

)
. ()

Lemma  [] (Reciprocally convex combination lemma) Let f, f, . . . , fN : �m → � have
positive values in an open subset D of �m. Then the reciprocally convex combination of fi

over D satisfies

min
{αi|αi>,

∑
i ai=}

∑

i


αi

fi(t) =
∑

i

fi(t) + max
gi,j(t)

∑

i
=j

gi,j(t) ()

subject to

{

gi,j : Rm → R, gj,i(t) ≡ gi,j(t),

[
fi(t) gi,j(t)

gi,j(t) fj(t)

]

≥ 

}

. ()

3 Main results
In this section, initially, we present a novel bounded real lemma for fuzzy singular system
() with time-varying delay (), which focuses on tackling the time-varying delay by virtue
of the reciprocally convex combination method and fuzzy Lyapunov-Krasovskii function
method, then another form of the proposed bounded real lemma is derived by using the
matrix decoupling technique. Moreover, based on the equivalent form of the BRL, the
filter design problem is solved and the filter parameters are provided.

3.1 Bounded real lemma
Theorem  For given scalars  ≤ dm < dM , μ < , the filter error system () is admissible
with H∞ performance index γ if there exists a set of positive definite matrices P̃, Q̃(h),
Q̃(h), Q̃(h), R̃(h), R̃(h), matrix Q̃, and matrix S̃(h) which satisfies

[ R̃(h) S̃(h)
S̃T (h) R̃(h)

] ≥ , such
that the following linear matrix inequalities are satisfied:

�(h) =

⎡

⎢
⎢⎢
⎣

	(h) 
(h) 
(h) 
(h)
∗ –R̃(h)  
∗ ∗ –R̃(h) 
∗ ∗ ∗ –I

⎤

⎥
⎥⎥
⎦

< , ()

where


(h) =

⎡

⎢
⎢⎢
⎢⎢⎢
⎣

dmÃT (h)R̃(h)
dmÃT

d (h)R̃(h)



dmB̃T
w(h)R̃(h)

⎤

⎥
⎥⎥
⎥⎥⎥
⎦

, 
(h) =

⎡

⎢
⎢⎢
⎢⎢⎢
⎣

dÃT (h)R̃(h)
dÃT

d (h)R̃(h)



dB̃T
w(h)R̃(h)

⎤

⎥
⎥⎥
⎥⎥⎥
⎦

,

	(h) =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

� � �  �

∗ � � � 
∗ ∗ � � 
∗ ∗ ∗ � 
∗ ∗ ∗ ∗ –γ I

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

, 
(h) =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

F̃T (h)
F̃T

d (h)




⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

,
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where d = dM – dm, full column rank matrix Ũ satisfies ẼT Ũ =  and

� = ÃT (h)(P̃Ẽ + ŨQ̃) + (P̃Ẽ + ŨQ̃)T Ã(h) + Q̃(h) + Q̃(h) + Q̃(h) – ẼT R̃(t)Ẽ,

� = (P̃Ẽ + ŨQ̃)T Ãd(h),

� = ẼT R̃(h)Ẽ,

� = (P̃Ẽ + ŨQ̃)T B̃(h),

� = –( – μ)Q̃(h) – ẼT R̃(h)Ẽ + ẼT S̃(h)Ẽ + ẼT S̃T (h)Ẽ,

� = ẼT R̃(h)Ẽ – ẼT S̃T (h)Ẽ,

� = ẼT R̃(h)Ẽ – ẼT S̃(h)Ẽ,

� = –Q̃(h) – ẼT R̃(h)Ẽ – ẼT R̃(h)Ẽ,

� = ẼT S̃T (h)Ẽ,

� = –Q̃(h) – ẼT R̃(h)Ẽ.

Proof The regularity and non-impulsiveness of the filter error system () can be proved
by a similar way as in [], thus the details are omitted here.

Next, let us consider the stability of the filter error system (). Construct the Lyapunov-
Krasovskii function as follows:

V
(
η(t)

)
= V

(
η(t)

)
+ V

(
η(t)

)
+ V

(
η(t)

)
, ()

where

V
(
η(t)

)
= ηT (t)ẼT P̃Ẽη(t),

V
(
η(t)

)
=

∫ t

t–dm

ηT (s)Q̃(h)η(s) ds +
∫ t

t–dM

ηT (s)Q̃(h)η(s) ds

+
∫ t

t–d(t)
ηT (s)Q̃(h)η(s) ds,

V
(
η(t)

)
= dm

∫ 

–dm

∫ t

t+θ

η̇T (s)ẼT R̃(h)Ẽη̇(s) ds dθ

+ d
∫ –dm

–dM

∫ t

t+θ

η̇T (s)ẼT R̃(h)Ẽη̇(s) ds dθ

()

with

Q̃(h) =
r∑

i=

hi
(
θ (x)

)
Q̃i, Q̃(h) =

r∑

i=

hi
(
θ (x)

)
Q̃i

Q̃(h) =
r∑

i=

hi
(
θ (x)

)
Q̃i, R̃(h) =

r∑

i=

hi
(
θ (x)

)
R̃i

R̃(h) =
r∑

i=

hi
(
θ (x)

)
R̃i, S̃(h) =

r∑

i=

hi
(
θ (x)

)
S̃i.
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The time derivative of () along the solutions to () can be calculated as

V̇
(
η(t)

)
= η̇T (t)ẼT P̃Ẽη(t) + ηT (t)ẼT P̃Ẽη̇(t)

= η̇T (t)ẼT (P̃Ẽ + ŨQ̃)η(t) + ηT (t)(P̃Ẽ + ŨQ̃)T Ẽη̇(t)

=
(
Ã(h)η(t) + Ãd(t)η

(
t – d(t)

))T (P̃Ẽ + ŨQ̃)η(t)

+ ηT (t)(P̃Ẽ + ŨQ̃)T(
Ã(h)η(t) + Ãd(h)η

(
t – d(t)

))

+ w(t)T B̃T
w(h)(P̃Ẽ + ŨQ̃)η(t) + ηT (t)(P̃Ẽ + ŨQ̃)T B̃w(h)w(t)

= ηT (t)
(
ÃT (h)(P̃Ẽ + ŨQ̃) + (P̃Ẽ + ŨQ̃)T Ã(h)

)
η(t)

+ ηT(
t – d(t)

)
ÃT

d (h)(P̃Ẽ + ŨQ̃)η(t)

+ ηT (t)(P̃Ẽ + ŨQ̃)T Ãd(h)η
(
t – d(t)

)

+ w(t)T B̃T
w(h)(P̃Ẽ + ŨQ̃)η(t) + ηT (t)(P̃Ẽ + ŨQ̃)T B̃w(h)w(t), ()

V̇
(
η(t)

)
= ηT (t)Q̃(h)η(t) – ηT (t – dm)Q̃(h)η(t – dm)

+ ηT (t)Q̃(h)η(t) – ηT (t – dM)Q̃(h)η(t – dM)

+ ηT (t)Q̃(h)η(t) –
(
 – ḋ(t)

)
ηT(

t – d(t)
)
Q̃(h)η

(
t – d(t)

)

≤ ηT (t)
(
Q̃(h) + Q̃(h) + Q̃(h)

)
η(t) – ηT (t – dm)Q̃(h)η(t – dm)

– ηT (t – dM)Q̃(h)η(t – dM)

– ( – μ)ηT(
t – d(t)

)
Q̃(h)η

(
t – d(t)

)
, ()

V̇
(
η(t)

)
= d

mη̇T (t)ẼT R̃(h)Ẽη̇(t) – dm

∫ t

t–dm

η̇T (s)ẼT R̃(h)Ẽη̇(s) ds

+ dη̇T (t)ẼT R̃(h)Ẽη̇(t) – d
∫ t–dm

t–dM

η̇T (s)ẼT R̃(h)Ẽη̇(s) ds. ()

Using Lemma , it can be computed that

–dm

∫ t

t–dm

η̇T (s)ẼT R̃(h)Ẽη̇(s) ds

≤ –
[
η(t) – η(t – dm)

]T ẼT R̃(h)Ẽ
[
η(t) – η(t – dm)

]

= –ηT (t)ẼT R̃(h)Ẽx(t) + ηT (t)ẼT R̃(h)Ẽη(t – dm)

+ ηT (t – dm)ẼT R̃(h)Ẽη(t) – ηT (t – dm)ẼT R̃(h)Ẽη(t – dm)

=
[
ηT (t) ηT (t – dm)

]
R(h)

[
η(t)

η(t – dm)

]

, ()

where

R(h) =

[
–ẼT R̃(h)Ẽ ẼT R̃(h)Ẽ
ẼT R̃(h)Ẽ –ẼT R̃(h)Ẽ

]

.
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It is obvious that

–d
∫ t–dm

t–dM

η̇T (s)ẼT R̃(h)Ẽη̇(s) ds

= –d
∫ t–dm

t–d(t)
η̇T (s)ẼT R̃(h)Ẽη̇(s) ds – d

∫ t–d(t)

t–dM

η̇T (s)ẼT R̃(h)Ẽη̇(s) ds. ()

It follows from Lemma  that

–d
∫ t–dm

t–d(t)
η̇T (s)ẼT R̃(h)Ẽη̇(s) ds

≤ –
d

d(t) – dm

[
η(t – dm) – η

(
t – d(t)

)]T ẼT R̃(h)Ẽ
[
η(t – dm) – η

(
t – d(t)

)]
()

and

–d
∫ t–d(t)

t–dM

η̇T (s)ẼT R̃(h)Ẽη̇(s) ds

≤ –
d

dM – d(t)
[
η
(
t – d(t)

)
– η(t – dM)

]T ẼT R̃(h)Ẽ
[
η
(
t – d(t)

)
– η(t – dM)

]
. ()

On the other hand, applying Lemma , we have

–d
∫ t–dm

t–dM

η̇T (s)ẼT R̃(h)Ẽη̇(s) ds

< –

[
η(t – dm) – η(t – d(t))
η(t – d(t)) – η(t – dM)

]T

RS(h)

[
η(t – dm) – η(t – d(t))
η(t – d(t)) – η(t – dM)

]

, ()

where

RS(h) =

[
ẼT R̃(h)Ẽ ẼT S̃(h)Ẽ
ẼT S̃T (h)Ẽ ẼT R̃(h)Ẽ

]

.

Define ξT (t) = [ηT (t) ηT (t – d(t)) ηT (t – dm) ηT (t – dM) wT (t)]. Thus, based on the above
computation, we obtain

V̇
(
η(t)

) ≤ ηT (t)
(
ÃT (h)(P̃Ẽ + ŨQ̃) + (P̃Ẽ + ŨQ̃)T Ã(h)

)
η(t)

+ ηT(
t – d(t)

)
ÃT

d (h)(P̃Ẽ + ŨQ̃)η(t)

+ ηT (t)(P̃Ẽ + ŨQ̃)T Ãd(h)η
(
t – d(t)

)

+ ηT (t)
(
Q̃(h) + Q̃(h) + Q̃(h)

)
η(t) – ηT (t – dm)Q̃(h)η(t – dm)

– ηT (t – dM)Q̃(h)η(t – dM) – ( – μ)ηT(
t – d(t)

)
Q̃(h)η

(
t – d(t)

)

+ d
mη̇T (t)ẼT R̃(h)Ẽη̇(t) + dη̇T (t)ẼT R̃(h)Ẽη̇(t)

+
[
ηT (t) ηT (t – dm)

]
R(h)

[
η(t)

η(t – dm)

]
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–

[
η(t – dm) – η(t – d(t))
η(t – d(t)) – η(t – dM)

]T

RS(h)

[
η(t – dm) – η(t – d(t))
η(t – d(t)) – η(t – dM)

]

+ w(t)T B̃T
w(h)(P̃Ẽ + ŨQ̃)η(t) + ηT (t)(P̃Ẽ + ŨQ̃)T B̃w(h)w(t)

= ξT (t)
(
�(h) + 
(h)R̃–

 (h)
T
 (h) + 
(h)R̃–

 (h)
T
 (h)

)
ξ (t), ()

where

�(h) =

⎡

⎢
⎢⎢
⎢⎢⎢
⎣

� � �  �

∗ � � � 
∗ ∗ � � 
∗ ∗ ∗ � 
∗ ∗ ∗ ∗ 

⎤

⎥
⎥⎥
⎥⎥⎥
⎦

. ()

When the initial states η() = , it is easy to verify that

∫ ∞



(
eT (t)e(t) – γ wT (t)w(t)

)
dt

≤ V (∞) +
∫ ∞



(
eT (t)e(t) – γ wT (t)w(t)

)
dt

=
∫ ∞



(
eT (t)e(t) – γ wT (t)w(t) + V̇ (t)

)
dt

= ξT (t)
(
	(h) + 
(h)R̃–

 (h)
T
 (h) + 
(h)R̃–

 (h)
T
 (h) + 
(h)
T

 (h)
)
ξ (t). ()

Applying the Schur complement lemma to (), it follows that

∫ ∞



(
eT (t)e(t) – γ wT (t)w(t)

)
dt ≤ 

under the zero initial conditions.
On the other hand, when w(t) = , choose the Lyapunov-Krasovskii function as in (),

and similar to the above deduction, we can obtain from () the time derivative of the
Lyapunov-Krasovskii function V̇ (η(t)) < . Thus, according to the stability theory in [],
we can prove the admissibility of nonlinear singular delayed system (). This completes
the proof. �

Remark  It is worth mentioning that from the proof of Theorem , since the reciprocally
convex combination method admits a more tight upper bound than the existing method
and the fuzzy Lyapunov-Krasovskii function method is utilized, accordingly, Theorem 
may be less conservative that others.

With Theorem  in hand, we are in a position to propose another form of a bounded real
lemma, whose merit is its convenience to design the filter. To this end, we give the result
below.

Theorem  For given scalars  ≤ dm < dM , μ <  and δ, the filter error system () is admis-
sible with H∞ performance index γ if there exists a set of positive definite matrices P̃, Q̃(h),
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Q̃(h), Q̃(h), R̃(h), R̃(h), matrix Q̃, G̃, J̃ , matrix S̃(h) which satisfies
[ R̃(h) S̃(h)

S̃T (h) R̃(h)

] ≥  such
that the following linear matrix inequalities are satisfied:

(h) =

⎡

⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

(h) (h) (h) (h)  (h) (h) (h) F̃T (h)
∗ (h) (h)   (h)   
∗ ∗ (h) (h) (h)  (h) (h) F̃T

d (h)
∗ ∗ ∗ (h) (h)    
∗ ∗ ∗ ∗ (h)    
∗ ∗ ∗ ∗ ∗ –γ I (h) (h) 
∗ ∗ ∗ ∗ ∗ ∗ (h)  
∗ ∗ ∗ ∗ ∗ ∗ ∗ (h) 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –I

⎤

⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

< ,

()

where d = dM – dm and

(h) = ÃT (h)G̃ + G̃T Ã(h) + Q̃(h) + Q̃(h) + Q̃(h) – ẼT R̃(h)Ẽ,

(h) = ÃT (h)J̃ + (P̃Ẽ + ŨQ̃)T – G̃T (h) = G̃T Ãd(h),

(h) = ẼT R̃(h)Ẽ,

(h) = G̃T B̃(h),

(h) = dmÃT (h)J̃ ,

(h) = dÃT (h)J̃ ,

(h) = –J̃ – J̃T ,

(h) = J̃T Ãd(h),

(h) = J̃T B̃(h),

(h) = –( – μ)Q̃(h) – ẼT R̃(h)Ẽ + ẼT S̃(h)Ẽ + ẼT S̃T (h)Ẽ,

(h) = ẼT R̃(h)Ẽ – ẼT S̃T (h)Ẽ,

(h) = ẼT R̃(h)Ẽ – ẼT S̃(h)Ẽ,

(h) = dmÃT
d (h)J̃ ,

(h) = dÃT
d (h)J̃ ,

(h) = –Q̃(h) – ẼT R̃(h)Ẽ – ẼT R̃(h)Ẽ,

(h) = ẼT S̃T (h)Ẽ,

(h) = –Q̃(h) – ẼT R̃(h)Ẽ,

(h) = dmB̃T (h)J̃ ,

(h) = dB̃T (h)J̃ ,

(h) = –δJ̃ – δJ̃T + δR̃(h),

(h) = –δJ̃ – δJ̃T + δR̃(h)

with full column rank matrix Ũ satisfying ẼT Ũ = .
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Proof It is evident that for an arbitrary matrix Y >  and constant δ, the following inequal-
ity always holds:

–XT Y –X ≤ –δX – δXT + δY .

Consequently, we have

–J̃T R̃–
 (h)J̃ ≤ –δJ̃ – δJ̃T + δR̃(h), ()

–J̃T R̃–
 (h)J̃ ≤ –δJ̃ – δJ̃T + δR̃(h). ()

Substitute () and () into (), and then pre- and post-multiply () by diag{I, I, I, I,
I, I, R̃(h)J̃–T , R̃(h)J̃–T , I} and its transpose, we have

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

(h) (h) (h) (h)  (h) dmÃT (h)R̃(h) dÃT (h)R̃(h) F̃T (h)
∗ (h) (h)   (h)   

∗ ∗ (h) (h) (h)  dmÃT
d (h)R̃(h) dÃT

d (h)R̃(h) F̃T
d (h)

∗ ∗ ∗ (h) (h)    
∗ ∗ ∗ ∗ (h)    

∗ ∗ ∗ ∗ ∗ –γ I dmB̃T (t)R̃(h) dB̃T (h)R̃(h) 

∗ ∗ ∗ ∗ ∗ ∗ –R̃(h)  

∗ ∗ ∗ ∗ ∗ ∗ ∗ –R̃(h) 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –I

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

< ,

()

where others are the same as in ().
Pre- and post-multiplying () by

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

I AT (h)       
 AT

d (h) I      
   I     
    I    
 BT (h)    I   
      I  
       I 
        I

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

and its transpose, we can obtain (); consequently, the filter error system () is admissible
and satisfies H∞ attenuation level. This completes the proof. �

Remark  It should be worth noticing that inequality () contains the fuzzy weighting
functions hi(θ (x)), we cannot solve these inequalities directly. Fortunately, according to
the convexity property () of the fuzzy weighting functions hi(θ (x)), a series of suitable
conditions which only need the coefficient matrices of each fuzzy subsystem can be ob-
tained.

Thus, in what follows, we give another form which can be handled by LMI toolbox in
Matlab effectively.
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Lemma  For given scalars  ≤ dm < dM , μ < , and δ, the filter error system () is admis-
sible with H∞ performance index γ if there exists a set of positive definite matrices P̃, Q̃i,
Q̃i, Q̃i, R̃i, R̃i, matrix Q̃, G̃, J̃ , matrix S̃i which satisfies

[ R̃i S̃i
S̃T

i R̃i

] ≥ , i = , , . . . , r, such
that the following linear matrix inequalities are satisfied:

 ii < , i = , , . . . , r,

 ij +  ji < , i < j,
()

where

 ij =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎣


ij
 

ij
 

ij
 

ij
  

ij
 

ij
 

ij
 F̃T

ij

∗ 
ij
 

ij
   

ij
   

∗ ∗ 
ij
 

ij
 

ij
  

ij
 

ij
 F̃T

dj

∗ ∗ ∗ 
ij
 

ij
    

∗ ∗ ∗ ∗ 
ij
    

∗ ∗ ∗ ∗ ∗ –γ I 
ij
 

ij
 

∗ ∗ ∗ ∗ ∗ ∗ 
ij
  

∗ ∗ ∗ ∗ ∗ ∗ ∗ 
ij
 

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –I

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎦

with


ij
 = ÃT

ij G̃ + G̃T Ãij + Q̃i + Q̃i + Q̃i – ẼT R̃Ẽ,


ij
 = ÃT

ij J̃ + (P̃Ẽ + ŨQ̃)T – G̃T ,


ij
 = G̃T Ãdij,


ij
 = ẼT R̃iẼ,


ij
 = G̃T B̃ij,


ij
 = dmÃT

ij J̃ ,


ij
 = dÃT

ij J̃ ,


ij
 = –J̃ – J̃T ,


ij
 = J̃T Ãdij,


ij
 = J̃T B̃ij,


ij
 = –( – μ)Q̃i – ẼT R̃iẼ + ẼT S̃iẼ + ẼT S̃T

i Ẽ,


ij
 = ẼT R̃iẼ – ẼT S̃T

i Ẽ,


ij
 = ẼT R̃iẼ – ẼT S̃iẼ,


ij
 = dmÃT

dijJ̃ ,


ij
 = dÃT

dijJ̃ ,


ij
 = –Q̃i – ẼT R̃iẼ – ẼT R̃iẼ,


ij
 = ẼT S̃T

i Ẽ,
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ij
 = –Q̃i – ẼT R̃iẼ,


ij
 = dmB̃T

ij J̃ ,


ij
 = dB̃T

ij J̃ ,


ij
 = –δJ̃ – δJ̃T + δR̃i,


ij
 = –δJ̃ – δJ̃T + δR̃i.

3.2 Filter design
Based on Lemma , by choosing

G̃T =

[
G X
G X

]

, J̃T =

[
J X
J X

]

, Q̃i =

[
Qi Qi

QT
i Qi

]

,

Q̃i =

[
Qi Qi

QT
i Qi

]

, Q̃i =

[
Qi Qi

QT
i Qi

]

, R̃i =

[
Ri Ri

RT
i Ri

]

,

R̃i =

[
Ri Ri

RT
i Ri

]

, S̃i =

[
Si Si

Si Si

]

, P̃ =

[
P P

PT
 P

]

,

Q̃ =

[
Q Q

Q Q

]

, Ũ =

[
U 
 U

]

,

where the full column rank matrix U satisfies ET U = , we can obtain the following result.

Theorem  For given scalars  ≤ dm < dM , μ < , and δ, the filter error system () is ad-
missible with H∞ performance index γ if there exists a set of positive definite matrices

P̃ =

[
P P

PT
 P

]

, R̃i =

[
Ri Ri

RT
i Ri

]

, R̃i =

[
Ri Ri

RT
i Ri

]

,

Q̃i =

[
Qi Qi

QT
i Qi

]

, Q̃i =

[
Qi Qi

QT
i Qi

]

, Q̃i =

[
Qi Qi

QT
i Qi

]

,

and matrices

G̃T =

[
G X
G X

]

, J̃T =

[
J X
J X

]

, S̃i =

[
Si Si

Si Si

]

, Q̃ =

[
Q Q

Q Q

]

i = , , . . . , r, such that the following linear matrix inequalities are satisfied:

[
R̃i S̃i

S̃T
i R̃i

]

≥ , ()

 ii < , i = , , . . . , r,

 ij +  ji < , i < j,
()
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where

 ij =

⎡

⎢
⎢⎢
⎣

	ij 

ij
 


ij
 


ij


∗ –δJ̃ – δJ̃T + δR̃i  
∗ ∗ –δJ̃ – δJ̃T + δR̃i 
∗ ∗ ∗ –I

⎤

⎥
⎥⎥
⎦

<  ()

with



ij
 =

⎡

⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎣



ij






ij







ij


⎤

⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎦

, 

ij
 =

⎡

⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎣



ij






ij







ij


⎤

⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎦

, 

ij
 =

⎡

⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎣



ij






ij






⎤

⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎦

, ()



ij
 =

[
dm(AT

j JT
 + CT

j B̂T
fi ) dm(AT

j JT
 + CT

j B̂T
fi )

dmÂT
fi dmÂT

fi

]

,



ij
 =

[
dm(AT

djJ
T
 + CT

djB̂
T
fi ) dm(AT

djJ
T
 + CT

djB̂
T
fi )

 

]

,



ij
 =

[
dm(BT

j JT
 + DT

j B̂T
fi ) dm(BT

j JT
 + DT

j B̂T
fi )

]
,



ij
 =

[
d(AT

j JT
 + CT

j B̂T
fi ) d(AT

j JT
 + CT

j B̂T
fi )

dmÂT
fi dmÂT

fi

]

,



ij
 =

[
d(AT

djJ
T
 + CT

djB̂
T
fi ) d(AT

djJ
T
 + CT

djB̂
T
fi )

 

]

,



ij
 =

[
d(BT

j JT
 + DT

j B̂T
fi ) d(BT

j JT
 + DT

j B̂T
fi )

]
,



ij
 =

[
FT

j

–F̃T
fi

]

, 

ij
 =

[
FT

dj



]

and

	ij =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣


ij
 

ij
 

ij
 

ij
  

ij


∗ 
ij
 

ij
   

ij


∗ ∗ 
ij
 

ij
 

ij
 

∗ ∗ ∗ 
ij
 

ij
 

∗ ∗ ∗ ∗ 
ij
 

∗ ∗ ∗ ∗ ∗ –γ I

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

, ()


ij
 =

⎡

⎢
⎣

He(GAj + B̂fiCj) + Qi

+Qi + Qi – ET RiE
Âfi + AT

j GT
 + CT

j B̂T
fi + Qi

+Qi + Qi – ET RiE
∗ He(Âfi) + Qi + Qi + Qei – ET RiE

⎤

⎥
⎦ ,


ij
 =

⎡

⎢
⎣

AT
j JT

 + CT
j B̂T

fi + ET PT


+QT
 UT – G

AT
j JT

 + CT
j B̂T

fi + ET P

+QT
 UT – X

ÂT
fi + ET PT

 + QT
 UT – G ÂT

fi + ET PT
 + QT

 UT – X

⎤

⎥
⎦ ,
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ij
 =

[
GAdj + B̂fiCdj 
GAdj + B̂fiCdj 

]

, 
ij
 =

[
ET RiE ET RiE
ET RT

iE ET RiE

]

,


ij
 =

[
GBj + B̂fiDj

GBj + B̂fiDj

]

, 
ij
 = –

[
He(J) X + JT



∗ He(X)

]

,


ij
 =

[
JAdj + B̂fiCdj 
JAdj + B̂fiCdj 

]

, 
ij
 =

[
JBj + B̂fiDj

JBj + B̂fiDj

]

,


ij
 =

⎡

⎢⎢⎢
⎣

(μ – )Qi – ET RiE
+He(ET SiE)

(μ – )Qi – ET RiE
+ET SiE + ET ST

iE

∗ (μ – )Qi – ET RiE
+He(ET SiE)

⎤

⎥⎥⎥
⎦

,


ij
 =

[
ET RiE – ET ST

iE ET RiE – ET ST
iE

ET RT
iE – ET ST

iE ET RiE – ET ST
iE

]

,


ij
 =

[
ET RiE – ET SiE ET RiE – ET SiE
ET RT

iE – ET SiE ET RiE – ET SiE

]

,


ij
 =

[
–Qi – ET RiE – ET RiE –Qi – ET RiE – ET RiE

∗ –Qi – ET RiE – ET RiE

]

,


ij
 =

[
ET ST

iE ET ST
iE

ET ST
iE ET ST

iE

]

, 
ij
 =

[
–Qi – ET RiE –Qi – ET RiE

∗ –Qi – ET RiE

]

.

Moreover, if the above LMIs admit solutions, the filter parameters can be expressed as

Afi = X–Âfi, Bfi = X–B̂fi, Ffi = F̃fi. ()

Proof Define

Âfi = XAfi, B̂fi = XBfi,

we have

G̃T Ãij =

[
GAj + B̂fiCj Âfi

GAj + B̂fiCj Âfi

]

, J̃T Ãij =

[
JAj + B̂fiCj Âfi

JAj + B̂fiCj Âfi

]

,

G̃T Ãdij =

[
GAdj + B̂fiCdj 
GAdj + B̂fiCdj 

]

, J̃T Ãdij =

[
JAdj + B̂fiCdj 
JAdj + B̂fiCdj 

]

,

G̃T B̃ij =

[
GBj + B̂fiDj

GBj + B̂fiDj

]

, J̃T B̃ij =

[
JBj + B̂fiDj

JBj + B̂fiDj

]

.

Then with Lemma  in hand, we can obtain Theorem  easily. �

Remark  It should be noted that by applying Theorem , the filter design problems for
fuzzy singular system () with time-varying delay () have been solved. The advantage of
Theorem  is twofold, one is that both the reciprocally convex combination method and
the fuzzy Lyapunov-Krasovskii function method are adopted to bound the reciprocally
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convex term from the derivative of the Lyapunov-Krasovskii functional tightly, the other
is the matrix decoupling method employed in the derivation of theorems proposed in this
paper.

4 Illustrative examples
In this section, two examples are presented to illustrate the effectiveness of the filter design
method proposed in this paper.

Example  Consider the time-delay singular T-S fuzzy system () studied in [] with the
following parameters:

E =

[
 
 

]

;

Subsystems :

A =

[
–. .

 –

]

, Ad =

[
–. .
–. –.

]

, B =

[


–.

]

,

C = [ ], Cd = [–. .], D = .,

F = [ –.], Fd = [. ];

Subsystems :

A =

[
–. 
–. –.

]

, Ad =

[
–. 
–. –.

]

, B =

[
.
.

]

,

C = [. –.], Cd = [–. ], D = –.,

F = [–. .], Fd = [ .].

Since E is nonsingular, thus we choose U = [ ]. The delay is assumed as d(t) = . +
. sin(t), then dM = ., dm = , δ =  and μ = .. By using Theorem , the minimum
disturbance attenuation level is γmin = . and the filter parameters can be obtained as
follows:

Af  =

[
–. –.
. –.

]

, Bf  =

[
–.
.

]

, Ff  = [–. .]

Af  =

[
–. .
. –.

]

, Bf  =

[
–.
.

]

, Ff  = [. –.].

Besides, different δ will lead to different γ compared with the result in []. By considering
several different dM , we have Table  which shows that our result has less conservatism
than the result in [].
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Table 1 Minimum index γ for different δ

δ 0.7 1 2

Method [7] Theorem 3 [7] Theorem 3 [7] Theorem 3

dM = 0.5 0.59 0.32 0.38 0.31 0.35 0.31
dM = 0.6 1.03 0.33 0.43 0.33 0.36 0.32
dM = 0.8 11.98 0.39 0.83 0.37 0.38 0.35
dM = 1 – 0.48 2.22 0.44 0.41 0.39

Example  Consider the singular T-S fuzzy delayed system () in [] with the following
parameters:

E =

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦ ;

Subsystems :

A =

⎡

⎢
⎣

–. . .
. –. .
. . –.

⎤

⎥
⎦ , Ad =

⎡

⎢
⎣

.  .
. . .
. . .

⎤

⎥
⎦ , B =

⎡

⎢
⎣

.
.
.

⎤

⎥
⎦ ,

C =
[

–. . .
]

, Cd = [  ], D = .,

F = [. . .], Fd = [  ];

Subsystems :

A =

⎡

⎢
⎣

–. . .
. –. .
. . –.

⎤

⎥
⎦ , Ad =

⎡

⎢
⎣

. . .
 . .

. . .

⎤

⎥
⎦ , B =

⎡

⎢
⎣

.
.
.

⎤

⎥
⎦ ,

C = [. . .], Cd = [  ], D = .,

F = [–. . .], Fd = [  ].

In this example, we choose U = [  ]. The delay is assumed as d(t) = . + . sin( 
 t),

then dM = ., dm = , δ =  and μ = .. By using Theorem , the minimum disturbance
attenuation level is γmin = ., which is much better than the level γ = . in [], and
the filter parameters can be obtained as follows:

Af  =

⎡

⎢
⎣

–. . –.
. –. .
. –. –.

⎤

⎥
⎦ , Bf  =

⎡

⎢
⎣

.
–.
–.

⎤

⎥
⎦ , Ff  =

⎡

⎢
⎣

–.
–.
–.

⎤

⎥
⎦

T

,

Af  =

⎡

⎢
⎣

–. –. –.
. –. .

–. –. –.

⎤

⎥
⎦ , Bf  =

⎡

⎢
⎣

–.
–.
–.

⎤

⎥
⎦ , Ff  =

⎡

⎢
⎣

.
.

–.

⎤

⎥
⎦

T

.

We select the membership function as follows: h = –sin(x)
 , h = +sin(x)

 . Figure  shows
the simulation result of the filtering error e(t) = z(t) – zf (t), when x() = –, x() = ,
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Figure 1 Response of filtering error e.

x() = , and ω(t) = sin(t). From Figure  we can see that the estimation error which is
obtained by our filter is below the estimation error obtained by the filter in []. Thus, it
is obvious that our result is very effective.

5 Conclusion
In this paper, we have studied the H∞ filtering problem for a class of nonlinear singu-
lar systems with time-varying delay through the T-S fuzzy model approach. Based on the
fuzzy Lyapunov-Krasovskii functional, combined with a reciprocally convex combination
lemma, two types of bounded real lemma, which guarantees the stability and the H∞ at-
tenuation level of the filter error system, are obtained. The filter design problem is also
solved by checking the feasibility of a set of LMIs. At last, two numerical examples have
been provided to demonstrate the effectiveness of the proposed fuzzy filter design method.
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