
Khan et al. Advances in Difference Equations  (2015) 2015:88 
DOI 10.1186/s13662-015-0429-3

R E S E A R C H Open Access

Global dynamics of SEIRS epidemic model
with non-linear generalized incidences and
preventive vaccination
Muhammad Altaf Khan1, Qaisar Badshah1, Saeed Islam1, Ilyas Khan2, Sharidan Shafie3* and Sher
Afzal Khan4

*Correspondence:
sharidan@utm.my
3Department of Mathematical
Sciences, Faculty of Science,
Universiti Teknologi Malaysia,
Skudai, Johor, Malaysia
Full list of author information is
available at the end of the article

Abstract
In this paper, we present the global dynamics of an SEIRS epidemic model for an
infectious disease not containing the permanent acquired immunity with non-linear
generalized incidence rate and preventive vaccination. The model exhibits two
equilibria: the disease-free and endemic equilibrium. The disease-free equilibrium is
stable locally as well as globally when the basic reproduction numberR0 < 1 and an
unstable equilibrium occurs forR0 > 1. Moreover, the endemic equilibrium is stable
both locally and globally whenR0 > 1. We show the global stability of an endemic
equilibrium by a geometric approach. Further, numerical results are presented to
validate the theoretical results. Finally, we conclude our work with a brief discussion.

Keywords: SEIRS epidemic model; generalized non-linear incidence rate; basic
reproduction number; global stability; numerical simulations

1 Introduction
To reduce the spread and increase control of an infectious disease the quarantine and vac-
cination methods are used commonly. For a cost effective strategy and successful interven-
tion policy, vaccination is often considered the best tool for eradication of the morbidity
and mortality of people. For the diseases measles, rubella, diphtheria, mumps, influenza,
tetanus, and hepatitis B, it has been used to tackle them. In some cases for a vaccinated
person it is not necessary to have life-long immunity; see [, ]. In a certain community it is
sometimes very difficult or impossible to vaccinate the susceptible individuals. The main
reason behind this is the unavailability (or not easy availability) of such vaccine in those
countries. So, it is reasonable to obtain a fraction of immune individuals in the commu-
nity for which the disease does not become epidemic; that fraction is known as the herd
immunity threshold [].

A variety of incidence rates have been used in the literature, for instance, [–]. In all
these models the incidence rate has been considered as a law of mass action. For the
communicable diseases, the incidence rate in the form of βSI is used, where β shows
the per capita contact rate. For the first time [] introduced a saturated incidence after
the cholera epidemic in Bari in . This reference used the incidence rate in the form
of Sg(I). Muroya et al. [] presented a SIRS epidemic with graded curve and incomplete
recovery rates. The global dynamics is completely described by the basic reproduction
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number R. Denphedtnong et al. [] proposed a SEIRS mathematical model with trans-
port related infection. According to this reference, the transportation among cities is one
of the main factors to affect the outbreak of diseases. A SEIRS mathematical model for
disease transmission incorporating the immigration of infected, susceptible, and exposed
persons is analyzed by []. A delay SEIRS epidemic model for computer virus network is
studied by []. The effect of behavioral changes for the susceptible individuals have been
incorporated by Liu et al. [] in this model. They used the incidence rate in the form βSIp

+kIq ,
where k is negative constant, while p and q are positive. Different cases have been studied
for p, q, and k; see, for example [, –].

In mathematical models the global stability is very important. Many methods have been
used in the literature to obtain the global stability for the epidemic models. For example,
[] used the second Lyapunov function in his model. In population biology models, the
Lyapunov function candidate is used as a Volterra function (y – y∗ – y∗ ln y

y∗ ). Beretta and
Capasso used this function in [] and also the authors used [, , –] for the global
stability of epidemic models. In this work, we modified the model of [], to incorporate
the exposed class. This new class is very important, because many infectious diseases like,
dengue, yellow fever, hepatitis B, etc., have a specific incubation period. For this reason,
the analysis of the exposed class is very important.

Based on the above motivation, the present paper studies the global dynamics of a SEIRS
epidemic model with non-linear generalized incidences and preventive vaccination. The
structure of the paper is as follows: We formulate the basic problem, with their properties
in Section . In Section , we find the local stability of disease free and endemic equilib-
rium. The global stability of both the disease-free and the endemic equilibrium discussed
in Section . Numerical results with a brief discussion are presented in Section .

2 Model formulation
In this section, we formulate the basic model by dividing the population into four sub-
classes, S(t), the susceptible, E(t), the exposed (not yet infectious), I(t), the infected and
R(t), the recovered or removed individuals. We denote the total population size of the
individuals by N(t), with N(t) = S(t) + E(t) + I(t) + R(t). The transition diagram is presented
in Figure . The governing model is given as follows:

dS
dt

= ( – q)� – μS –
βSI
ψ(I)

+ μR,

dE
dt

=
βSI
ψ(I)

– μE – μE,

dI
dt

= μE – μI – μI – μI,

dR
dt

= q� – μR – μR + μI,

()

subject to the initial conditions

S() = S ≥ , E() = E ≥ , I() = I ≥ , R() = R ≥ . ()

The parameters with their description are shown in Table .
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Figure 1 Transition diagram.

Table 1 Parameter descriptions

Parameter Description

� The growth rate of the individuals
q The fraction of individuals to be vaccinated
μ Natural death rate
μ0 Disease related mortality rate
μ1 The rate at which the individuals infected
μ2 Rate of recovery
μ3 The rate by which the individuals susceptible again
β The disease contact rate

We assumed the same transmission rate in the form of βSI
ψ(I) , where ψ is a positive func-

tion with ψ() =  and ψ ′ ≥ , as used by []. This is the generalization of mass action
incidences, that is, ψ(I) = , and the incidence rate βSI

+kIq . For small I , the function I
ψ(I) is

increasing, while it is decreasing for large I , that is ψ(I) = + I. This shows the ‘psycholog-
ical’ effect: when the number of infective individuals is high, the increase in the number of
infectives varies inversely to the force of infection, due to the presence of the large number
of infectives in the population, which then tends to decrease the individuals’ contacts per
unit time [, ].

2.1 Basic properties of the model
In this subsection, we investigate the basic reproduction number and basic properties of
the model (). The total population size N satisfies the equation

dN
dt

= � – μN – μI ≤ � – μN

and hence

N(t) → �

μ
as t → ∞.

Therefore, the biologically feasible region for the system ()

� =
{

(S, E, I, R) :  ≤ S, E, I, R, S + E + I + R ≤ �

μ

}
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is bounded and positively invariant. Thus, all the solutions inside the region � will be
considered, where uniqueness of the solutions, and the usual existence and continuation
results are satisfied.

The disease-free equilibrium (DFE) for the system () is E = (S, , , R), where

S =
�(( – q)μ + μ)

μ(μ + μ)
, R =

q�

μ + μ
, N =

�

μ
,

which, respectively, shows the level of susceptible, recovered, and not infected population
of total individuals. The disease-free equilibrium point is

E =
(
S, , , R) =

(
�(( – q)μ + μ)

μ(μ + μ)
, , ,

q�

μ + μ

)
.

The basic reproduction number is an important threshold quantity that mathematically
analyzes the disease spread and control. This formula is very helpful to find the informa-
tion as regards an infectious disease spreading and being under control in a community.
For the disease-free states the threshold quantity R <  holds, then this equilibrium will
be stable and their will be no disease spread in the community and the disease can be han-
dled through some preventive vaccination or prevention. In the case of failure, the disease
becomes an epidemic and permanently exists in the population when R > . To find the
basic reproduction number for our model, we follow [].

Let x = (E, I), then it follows from system () that

dx
dt

= F – V ,

F =

[
βSI
ψ(I)


]
,

V =

[
(μ + μ)E

–μE + (μ + μ + μ)I

]
,

F = Jacobian of F at DFE =

[
 βS

 

]
,

V = Jacobian of V at DFE =

[
μ + μ 

–μ μ + μ + μ

]
.

The inverse of V is

V – =


(μ + μ)(μ + μ + μ)

[
μ + μ + μ 

μ μ + μ

]
.

Thus, for the system (), the next generation matrix is

FV – =

[
βSμ

(μ+μ)(μ+μ+μ)
βS(μ+μ)

(μ+μ)(μ+μ+μ)
 

]
.



Khan et al. Advances in Difference Equations  (2015) 2015:88 Page 5 of 18

The spectral radius R of the matrix FV – is

R = ρ
[
FV –] =

μβ�(( – q)μ + μ)
μ(μ + μ)(μ + μ)(μ + μ + μ)

,

and it is the required basic reproduction number for the system ().

2.2 Endemic equilibria
The endemic equilibrium for the system () at the point E = (S∗, E∗, I∗, R∗) is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S∗ = (μ+μ)(μ+μ+μ)ψ(I∗)
μβ

,

E∗ = (μ+μ+μ)I∗
μ

,

R∗ = q�+μI∗
μ+μ

,
�( – q) – μS∗ – (μ + μ)E∗ + μR∗ = .

()

Making use of S∗, E∗, and R∗ in the fourth equation of system (), we obtain the following
equation for I :

�(I) =
�(( – q)μ + μ)

(μ + μ)
– I

(
(μ + μ)(μ + μ + μ)

μ
–

μμ

(μ + μ)

)

–
μ(μ + μ)(μ + μ + μ)ψ(I)

μβ
= .

Since (μ+μ)(μ+μ+μ)
μ

– μμ
(μ+μ) >  and ψ ′ ≥ , and for large positive values of I , � is a de-

creasing function. Moreover, �(I) < �((–q)μ+μ)
(μ+μ) – ( (μ+μ)(μ+μ+μ)

μ
– μμ

(μ+μ) )I , then

lim
I→∞�(I) = –∞.

Next, to find the sign of the derivative,

�(İ) = –
[

(μ + μ)(μ + μ + μ)
μ

–
μμ

(μ + μ)

]
–

μ(μ + μ)(μ + μ + μ)ψ(İ)
μβ

< ,

since ( (μ+μ)(μ+μ+μ)
μ

– μμ
(μ+μ) ) >  and clearly ψ(İ) ≥ .

Suppose R = μβ�((–q)μ+μ)
μ(μ+μ)(μ+μ)(μ+μ+μ) . Since ψ() = , it follows that

�() =
(

�μβ(( – q)μ + μ)
(μ(μ + μ)(μ + μ)(μ + μ + μ))

– 
)

μ(μ + μ)(μ + μ + μ)
μβ

,

=
μ(μ + μ)(μ + μ + μ)

μβ
(R – ) >  for R > .

A unique positive zero of � exists if and only if �() > , i.e., R > . It can be stated as
follows.

Proposition Suppose the conditions imposed on the function ψ(I) are satisfied. Then there
exists a disease-free state for system (), which is E = ( �((–q)μ+μ)

μ(μ+μ) , , , q�

μ+μ
), which exists

for all parameter values. For R > , the endemic equilibrium E admits the unique positive
equilibrium for the system ().
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3 Local stability
In this section, we investigate the local stability analysis of the model (). First, we find the
local stability of the disease-free and then the endemic equilibrium as will be discussed.

Theorem . The disease-free equilibrium point E of the system () we have the following.
(i) It is stable locally asymptotically if R ≤ .

(ii) An unstable equilibrium exists if R > .

Proof (i) At the disease-free equilibrium point E, the Jacobian matrix of () is

J =

⎡
⎢⎢⎢⎣

–μ  –βS μ

 –(μ + μ) βS 
 μ –(μ + μ + μ) 
  μ –(μ + μ)

⎤
⎥⎥⎥⎦ .

The characteristic equation of the J is given by

(λ + μ)
[
λ + Qλ

 + Qλ + Q
]

= .

One of the negative roots of the above characteristics equation is –μ, while the remaining
roots can be obtained in the following way:

[
λ + Qλ

 + Qλ + Q
]

= ,

where

Q = (μ + μ + μ + μ + μ) > ,

Q = (μ + μ)(μ + μ + μ) + (μ + μ)(μ + μ) + (μ + μ)(μ + μ + μ)( – R) > ,

Q = μ(μ + μ)(μ + μ + μ)( – R) > .

The Routh-Hurwitz criteriona for the cubic equation is as follows:

QQ – Q = (μ + μ + μ + μ + μ)
(
(μ + μ)(μ + μ + μ)

+ (μ + μ)(μ + μ) + (μ + μ)(μ + μ + μ)( – R)
)

– (μ + μ)(μ + μ)(μ + μ + μ)( – R).

We obtain

QQ – Q = (μ + μ + μ + μ + μ)
(
(μ + μ)(μ + μ + μ) + (μ + μ)(μ + μ)

)
+ (μ + μ + μ + μ)(μ + μ)(μ + μ + μ)( – R) > .

Thus, the system () around the disease-free equilibrium point E is locally asymptotically
stable if R ≤ .

(ii) When R > , then Q <  and Q < , which is a failure of the Routh-Hurwitz crite-
rion. So, in this case the equilibrium is unstable. �
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In the next theorem, we will prove that the system () around the endemic equilibrium
point E is stable locally asymptotically, when the basic reproduction number R > .

Theorem . If R > , then the endemic equilibrium point E of the system () is locally
asymptotically stable, otherwise it is unstable.

Proof The Jacobian matrix of the system () at E is given by

J [∗] =

⎡
⎢⎢⎢⎢⎣

–μ – (μ+μ)E∗
S∗  – βS∗

ψ(I∗) ( – I∗ψ ′(I∗)
ψ(I∗) ) μ

(μ+μ)E∗
S∗ –(μ + μ) βS∗

ψ(I∗) ( – I∗ψ ′(I∗)
ψ(I∗) ) 

 μ –(μ + μ + μ) 
  μ –(μ + μ)

⎤
⎥⎥⎥⎥⎦ .

The characteristic equation of J [∗] is given by

(λ + μ)
[
λ + Tλ

 + Tλ + T
]

= .

One of the eigenvalues of the J [∗] is negative, –μ, while the remaining eigenvalues can be
obtained in the following way:

[
λ + Tλ

 + Tλ + T
]

= ,

where

T = μ + μ + μ + μ + μ +
(μ + μ)E∗

μS∗ > ,

T = (μ + μ)(μ + μ + μ) + (μ + μ)(μ + μ + μ + μ)
(

 +
(μ + μ)E∗

μS∗

)

+
μβS∗I∗ψ ′(I∗)

ψ(I∗)
> ,

T = (μ + μ)(μ + μ)(μ + μ + μ)
(

 +
(μ + μ)E∗

μS∗

)

+
μ(μ + μ)βI∗S∗ψ ′(I∗)

ψ(I∗)
> .

Now

TT – T = (μ + μ)(μ + μ + μ)
(

μ + μ + μ + μ + μ +
(μ + μ)E∗

μS∗

)

+
(

μ + μ + μ + μ +
(μ + μ)E∗

μS∗

)
μβS∗I∗ψ ′(I∗)

ψ(I∗)

+ (μ + μ)(μ + μ + μ)
(

μ + μ + μ + μ + μ +
(μ + μ)E∗

μS∗

)

×
(

 +
(μ + μ)E∗

μS∗

)

– (μ + μ)(μ + μ)(μ + μ + μ)
(

 +
(μ + μ)E∗

μS∗

)
.
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After a little algebraic calculation, we get

TT – T = (μ + μ)(μ + μ + μ)
(

μ + μ + μ + μ + μ +
(μ + μ)E∗

μS∗

)

+
(

μ + μ + μ + μ +
(μ + μ)E∗

μS∗

)
μβS∗I∗ψ ′(I∗)

ψ(I∗)

+ (μ + μ)(μ + μ)
(

μ + μ + μ + μ + μ +
(μ + μ)E∗

μS∗

)

×
(

 +
(μ + μ)E∗

μS∗

)

+ (μ + μ)(μ + μ + μ)
(

μ + μ + μ + μ +
(μ + μ)E∗

μS∗

)

×
(

 +
(μ + μ)E∗

μS∗

)
> .

Thus, the Routh-Hurwitz criterion is satisfied. So, the endemic equilibrium point E of
the system () is locally asymptotically stable. �

In the next section, we will find the global stability of the disease-free and endemic equi-
librium. Before we do this, first, we reduce the system (), by using R(t) = �

μ
– S(t) – E(t) –

I(t) to eliminate R(t) from the first equation of system (), which leads to the following
reduced three dimensional model:

dS
dt

=
�

μ

(
( – q)μ + μ

)
– (μ + μ)S –

βSI
ψ(I)

– μE – μI,

dE
dt

=
βSI
ψ(I)

– μE – μE, ()

dI
dt

= μE – μI – μI – μI,

subject to the initial conditions:

S() = S ≥ , E() = E ≥ , I() = I ≥ .

The disease-free equilibrium point for system () is denoted by E and the endemic equi-
librium point is E.

4 Global stability
The aim of this section is to investigate the global stability of disease-free and endemic
state. To find the global stability of the disease-free state we use the method presented in
[]. According to [], the conditions (H) and (H) are necessary, then the stability of a
disease-free state exists. Following [], we rewrite the system () in the following form:

dX
dt

= F(X, Z),

dZ
dt

= G(X, Z), G(X, ) = ,
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where X = S represents the number of uninfected individuals, while Z = (E, I) represents
the infected number of individuals, with X ∈ R and Z ∈ R

, respectively. We denote the
disease-free equilibrium by Q = (X, ). The conditions (H) and (H) are necessary for
the existence of the global stability of the disease-free state:

(H) for dX
dt = F(X, ), X is globally asymptotically stable (g.a.s.),

(H) G(X, Z) = BZ – G(X, Z), where G(X, Z) ≥ , for (X, Z) ∈ �,

where B = DzG(X, ) is an M-matrix (the off-diagonal elements of B are non-negative)
and � is the region where the model makes biological sense. Then the following lemma
holds.

Lemma . If R < , then the fixed point Q = (X, ) of reduced system () is said to be
globally asymptotically stable if the conditions (H) and (H) are satisfied.

Now we prove the following theorem.

Theorem . Suppose R < , then the equilibrium point E is globally asymptotically
stable.

Proof Let X = (S) represent the number of uninfected classes and Z = (E, I) represent the
number of infected classes including the exposed and infected, and Q = (X, ), where

X =
�(( – q)μ + μ)

μ(μ + μ)
.

Then

dX
dt

= F(X, Z) =
�

μ

(
( – q)μ + μ

)
– μE – S(μ + μ) –

βSI
ψ(I)

– μI.

We have S = S, F(X, ) = , and

dX
dt

= F(X, ) =
�

μ

(
( – q)μ + μ

)
– (μ + μ)X

as t → ∞, X → X. So, X = X = (S) is globally asymptotically stable. Now

BZ – G(X, Z) =

[
–(μ + μ) βS

μ –(μ + μ + μ)

][
E
I

]
–

[
βSI – βSI

ψ(I)


]
,

where

B =

[
–(μ + μ) βS

μ –(μ + μ + μ)

]
and G(X, Z) =

[
βSI – βSI

ψ(I)


]
.

In the reduced system (), the total population is bounded by S = �((–q)μ+μ)
μ(μ+μ) , i.e., S, E, I ≤

S, and βSI ≥ βSI
ψ(I) . So G(X, Z) ≥ , and obviously B represents an M-matrix. Thus, the

conditions (H) and (H) are satisfied, so by Lemma ., the disease-free equilibrium E

of the system () is globally asymptotically stable, provided that R < . �
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4.1 Global stability of endemic equilibrium
In this subsection, we use the method of Li and Muldowney [], the geometric approach
method, for the global stability of an endemic equilibrium. We find the sufficient condi-
tions for which the endemic equilibrium is globally asymptotically stable. We first briefly
explain the geometric approach method. Consider

ẋ = f (x), ()

where f : D → Rn, D ⊂ Rn is an open set and simply connected and f ∈ C(D). Representing
by x(t, x) the solution of (), i.e., f (x∗) = , let us assume the hypotheses presented now
are satisfied:

(H) A compact absorbing set exists, i.e., K ⊂ D.
(H) A unique equilibrium for () is X∗ in D.

If all the trajectories in D converge to x∗ and are locally stable, then the point x∗ is known to
be stable globally in D. For m ≥ , by a Bendixson criterion we mean a condition satisfied
by f which precludes the existence of non-constant periodic solutions of (). The classical
Bendixson condition, div f (x) < , for m = , is robust under C, in view of the robustness
properties discussed in [] and [].

A point x ∈ D is wandering for () if there exists a neighborhood U of x and T > 
such that U ∩ x(t, U) is null ∀t > T . We present the global-stability principle of [] for an
autonomous systems as follows.

Lemma . Let the two conditions (H) and (H) hold, assuming that () satisfies the
Bendixson criterion, i.e., robustness under C, for the local perturbations of f (x) at all non-
equilibrium non-wandering points for (). Then x∗ is globally stable in D, provided it is
stable.

The following Bendixson criterion, which is given in [], proves the robustness which
is required by Lemma .. Let P(x) represent

(
m


)
×

(
m


)
,

a matrix valued function, i.e., C on D, also P– exists and is continuous for x ∈ K , the
compact absorbing set. We define the quantity q̄ as

q̄ = lim
t→∞ sup sup

x∈K


t

∫ t


�(B(x(s, x)

))
ds,

where

B = Pf P– + PJ []P–,

the matrix Pf is

(
pij(x)

)
f =

(
∂pij(x)

)t · f (x) = ∇pij · f (x),
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and the matrix J [] represents the second additive compound matrix of the Jacobian matrix
J , i.e., J(x) = Df (x). Let �(B) represent the Lozinskii measure of B with respect to the vector
norm | · | in RM ,

M =

(
m


)
,

defined by

�(B) = lim
h→+

|I + hB| – 
h

.

In [] it is proved that, if D is connected simply, then the condition q̄ <  deletes the
presence of any orbit that gives rise to a simple closed rectifiable curve which is invariant
for (), like for the periodic orbits and heteroclinic cycles. The global-stability result which
is proved in Li and Muldowney [] is stated in the following.

Lemma . Let the simple connectivity of D together with the conditions (H) and (H)
hold. Then x∗, the equilibrium point of (), is stable globally in D if q̄ < .

Using the approach of [], we find the global stability of an endemic equilibrium. In
the case that E is unstable, the uniform persistence exists [], i.e., there exists a constant
a > , such that any solution (S(t), E(t), I(t)) with (S(), E(), I()) in the orbit of the system
() satisfies

μ > μ,

m = min
{

lim
t→∞ inf S(t), lim

t→∞ inf E(t), lim
t→∞ inf I(t)

}
> a.

Consider the following assumption:

c = min

{
βI

ψ(I)
+

βSIψ ′(I)
ψ(I)E

+ μ –
μI
E

,μ,μ – μ

}
.

Theorem . If R > , then the endemic equilibrium E of the system () is globally stable
in �.

Proof To prove that the reduced model () is globally asymptotically stable, we obtain the
second additive compound matrix J [] of the system ():

J [] =

⎡
⎢⎣

–(μ + μ + μ) – βI
ψ(I)

βS(ψ(I)–Iψ ′(I))
ψ(I) μ + βS(ψ(I)–Iψ ′(I))

ψ(I)
μ –(μ + μ + μ + μ) – βI

ψ(I) –μ

 βI
ψ(I) –(μ + μ + μ + μ)

⎤
⎥⎦ .

Let us choose the function

P = P(S, E, I) = diag

{
,

E
I

,
E
I

}
.
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Then

P– = diag

{
,

I
E

,
I
E

}
,

Pf = diag

{
,

Ė
I

–
Eİ
I ,

Ė
I

–
Eİ
I

}
.

Also we have

Pf P– = diag

{
,

Ė
E

–
İ
I

,
Ė
E

–
İ
I

}
.

Therefore

B = Pf P– + PJ []P–

=

⎡
⎢⎣

  
 Ė

E – İ
I 

  Ė
E – İ

I

⎤
⎥⎦

+

⎡
⎢⎣

–(μ + μ + μ) – βI
ψ(I)

βSI(ψ(I)–Iψ ′(I))
Eψ(I) μ

I
E + βSI(ψ(I)–Iψ ′(I))

Eψ(I)
μ

E
I –(μ + μ + μ + μ) – βI

ψ(I) –μ

 βI
ψ(I) –(μ + μ + μ + μ)

⎤
⎥⎦.

Let

B =

(
B B

B B

)
,

where

B =
(

–(μ + μ + μ) – βI
ψ(I)

)
,

B =
(

βSI(ψ(I)–Iψ ′(I))
Eψ(I) , (μ + βS(ψ(I)–Iψ ′(I))

ψ(I) ) I
E

)
,

B =
(

μE
I , 

)T
,

B =

(
Ė
E – İ

I – (μ + μ + μ + μ) – βI
ψ(I) –μ

βI
ψ(I)

Ė
E – İ

I – (μ + μ + μ + μ)

)
.

Suppose the norm in R to be

∣∣(v, v, v)
∣∣ = max

{|v|, |v| + |v|
}

, ()

where (v, v, v) represents the vector in R and we denoted by � the Lozinskii measure
with respect to this norm, following []. We have

�(B) ≤ sup{g, g} = sup
{�(B) + |B|,�(B) + |B|

}
,
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where |B| and |B| are the matrix norms with respect to the � norm, then

g = �(B) + |B|, ()

where

�(B) = –(μ + μ + μ) –
βI

ψ(I)
,

|B| = max

{
βSI(ψ(I) – Iψ ′(I))

Eψ(I)
,
(

μ +
βS(ψ(I) – Iψ ′(I))

ψ(I)

)
I
E

}
,

∴

g = –(μ + μ + μ) –
βI

ψ(I)
+

μI
E

+
βSI(ψ(I) – Iψ ′(I))

Eψ(I)

≤ –(μ + μ + μ) +
βSI

Eψ(I)
+

μI
E

–
βI

ψ(I)
–

βSI

Eψ(I)
,

using the second equation of system (),

βSI
ψ(I)E

=
Ė
E

+ μ + μ.

So, we can write

g =
Ė
E

– μ – μ –
βI

ψ(I)
–

βSIψ ′(I)
ψ(I)E

+
μI
E

.

Again,

g = �(B) + |B|,

where

�(B) = max

{
Ė
E

–
İ
I

– (μ + μ + μ + μ),
Ė
E

–
İ
I

– (μ + μ + μ + μ) + μ

}

and |B| = μ
E
I . Then

g =
Ė
E

–
İ
I

– (μ + μ + μ) + μ
E
I

+ max{–μ,μ – μ}

using the third equation of system (), μE
I = İ

I + μ + μ + μ,

g =
Ė
E

– μ + max{–μ,μ – μ},

�(B) ≤ sup{g, g} =
Ė
E

– μ + max

{
μI
E

– μ –
βI

ψ(I)
–

βSIψ ′(I)
ψ(I)E

, –μ,μ – μ

}
,

�(B) ≤ sup{g, g} =
Ė
E

– μ – min

{
μ +

βI
ψ(I)

+
βSIψ ′(I)
ψ(I)E

–
μI
E

,μ,μ – μ

}
.
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This holds along each solution (S(t), E(t), I(t)) of the system with (S(), E(), I()) ∈ K ,
where K is the compact absorbing set. We have


t

∫ t


�(B) dE ≤ 

t
log

E(t)
E()

– (μ + c),

d = (μ + c), which implies that

q̄ = lim
t→∞ sup sup


t

∫ t


�(B) dE ≤ –

d


< .

Thus, by the result of [] it implies that E is globally asymptotically stable. �

5 Discussion
The aim of this work is to study and analyze the dynamic behavior of an epidemic model
SEIRS with a non-linear incidence and a waning preventive vaccination. In some previous
work it has appeared [, , , , ]. In our work, we considered a mathematical model
of the SEIRS type and obtained its basic reproduction number, to determine its dynamical
behavior of the model. For the disease-free case the basic reproduction number R < ,
holds, and we found that the model is stable globally asymptotically. In epidemiology if
R ≤  the disease dies out from the community and the population can be prevented
by vaccination or prevention. If R > , the endemic equilibrium is stable locally as well
as globally. In such a case the disease becomes endemic and permanently exists in the
community. For q = , the basic reproduction number for the vaccination-free model is

R =
�μβ

μ(μ + μ)(μ + μ + μ)
.

Thus, we can write R as

R =
(

 –
μq

μ + μ

)
R ≤R.

If R ≤ , then clearly the disease vanishes or dies out from the population. But if R > 
(Figure  illustrates this fact), then vaccination is needed so that R ≤  or equivalently

q ≥ qv =
μ + μ

μ

(
 –


R

)
.

Thereby, if qv ≤ , qv acts as the coverage ability of the optimal vaccination of the disease
eradication from the community (Figures  and  illustrate this fact). In the case (qv ≯ ),
it becomes epidemic and persistent, even though all the newborn are vaccinated (Figure 
illustrates this fact). It is to be noted, when R > , that qv represents the increasing func-
tion of μ and qv >  is satisfied if and only if μ > μ

R– . Thus, once we increase the loss
as regards immunity duration which is induced by vaccination, 

μ
, we can reduce the op-

timal vaccine coverage qv. For the control of an epidemic, the public health management
are advised to make an increase in the duration as regards the loss of immunity.
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Figure 2 The dynamical behavior of system (1), for different initials conditions and the parameters:
μ0 = 0.004, μ1 = 0.003, μ2 = 0.009, μ3 = 0.05, μ = 0.09, � = 8, β = 0.002, q = 0, here ψ (I) = 1

1+I2
,

R1 = 1.5851.

Figure 3 The dynamical behavior of system (1), for different initials conditions and the same
parameters as Figure 2 except q = 0.2 < qv = 0.2373.
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Figure 4 The dynamical behavior of system (1), for different initials conditions and the same
parameters as Figure 2 except q = qv = 0.2373.

Figure 5 The dynamical behavior of system (1), for different initials conditions and the parameters:
μ0 = 0.07, μ1 = 0.003, μ2 = 0.009, μ3 = 0.001, μ = 0.1, � = 10, β = 0.002, q = 1, here ψ (I) = 1

1+I2
,

R1 = 1.0251.
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