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Abstract
With the awareness of risk in infective disease spreading, healthy individuals (the
susceptible ones) will take some measures to acquire temporary immunity. This paper
addresses an SIRS model with direct immunization and an infective vector in complex
networks and performs the dynamical analysis for this model. By theoretical analysis,
we obtain the epidemic threshold λc and prove that if infection rate λ < λc , the
disease-free equilibrium is globally asymptotically stable; if λ > λc , there exists a
unique endemic equilibrium, and it is globally attractive. These theoretical results are
confirmed by numerical simulations.
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1 Introduction
In recent years, many epidemic models on complex networks, such as SIS (susceptible-
infected-susceptible) [–] and SIR (susceptible-infected-removed) [–] and so on, have
been widely studied by researchers from different subjects. Classical studies have revealed
that there is an epidemic threshold λc for an epidemic model on homogeneous networks,
below which the disease will die out; otherwise there will exist a persistence. However,
Pastor-Satorras and Vespignani further showed a striking result that the epidemic thresh-
old λc will vanish for a heterogenous network with sufficiently large sizes [, , ].

In fact, apart from the human behavior [, ] and the external environment [], the
infection vector (e.g., mosquitoes) may also play an important role in epidemic transmis-
sion [, , ]. The infective vector generally acts as a carrier of an infective disease and
can transmit it to a human. By considering the disease spreading on a human network
caused by an infection vector, Cooke and Busenberg [, ] have addressed some epi-
demic compartment models. As we known, some diseases spread not only by contacts
between people and infected vectors but also by blood contacts within human. By noting
this fact, Shi et al. [] proposed a new SIS model with an infective medium on complex
networks, which models the spread of a class of infectious diseases. Then a modified SIS
model is proposed in [] by assuming that the human contacts can be considered as a
scale-free network, but the infective media may contact a person without any selectivity.
The epidemic threshold and the stability of endemic equilibrium are investigated theoret-
ically. A more general modified SIS model with an infective medium on complex networks
was introduced in [], and the authors investigated the global attraction of endemic equi-
librium by the basic reproduction number R. However, the direct relation between the
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epidemic threshold λc in [] and the basic reproduction number R in [] has not been
revealed.

In the real world, with the awareness of an infectious disease spreading, some healthy in-
dividuals will usually take some protective measures (e.g., vaccine inoculation) to acquire
temporary immunity. By investigating an SIRS epidemic model [] with direct immuniza-
tion on complex networks, the result shows that the direct immunization can increase the
epidemic threshold and reduce the prevalence of infectious disease.

In this paper, we propose a new SIRS model with direct immunization and an infective
vector on complex networks. We get the epidemic threshold λc, below which the disease-
free equilibrium is globally stable; otherwise, the disease-free equilibrium is unstable and
a unique endemic equilibrium exists, and it is also globally attractive. More importantly,
according to our method, one can directly determine the relation between the epidemic
threshold and the basic reproduction number.

The rest of the paper is organized as follows. In Section , we propose a new SIRS model
with direct immunization and an infective vector on complex networks. Section  analyzes
the dynamics of the model and shows some theoretical results. Some numerical simula-
tions are performed to confirm our theoretical predictions in Section .

2 The model
Based on the real mechanism of some relevant epidemic networks, our model will be con-
structed with the following context:

• Two infection mechanisms: the disease spreads not only by contacts between
individuals, but also by contacts between individuals and infective vectors.

• Two removed ways: (i) with awareness of risk infective disease spreading, some health
individuals may make some protective measures (vaccination) to acquire temporary
immunity; (ii) an infected individual becoming a removed individual after cure may
acquire temporary immunity.

In addition, we further suppose that the individuals’ contacts can be treated as hetero-
geneous, but the contacts between individuals and vectors can be considered as homo-
geneous. This assumption results from the selective contacts in a human network and
non-selective contacts between people and vectors [, ].

Let Sk(t), Ik(t) and Rk(t) be the densities of susceptible, infected and removed nodes
with degree k at time t respectively, and let V (t) be the density of the infective medium
at time t. Let ρ(t) =

∑
p(k)Ik(t) denote the density of infected individuals on the network,

and � represents the probability that a randomly chosen link emanating from a node of
degree k leads to infected nodes. In this paper, we consider the situation of uncorrelated
networks, then � can be written as � = 

〈k〉
∑

k′ k′p(k′)Ik′ (t) [, ], where p(k) denotes the
degree distribution of the network, 〈k〉 =

∑
kp(k) is its average degree.

We assume that the susceptible nodes become the removed nodes with rate α for ac-
quiring temporary immunity. At the same time, each susceptible (health) node is infected
with rates λ and γ if it is contacted to infected nodes and infective vectors, respectively.
Infected nodes are cured with rate β and removed nodes again become susceptible with
rate δ for immunization-lost. Health vectors are infected with rate γ if they are contacted
to infected individuals and infected vectors recover with rate ξ .

In the real world, an epidemic always occurs on a finite network [] even though the size
of the network is very large. Hence, we consider disease transmission in a finite popula-
tion in this paper, and let n be the maximum degree. Then, neglecting of contact duration,
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the proposed SIRS propagation model can be described by the following differential equa-
tions:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dSk (t)
dt = –λkSk(t)� + δRk(t) – γV (t)Sk(t) – αSk(t),

dIk (t)
dt = λkSk(t)� – βIk(t) + γV (t)Sk(t),

dRk (t)
dt = βIk(t) – δRk(t) + αSk(t),

dV (t)
dt = –ξV (t) + γ( – V (t))ρ(t).

()

Without loss of generality, assume that the infective vector has unit recovery, i.e., ξ = .
In addition, the variables Sk(t), Ik(t), Rk(t) satisfy the normalization condition Sk(t)+ Ik(t)+
Rk(t) = . Then Eq. () can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

dIk (t)
dt = [λk� + γV (t)][ – Ik(t) – Rk(t)] – βIk(t),

dRk (t)
dt = (β – α)Ik(t) – (α + δ)Rk(t) + α,

dV (t)
dt = –V (t) + γ( – V (t))ρ(t).

()

3 Epidemic threshold and global analysis
3.1 Epidemic threshold
Theorem  Let λc = [β(α+δ)–δγγ]β(α+δ)〈k〉

δγγ(〈k〉–〈k〉)+δβ(δ+α)〈k〉 and β – δ
α+δ

γγ > , if λ > λc, then one and
only one endemic equilibrium solution of system () exists, i.e., the epidemic propagation
may outbreak on complex networks.

Proof By letting the right-hand side of system () be zero, we have

βIk(t) =
[
λk� + γV (t)

][
 – Rk(t) – Ik(t)

]
, ()

(β – α)Ik(t) – (α + δ)Rk(t) + α =  ()

and

V (t) =
γρ(t)

 + γρ(t)
. ()

Substituting () into (), one obtains

βIk(t) =
[
λk� + γV (t)

]
[

δ

δ + α
–

β + δ

δ + α
Ik(t)
]

. ()

Then substituting () into (), we have

Ik(t) =
δ[λk� + λkγρ(t)� + γγρ(t)]

β(δ + α)[ + γρ(t)] + (β + δ)[λk� + λkγρ(t)� + γγρ(t)]
. ()

Let

F = δ
[
λk� + λkγρ(t)� + γγρ(t)

]

and

F = β(δ + α)
[
 + γρ(t)

]
+ (β + δ)

[
λk� + λkγρ(t)� + γγρ(t)

]
.
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Then one has a self-consistency equation as follows:

�(t) =


〈k〉
∑

k

kp(k)Ik(t) =


〈k〉
〈

k
F

F

〉

≡F (�). ()

It is obvious that �(t) =  is a trivial solution to Eq. (). What we are interested in is the
condition under which the epidemic propagation outbreaks. Since � ∈ [, ],F () =  and
F (�) ∈ [, ), then Eq. () must have a non-trivial solution if dF

d�
|�= > .

By computing the following expression

dF
d�

∣
∣
∣
∣
�=

=


〈k〉
〈

k
( ∂F

∂ρ
· dρ

d�
+ ∂F

∂�
)F – ( ∂F

∂ρ
· dρ

d�
+ ∂F

∂�
)F

F


〉∣
∣
∣
∣
�=

> , ()

we have the epidemic threshold λc taking the following expression in the case where β –
δ

α+δ
γγ > ,

λc =
[β(α + δ) – δγγ]β(α + δ)〈k〉

δγγ(〈k〉 – 〈k〉) + δβ(δ + α)〈k〉 .

Inequality () holds if and only if λ > λc. Furthermore, we will ascertain the uniqueness of
endemic equilibrium in a similar way as paper []. Assume that I = (I, I, . . . , In, V ) and
I∗ = (I∗

 , I∗
 , . . . , I∗

n , V ∗) are two different roots to Eqs. () and (). Let

η = max

{

max
k=,...,n

{
Ik

I∗
k

}

,
V
V ∗

}

.

Moreover, assume that η >  without loss of generality. We will complete the proof in two
cases as follows.

Case : If there exists a natural number k ∈ {, , . . . , n} such that η = Ik
I∗k

, then we, by
(), have

βIk =
[
λk�(I) + γV

]
[

δ

δ + α
–

β + δ

δ + α
Ik

]

, ()

βI∗
k =
[
λk�

(
I∗) + γV ∗]

[
δ

δ + α
–

β + δ

δ + α
I∗

k

]

, ()

where �(I) = 
〈k〉
∑

kp(k)Ik and �(I∗) = 
〈k〉
∑

kp(k)I∗
k . From () and (), we can obtain

[
λk�(I) + γV

]
[

δ

δ + α
–

β + δ

δ + α
Ik

]

= η · [λk�
(
I∗) + γV ∗]

[
δ

δ + α
–

β + δ

δ + α
I∗

k

]

, ()

while we have the following inequalities according to the definition of η:

η · [λk�
(
I∗) + γV ∗] = λk�

(
I∗) · η + γV ∗ · η > λk�(I) + γV , ()

δ

δ + α
–

β + δ

δ + α
I∗

k >
δ

δ + α
–

β + δ

δ + α
Ik . ()

It is obvious that () and () contradict ().
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Case : If η = V
V∗ , according to (), then we have

V = ( – V )γρ(I), ()

V ∗ =
(
 – V ∗)γρ

(
I∗), ()

where ρ(I) =
∑

p(k)Ik and ρ(I∗) =
∑

p(k)I∗
k . From (), () and the definition of η, one

obtains

( – V )γρ(I) =
(
 – V ∗)γρ

(
I∗) · η > ( – V )γ

∑
p(k)
(
I∗

k · η) > ( – V )γρ(I). ()

A contradiction appears. In conclusion, when λ > λc, one and only one endemic equilib-
rium solution exists for system (). �

Letting τ = δ
δ+α

, the epidemic threshold λc can be rewritten as

λc =
[β – τγγ]β〈k〉

τ γγ(〈k〉 – 〈k〉) + τβ〈k〉 . ()

Note that the assumption that β – τγγ > , which is a default condition below, ensures
that the threshold λc is larger than zero for a finite size network. One can see that the crit-
ical threshold vanishes for a scale-free network with sufficiently large sizes, which agrees
with the previous papers [, , ].

The reader should find that the model parameters are general in this model. If γ or
γ vanishes, the proposed model may become an SIRS model with direct immunization
via one infection mechanism (contacts between individuals), and the epidemic λc = β〈k〉

τ 〈k〉
which agrees with the one of paper []. In addition, the proposed model may become one
SIRS model with an infection vector via two infection mechanisms when α = . And the
epidemic threshold λc = [β–γγ]β〈k〉

γγ(〈k〉–〈k〉)+β〈k〉 , especially, λc = [–γγ]〈k〉
γγ(〈k〉–〈k〉)+〈k〉 if β = , which

is in accordance with the one of paper [].

3.2 Global stability of disease-free equilibrium
Theorem  For system (), let λc be the epidemic threshold defined as (). If λ < λc, then the
disease-free equilibrium is globally asymptotically stable. Otherwise, there exists a unique
endemic equilibrium.

Proof For convenience, system () can be rewritten as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dSk (t)
dt = –[λk� + γV (t) + δ + α]Sk(t) – δIk(t) + δ,

dIk (t)
dt = [λk� + γV (t)]Sk(t) – βIk(t),

dV (t)
dt = –V (t) + γ( – V (t))ρ(t).

()

The disease-free equilibrium of Eq. () is Sk = δ
δ+α

= τ , Ik = , V = , k = , , . . . , n. More-
over, the Jacobian matrix at disease-free equilibrium can be represented as

J =

[
D F
 M

]

, ()
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where D = –(δ + α)En, and En is an nth identity matrix, F and M are n × (n + ) and (n +
) × (n + ) matrices taking the following forms, respectively:

F =

⎡

⎢
⎢
⎢
⎢
⎣

– τλ
〈k〉 p() – δ – τλ

〈k〉  · p() · · · – τλ
〈k〉 n · p(n) –γτ

– τλ
〈k〉  · p() – τλ

〈k〉  · p() – δ · · · – τλ
〈k〉 n · p(n) –γτ

...
...

. . .
...

...
– τλ

〈k〉 n · p() – τλ
〈k〉 n ·  · p() · · · – τλ

〈k〉 n · p(n) – δ –γτ

⎤

⎥
⎥
⎥
⎥
⎦

,

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

τλ
〈k〉 p() – β τλ

〈k〉  · p() · · · τλ
〈k〉 n · p(n) γτ

τλ
〈k〉  · p() τλ

〈k〉  · p() – β · · · τλ
〈k〉 n · p(n) γτ

...
...

. . .
...

...
τλ
〈k〉 n · p() τλ

〈k〉 n ·  · p() · · · τλ
〈k〉 n · p(n) – β γτ

γp() γp() · · · γp(n) –

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It is obvious that all of eigenvalues of J have negative part if and only if all of eigenvalues
of M have negative part. Denote A = M – μ · E and ν = μ + β , where E is an (n + )-order
unit matrix, and μ is eigenvalue, then

det A =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

τλ
〈k〉 p() – ν τλ

〈k〉  · p() · · · τλ
〈k〉 n · p(n) γτ

τλ
〈k〉  · p() τλ

〈k〉  · p() – ν · · · τλ
〈k〉 n · p(n) γτ

...
...

. . .
...

...
τλ
〈k〉 n · p() τλ

〈k〉 n ·  · p() · · · τλ
〈k〉 n · p(n) – ν γτ

γp() γp() · · · γp(n) –ν – ( – β)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

It follows that all of eigenvalues of M have negative real part if and only if all of roots of the
characteristic polynomial det A =  have real part of at most β . By some elementary trans-
formations, one obtains that the issue above holds if and only all of roots of the following
cubic polynomial have real part of at most β :

g(ν) = ν – aν
 – aν + a = , ()

where

a =
τλ〈k〉 – ( – β)〈k〉

〈k〉 ,

a =
( – β)τλ〈k〉 + γγτ 〈k〉

〈k〉 ,

a =
γγτ

λ[〈hk〉 – 〈k〉]
〈k〉 .

It is easy to obtain that

lim
ν→–∞ g(ν) = –∞, lim

ν→+∞ g(ν) = +∞,

g() =
γγτ

λ[〈k〉 – 〈k〉]
〈k〉 > , g

(

λτ
〈k〉
〈k〉
)

= –γγτ
λ〈k〉 < ,
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since 〈k〉 
 〈k〉 for a sufficiently large network. We will investigate the roots to the cubic
equation () below:

g(β) = β – βτλ
〈k〉
〈k〉 – γγτβ + γγτ

λ
〈k〉 – 〈k〉

〈k〉

{
> , if λ < λc,
< , if λ > λc.

()

If λ < λc, then λτ
〈k〉
〈k〉 < β since λc < β〈k〉

τ 〈k〉 . It implies that the cubic equation () has three
roots ν, ν and ν satisfying

–∞ < ν <  < ν < λτ
〈k〉
〈k〉 < ν < β .

If λ > λc, then the cubic equation () has three roots satisfying

–∞ < ν <  < ν < β < ν < +∞.

In a word, there exists a unique positive eigenvalue of J if and only if λ > λc, below which
the unique epidemic equilibrium exists. Otherwise all real-valued eigenvalues of J are neg-
ative, this implies that the disease-free equilibrium is globally stable according to Lemma 
in paper []. �

In paper [], the authors follow the concepts of next-generation matrix (NGM) to give
a threshold - the basic reproduction number R, by which the global stability of a modi-
fied SIS model is studied. The NGM is a matrix that relates the numbers of newly infected
individuals in various categories in consecutive generation, and the basic reproduction
number R is the spectral radius of the NGM (refer to the papers [, ] for details).
However, the direct relationship between the epidemic threshold and the basic reproduc-
tion number is not clearly revealed. In fact, we can reveal that λ = λc if and only if R = 
by the same way as above.

3.3 Global attraction of endemic equilibrium
In this part, we show a proposition and prove the global attraction of the endemic equi-
librium by the same way as the one in [, ]. Inequalities () and () in Proposition  are
helpful to prove the main result (Theorem ).

Proposition  Suppose that α ≥ β and the solution Ik(t) of system () satisfies
lim supt→∞ Ik(t) ≤ Uk , lim inft→∞ Ik(t) ≥ Lk , then

lim sup
t→∞

V (t) ≤ γ〈Uk〉
 + γ〈Uk〉 , lim inf

t→∞ V (t) ≥ γ〈Lk〉
 + γ〈Lk〉

and

lim sup
t→∞

(
 – Rk(t)

)≤ (α – β)Uk + δ

α + δ
, lim inf

t→∞
(
 – Rk(t)

)≥ (α – β)Lk + δ

α + δ
.

Proof Without loss of generality, we only verify the upper limit inequalities. From
lim supt→∞ Ik(t) ≤ Uk , we obtain that for any ε > , there exists τ >  such that Ik(t) ≤
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Uk + ε for t > τ. It follows that

dV (t)
dt

= –V (t) + γ
(
 – V (t)

)
ρ(t) ≤ –V (t) + γ

(
 – V (t)

)〈Uk + ε〉
= –
(
 + γ〈Uk + ε〉)V (t) + γ〈Uk + ε〉 ()

for t > τ. Therefore, the following inequality holds since ε >  is arbitrarily small:

lim sup
t→∞

V (t) ≤ γ〈Uk〉
 + γ〈Uk〉 . ()

At the same time, it follows from the second equation of system () and α ≥ β that

d( – Rk(t))
dt

= –(α + δ)
(
 – Rk(t)

)
+ (α – β)Ik(t) + δ

≤ –(α + δ)
(
 – Rk(t)

)
+ (α – β)(Uk + ε) + δ. ()

Consequently,

lim sup
t→∞

(
 – Rk(t)

)≤ (α – β)Uk + δ

α + δ
. ()

�

Proposition  Suppose that α ≥ β and the solution Ik(t) of system () satisfies
lim supt→∞ Ik(t) ≤ Uk , lim inft→∞ Ik(t) ≥ Lk , then

lim sup
t→∞

Ik(t) ≤
[λ k

〈k〉 〈kUk〉 + γγ〈Uk 〉
+γ〈Uk 〉 ][ δ+(α–β)Uk

α+δ
]

β + λ k
〈k〉 〈kUk〉 + γγ〈Uk 〉

+γ〈Uk〉
, ()

lim inf
t→∞ Ik(t) ≥

[λ k
〈k〉 〈kLk〉 + γγ〈Lk 〉

+γ〈Lk〉 ][ δ+(α–β)Lk
α+δ

]

β + λ k
〈k〉 〈kLk〉 + γγ〈Lk 〉

+γ〈Lk 〉
. ()

Proof From lim supt→∞ Ik(t) ≤ Uk and Proposition , one obtains that for any ε > , there
exists large enough τ such that the following inequalities hold for t > τ :

�(t, k) ≤ 〈k(Uk + ε)〉
〈k〉 , ()

V (t) ≤ γUk

 + γUk
+ ε, ()

 – Rk(t) ≤ (α – β)Uk + δ

α + δ
+ ε. ()

Considering the first equation of system (), for t > τ , it follows from (), () and ()
that

dIk(t)
dt

=
[
λk�(t, k) + γV (t)

][
 – Ik(t) – Rk(t)

]
– βIk(t)

≤
[

λ
k

〈k〉
〈
k(Uk + ε)

〉
+ γ

(
γUk

 + γUk
+ ε

)]

×
[

(α – β)Uk + δ

α + δ
+ ε – Ik(t)

]

– βIk(t)
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= –
[

β + λ
k

〈k〉
〈
k(Uk + ε)

〉
+ γ

(
γUk

 + γUk
+ ε

)]

Ik

+
[

λ
k

〈k〉
〈
k(Uk + ε)

〉
+ γ

(
γUk

 + γUk
+ ε

)][
(α – β)Uk + δ

α + δ
+ ε

]

. ()

Since ε >  is arbitrary small, we get

lim sup
t→∞

Ik(t) ≤
[λ k

〈k〉 〈kUk〉 + γγ〈Uk 〉
+γ〈Uk 〉 ][ δ+(α–β)Uk

α+δ
]

β + λ k
〈k〉 〈kUk〉 + γγ〈Uk 〉

+γ〈Uk〉
.

Similarly, we can prove inequality (). �

Denote k = {(Ik , Rk)| ≤ Ik + Rk ≤ , Ik ≥ , Rk ≥ }, k = , , . . . , n, and  =
∏n

k= k ×
[, ].

Theorem  If λ > λc and α ≥ β , then system () has a unique endemic equilibrium E∗ =
{I∗

 , R∗
 , . . . , I∗

n , R∗
n, V ∗} which is of global attraction in  – {F∗}, where F∗ = {, α

α+δ
, , α

α+δ
,

. . . , , α
α+δ

, } is the disease-free equilibrium of system ().

Proof Define a map G = {G,G, . . . ,Gn} : Rn �→ R
n as follows:

Gk(x, x, . . . , xn) =
[λ k

〈k〉 〈kxk〉 + γγ〈xk 〉
+γ〈xk 〉 ][ δ+(α–β)xk

α+δ
]

β + λ k
〈k〉 〈kxk〉 + γγ〈xk〉

+γ〈xk 〉
(k = , , . . . , n). ()

Let U ()
k =  for all k = , , . . . , n and U (m+)

k = Gk(U (m)
 , U (m)

 , . . . , U (m)
n ), it is obvious that

lim supt→∞ Ik(t) ≤ U ()
k = . According to Proposition , we then obtain

lim sup
t→∞

Ik(t) ≤ U (m)
k , k = , , . . . , n, m = , , . . . .

Moreover, for all k = , , . . . , n, we can testify the convergence of the sequences {U (m)
k }+∞

m=

by induction. First, it is obvious that U ()
k < U ()

k = . Secondly, if U (m+)
k ≤ U (m)

k , then the
reader can easily verify that U (m+)

k ≤ U (m+)
k . It implies that the sequence {U (m)

k } is conver-
gent. Denoted by Uk = limm→∞ U (m)

k , we then have lim supt→∞ Ik(t) ≤ Uk , k = , , . . . , n.

Let H(�) = 
〈k〉 〈kGk〉 = 

〈k〉 〈k
[λ k

〈k〉 〈kxk〉+ γγ〈xk 〉
+γ〈xk 〉 ][ δ+(α–β)xk

α+δ
]

β+λ k
〈k〉 〈kxk〉+ γγ〈xk 〉

+γ〈xk 〉
〉, where � = 

〈k〉 〈kxk〉. One obtains

that H′(�)|�= >  if λ > λc. It implies that 
〈k〉 〈kGk〉 > 

〈k〉 〈kxk〉 when xk >  (k = , , . . . , n)
is small enough.

Denote L(m+)
k = Gk(L(m)

 , L(m)
 , . . . , L(m)

n ) for each k = , , . . . , n. According to Lemma  in
paper [], we can take L()

k small enough such that ∀k,  < L()
k < lim inft→∞ Ik(t) and L()

k >
L()

k . If L(m)
k ≥ L(m–)

k , it is easy to testify that L(m+)
k ≥ L(m)

k . In result, the sequences {L(m)
k }+∞

m=

are convergent for all k, and denote Lk = limm→∞ L(m)
k .

Both {Lk} and {Uk} satisfy the following equation:

Ik =
[λ k

〈k〉 〈kIk〉 + γ
γ〈Ik 〉

+γ〈Ik 〉 ][ δ+(α–β)Ik
α+δ

]

β + λ k
〈k〉 〈kIk〉 + γ

γ〈Ik 〉
+γ〈Ik 〉

. ()
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After some transformations, we can find that both {Lk} and {Uk} satisfy Eq. (). Thus one
obtains that Uk = Lk = I∗

k and limt→∞ Ik(t) = I∗
k according to the uniqueness of endemic

equilibrium of system (). The proof of Theorem  is completed. �

4 Simulations
In the section above, some theoretical results for the proposed mean-field equations are
revealed. For a finite size network, there exists an epidemic threshold λc, if the infection
rate λ < λc, then the disease-free equilibrium is globally asymptotically stable. Otherwise,
the disease-free equilibrium is unstable and a unique globally attracting endemic equilib-
rium exists.

In this section, we will perform some numerical simulations to confirm the theoretical
results over BA (Barabási-Albert) scale-free networks which are generated by the pref-
erential attachment algorithm []. All the networks used in the simulations were built
using N =  nodes.

The epidemics are seeded with randomly chosen fraction of nodes to avoid stochastic
extinction. The probability of a susceptible node with n (≤ degree k) infectious neighbors
being infected in small interval of time h is  – ( – λh)n( – γhV (t)) at step t + . The
term ( – λh)n represents the probability that a susceptible node cannot be infected by
his (her) infectious neighbors, and the term  – γhV (t) represents the probability that
a susceptible node cannot be infected by infectious vectors. In this paper, we give the
numerical simulations from different angles:

• The epidemic threshold λc that changes as functions of different model parameters.
• The final density of the infected nodes that changes as functions of different model

parameters.
In stochastic simulations, the dynamics are totally evolved for , time steps, we set

the time interval h = . and let ρ = 
T
∑t–+T

t=t
ρ(t) (here, T = , t = ,) be the time

average to reduce the fluctuation of ρ(t). At the same time, to minimize random fluctua-
tion caused by the initial conditions, we make average of ρ over  realizations of differ-
ent initial infectious nodes. Let λ increase systematically by �λ beginning with λ = , if
ρ > . as λ = λ∗ and ρ < . as λ < λ∗, we set λc = λ∗ – �λ.

In Figure , we illustrate the variation of the epidemic threshold λc with respect to the
parameters γ and γ both for stochastic simulations (SS) and also for mean-field (MF)

Figure 1 Illustration of the variation of the epidemic threshold with respect to the parameters γ1
and γ2. Left: Plot of λc versus γ1 for different γ2. Right: Plot of λc versus γ1γ2. Other parameters are chosen as
α = 1.05, β = 0.9, δ = 0.8 and 〈k〉 = 10. ‘SF’ means stochastic simulations and ‘MM’ means mean-field
predictions.
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Figure 2 Illustration of the variations of the final infected density and the epidemic threshold with
respect to the parameters α and δ. Left: Plot of ρ versus α and δ . When considering ρ versus α , we set
δ = 0.5; when considering ρ versus δ , we set α = 0.4. Right: The variation of the infection threshold λc with
respect to δ over BA scale-free network for different τ = δ

α+δ . Other parameters are chosen as γ1 = γ2 = 0.6,
β = 0.8 and 〈k〉 = 10.

predictions formula (). It is clear that the epidemic threshold λc decreases as γ (or γ) in-
creases. We thus conclude that reducing the contacts between individuals and vectors can
effectively control the spread of the disease over networks. From this angle, the stochastic
simulations agree well with the mean-field predictions. The discrepancy between these
is also shown in our simulations, we can see the stochastic simulations are slightly larger
than the theoretical predictions for threshold λc, which is likely to be due to a distribu-
tion cutoff effect on a finite size network [] and other neglected factors (for instance,
network is static and has degree-correlations). Moreover, one can find that for larger in-
fection rates γ and γ, the error between stochastic simulation and theoretical predictions
is smaller, which is likely to be attributed to the contacts homogeneity between individuals
and vectors.

Figure  illustrates the variations of the final infected density ρ (left) and the epidemic
threshold λc (right) with respect to parameters α and δ, respectively. It is clear that the
discrepancy remains for the effect of a finite size network. The theoretical prediction of
formula () shows that for different parameters α and δ, the epidemic threshold λc is un-
changed as long as τ = δ

α+δ
is unchanged. From Figure  we can see that the stochastic

simulations are in accordance with mean-field predictions disregarding the slight fluctu-
ations for the effect of the stochastic factor. Also, one can see that the larger direct im-
munization rate α, the larger the epidemic threshold is from Figure  (right). Namely, the
direct immunization can increase the critical threshold of epidemic spreading on complex
networks and reduce the prevalence of infectious disease, which agrees with the results of
paper []. Consequently, we can prevent the disease spreading by improving immuniza-
tion strength.

Figure  reflects the relation between the final densities of infected nodes and infection
rate λ for different average degree. One can see that the larger average degree, the lower
the discrepancy rate is. We simulate the time series of total densities of infected nodes
on the BA network with 〈k〉 =  in Figure . We can obtain that the epidemic threshold
λc = . from formula (). It is clear that if λ < λc, the disease will disappear quickly;
otherwise λ > λc the disease will persist in this system. Considering the factor that the
epidemic threshold λc of stochastic simulations is larger than the one of the mean-field
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Figure 3 The variation of the stable densities of infected nodes with respect to infection rate λ for BA
scale-free network, where α = 0.83, β = 0.7, δ = 0.71, γ1 = 0.45, γ2 = 0.54.

Figure 4 The total densities of infected nodes that change as time series on BA scale-free network
with 〈k〉 = 20, where α = 0.83, β = 0.8, δ = 0.7, γ1 = 0.60, γ2 = 0.60.

predictions, we think the stochastic simulations are reasonably consistent with the theo-
retic results.

5 Conclusions
In order to better explain the mechanism of spreading of epidemics, we have investigated
a novel SIRS model with direct immunization via two infection mechanisms in this pa-
per. The model is approximately described by the mean-field method neglecting contact
duration.

The disease-free equilibrium and endemic equilibrium and their dynamics are discussed
in this paper. Our theoretic results show that for finite size networks, there exists epidemic
threshold λc, below which the disease-free equilibrium is globally asymptotically stable;
otherwise a unique endemic equilibrium exists. We prove theoretically that the endemic
equilibrium is of attraction when λ > λc under the assumption that α ≥ β . To go a step
further, we perform some numerical simulations to test and verify our theoretical results.
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From simulations as above, we can find that the discrepancies between stochastic sim-
ulations and theoretical predictions remain for the effect of a finite size network []
and stochastic factors. Disregarding these slight errors, we think that the numerical
simulations confirm to the theoretical results, and the mean-field approach is of effec-
tiveness. Especially, one can see that the larger transmission rates from infected vec-
tors to susceptible individuals γ or from infected individuals to susceptible vectors γ,
the better the simulations accord with the mean-field predictions. Just as mentioned
above, this may attribute to the homogeneity of contacts between individuals and vec-
tors.
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