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Abstract
The paper investigates containment control for multi-agent systems under Markov
switching topologies. By using graph theory and the tools of stochastic analysis,
sufficient conditions of mean square containment control problems are derived for
the second-order multi-agent systems. Then the obtained results are further
extended to high-order multi-agent systems.
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1 Introduction
Recently, cooperative control for multi-agent systems has attracted increasing attention,
due to its many applications in different fields. As is well known, consensus is the basic
problem of cooperative control for multi-agent systems, which means that every agent
tends to the same value in a team. Moreover, the topic of consensus problems with multiple
leaders is interesting, which is called containment control for multi-agent systems.

Containment control for multi-agent systems means that all followers are driven into
the convex hull generated by the leaders. For example, when some robots are used to
carry poisonous materials, since they do not pollute other places, a group of robots are
needed to drive them in the designed route, which is called leaders. At present, many re-
sults about containment control have been obtained [–]. In [], dynamic containment
algorithms based on observers for the high-order continuous-time multi-agent systems
were proposed under the fixed topology. Then the results of continuous-time multi-agent
systems were extended to that of the discrete-time multi-agent systems. In [], the con-
tainment control problem of double-integrator dynamics with multiple leaders was dis-
cussed, where velocities of leaders are unavailable. In [], the output feedback algorithm
and state feedback algorithm were proposed for solving the containment control problem
of the discrete-time multi-agent systems, in which time delay is considered in communi-
cation networks of multi-agent systems. By using the Lyapunov functional method and
the tools of the linear matrix inequality, containment control problems of second-order
multi-agent with time delays were investigated, where the stationary leaders and dynamic
leaders were considered in [], respectively. In [], containment algorithms based on the
sampled data for the second-order multi-agent systems were given, where the necessary
and sufficient conditions of multi-agent systems were derived.
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There are deterministic topologies in the above literature. In fact, communication
topologies of networks usually change randomly. By using the graph theory and knowl-
edge of stochastic analysis, mean square consensus of the discrete-time multi-agent sys-
tems was discussed under Markov switching topologies in []. Then the authors in []
extended the results in [] to leader-following consensus of discrete-time multi-agent sys-
tems under Markov switching topologies. Under randomly switching topologies, consen-
sus conditions of continuous-time and discrete-time high-order multi-agent systems were
given, respectively, where the random link failures between agents were discussed in []. In
[], the convergence speed of the first-order discrete-time multi-agent systems was stud-
ied. Then the authors in [] extended the results in [] to that of the second-order and
high-order multi-agent system, respectively. Moreover, under random switching topolo-
gies, target containment control for the second-order multi-agent systems was discussed
in [], where switching topologies were driven by a Markov process. In addition, mean
square containment control problems of the first-order and second-order multi-agent sys-
tems with communication noises was investigated in [].

Inspired by the results in [–], this paper further investigates the containment control
for multi-agent systems under Markov switching topologies. In this paper, containment
algorithms for continuous-time and discrete-time multi-agent systems are given, respec-
tively. By using the graph theory and theory of stochastic analysis, sufficient conditions of
mean square containment control for multi-agent systems are derived. Then we extend
the results of the second-order multi-agent systems to high-order multi-agent systems.

2 Mean square containment control for discrete-time multi-agent systems
Before we give the main results, basic graph theory is introduced. Suppose that there are
N agents in the topology. G = {V ,A,E} denotes the graph corresponding to the commu-
nication topology, where V = {, . . . , N} is the set of nodes, A = [aij]N×N is the adjacency
matrix. If (i, j) ∈ E holds, then aij =  and otherwise aij = . The Laplacian matrix is defined
as L = [lij]N×N , where lij = –aij with i �= j and lii =

∑N
j= aij with i = j.

Consider the ith follower’s dynamic of the second-order multi-agent, described as fol-
lows:

xi(k + ) = xi(k) + vi(k)T ,

vi(k + ) = vi(k) + ui(k)T , i = , . . . , M,
()

where xi(k), vi(k), ui(k) represent position, velocity, and input control of the ith agent,
respectively.

The leader’s dynamic is denoted as follows:

xi(k + ) = xi(k) + vi(k)T ,

vi(k + ) = vi(k), i = M + , . . . , N .
()

The containment algorithm is proposed as follows:

ui(k) =
∑

j∈F∪L

aij
(
xj(k) – xi(k)

)
, i = , . . . , M, ()

where F = {, . . . , M} denotes the set of followers and L = {M + , . . . , N} is the set of leaders.
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Definition ([, ]) Under Markov switching topologies, the mean square contain-
ment control problem of the multi-agent system is solved for any initial distribu-
tion, if the followers are driven into the convex hull generated by the leader’s states,
limk→∞ E(xi(k) – x∗

i ) =  for i = , . . . , M, where x∗
i ∈ coL = {∑N

j=M+ αjxj(k), j = M +
, . . . , N ,αj ≥ ,

∑N
j=M+ αj = }.

D = [dij]N×N is a row stochastic matrix, where dij >  if (i, j) ∈ E and otherwise dij = .
Then D is divided into the following form:

D =

[
D D

 IN–M

]

, ()

where D ∈ RM×M , D ∈ RM×(N–M), IN–M is an identity matrix with dimension N – M.
Set ηi(k) = [xT

i (k) vT
i (k)]T , ξi(k) =

∑M
j= aij(ηi(k) – ηj(k)) for i = , . . . , M, ηF (k) = [ηT

 (k) · · ·
ηT

M(k)]T , ηL(k) = [ηT
M+(k) · · ·ηT

N (k)]T , ξ (k) = [ξT
 (k) · · · ξT

M(k)]T . Then we have

ξ (k) =
(
(IM – D) ⊗ I

)
ηF (k) – (D ⊗ I)ηL(k). ()

Following the transform methods in [, ], we have

ηF (k + ) =

(

IM ⊗
[

 T
 

])

ηF (k) – (IM – D) ⊗
[

 
T T

]

ηF (k)

+ D ⊗
[

 
T T

]

ηL(k). ()

Then () can be rewritten as follows:

ηL(k + ) =

(

IN–M ⊗
[

 T
 

])

ηL(k). ()

Noting (), we have

ηF (k) =
(
(IM – D)– ⊗ I

)
ξ (k) +

(
(IM – D)–D ⊗ I

)
ηL(k). ()

Taking together () with (), we have

ξ (k + ) = �ξ (k), ()

where � = IM ⊗ [  T
 

]
– (IM – D) ⊗ [  

T T

]
.

Observe

(IM – D) ⊗
[

 
T T

]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

  · · ·  
 – dT  – dT · · · –dMT –dMT

...
...

. . .
...

...
  · · ·  

–dMT –dMT · · ·  – dMMT  – dMMT

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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which implies

� = Ā + B̄T ,

where Ā = IM ⊗ I,

B̄ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

  · · ·  
–( – d) –( – d) · · · –dM –dM

...
...

. . .
...

...
  · · ·  

–dM –dM · · · –( – dMM) –( – dMM)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then there exists an orthogonal matrix W , such that W T B̄W = B̃, where

B̃ =

[
–(IM – D) –(IM – D)

IM 

]

. ()

Setting ξ (k) = W ξ̃ (k), () turns into the form

ξ̃ (k + ) = �̃ξ̃ (k), ()

where �̃ = Ā + B̃T .

Assumption  Assume that there exists a path from the leaders to each follower.

Theorem  Suppose that Assumption  holds. In the fixed directed topology, under the
algorithm (), the containment control problem for system () can be solved, that is, follower
() is driven into the leaders’ sets ().

Proof Since there exists a path from the leaders to each follower, based on Lemma  in
[], we know that all eigenvalues of D are in the open unit disk. We know the eigenvalues
of Ā are equal to  with geometric multiplicity M. The characteristic polynomial of B̃ is
denoted as follows:

λ
i + μiλ + μi = , i = , . . . , M, ()

where λi is the eigenvalue of B̃, μi is the eigenvalue of IM – D. From Lemma  in [],
we know that μi has the positive real part. Then we see that λi is the negative real part.
Following the methods in [], we see that the eigenvalues of Ā are perturbed by small
negative real parts of λiT . For small T , ρ(�) < . limk→∞ ξ̃ (k) =  is derived, which im-
plies limk→∞ ηF (k) = – limk→∞((IM – D)–D ⊗ I)ηL(k). Then the containment control
problem for system () can be solved. �

In the following section, we consider topologies driven by a Markov process. Under
Markov switching topologies, () can be rewritten as follows:

ξ̃ (k + ) = �̃σ (k)ξ̃ (k), ()

where σ (k) = [, , . . . , s] is the Markov switching process.
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Assumption  Under Markov switching topologies, for each follower, there exists at least
one path form one leader to that follower in the union of the topologies {G, . . . ,Gs}.

Lemma  Under Assumption , all the eigenvalues of IM – D have positive real parts.

Proof According to Lemma  in [], we obtain Lemma  immediately. �

Theorem  Assume that Assumption  holds. Under the containment algorithm (), sys-
tem () can solve the containment control problem in the mean square sense.

Proof Containment control problem of system () can be converted to the mean square
consensus of the systems (). According to Theorem  in [], system () reaches mean
square consensus if and only if ρ(	) < , where 	 = (πT ⊗ IM ) diag(�̃i ⊗ �̃i) with π =
[πij]M×M being the transition probability matrix. Then we have

	 =
(
πT ⊗ IM

)
diag(�̃i ⊗ �̃i)

=
(
πT ⊗ IM

)
diag

(
(Ā + B̃T) ⊗ (Ā + B̃T)

)

=
(
πT ⊗ IM

)
+ T

(
πT ⊗ IM

)
diag(B̃i ⊗ IM + IM ⊗ B̃i)

+ T(πT ⊗ IM
)

diag(B̃i ⊗ B̃i). ()

For small sampling time T , the last term can be neglected compared to former ones.
Since the eigenvalues B̃i have negative real parts and Assumption  holds, the eigenval-
ues of T(πT ⊗ IM ) diag(B̃i ⊗ IM + IM ⊗ B̃i) have negative real parts. Thus, following
Theorem  in [], the unit eigenvalues of πT ⊗ IM are perturbed by the negative parts
of T(πT ⊗ IM ) diag(B̃i ⊗ IM + IM ⊗ B̃i). Thus, the eigenvalues of 	 are less than .
Then ρ(	) <  is obtained. System () solves the mean square consensus problem. Then
limk→∞ E(ξ̃ (k)) =  is obtained. Therefore, we have limk→∞ E(((IM –D)⊗I)ηF (k)–(D ⊗
I)ηL(k)) = , which implies limk→∞ E(ηF (k) – ((IM – D)–D ⊗ I)ηL(k)) = . The mean
square containment control of system () can solve the containment control problem in
the mean square sense. The proof is completed. �

Remark  We extend the results in [] to the case under Markov switching topologies.
The mean square consensus of multi-agent systems was investigated in [], while the mean
square containment control problems are discussed in this paper.

Remark  We can extend the results of Theorem  to the mean square containment con-
trol problem of high-order discrete-time multi-agent systems. In order to save space, we
omit it here.

3 Mean square containment control for continuous-time multi-agent systems
In this section, we discuss containment control for the continuous-time multi-agent sys-
tems under Markov switching topologies. Each follower’s dynamic is denoted

ẋi(t) = vi(t),

v̇i(t) = ui(t), i = , . . . , M,
()
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where xi(t), vi(t), ui(t) denote position, velocity, input control of the ith follower, respec-
tively. The leader’s dynamic can be described as follows:

ẋi(t) = vi(t),

v̇i(t) = , i = M + , . . . , N ,
()

where xi(t), vi(t) denote the ith leader’s position and velocity, respectively. The contain-
ment algorithm is proposed as follows:

ui(t) =
∑

j∈F∪L

aij
(
xj(t) – xi(t)

)
+

∑

j∈F∪L

aij
(
vj(t) – vi(t)

)
, ()

where F and L are the same as those in Theorem . L = [aij]N×N is the Laplacian matrix,
which can be divided into four parts:

L =

[
L L

 

]

, ()

where L ∈ RM×M , L ∈ RM⊗(N–M). Set ζi(t) = [xT
i (t) vT

i (t)]T , ζF (t) = [ζ T
 (t) · · · ζ T

M(t)]T ,
ζL(t) = [ζ T

M+(t) · · · ζ T
N (t)]T , ξi(t) =

∑
j∈F∪L aij(ζi(t) – ζj(t)), ξ (t) = [ξT

 (t) · · · ξT
M(t)]T . Then we

obtain ξ (t) = (L ⊗ I)ζF + (L ⊗ I)ζL. Combining ()-(), we have

ζ̇F =

(

IM ⊗
[

 
 

])

ζF (t) –

(

L ⊗
[

 
 

])

ζF (t)

–

(

L ⊗
[

 
 

])

ζL(t), ()

ζ̇L(t) =

(

IN–M ⊗
[

 
 

])

ζL(t).

Taking the derivation of ξ (t), we have

ξ̇ (t) = (L ⊗ I)ζ̇F + (L ⊗ I)ζ̇L. ()

In view of ζF (t) = (L–
 ⊗ I)ξ (t) – (L–

 L ⊗ I)ζL(t), () can be written as follows:

ξ̇ (t) = �ξ (t), ()

where � =
(
IM ⊗ [  

 

])
–

(
L ⊗ [  

 

])
. There exists an orthogonal matrix W , such that

�̃ = W TψW

=

[
–L –L

IM 

]

. ()

Set ξ (t) = W ξ̃ (t). Then we have

˙̃
ξ (t) = �̃ξ̃ (t). ()
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Lemma  Under Assumption , all eigenvalues of L have positive real parts, and L =
[ L L

 

]
is the Laplacian matrix corresponding to the union set of {G, . . . ,Gs}.

Proof From Lemma  in [], we obtain the results. �

From Lemma , we know all eigenvalues of L have positive real parts. For the charac-
teristic polynomial of the matrix �̃ , we have

λ
i + μiλi + μi = , ()

where λi is the eigenvalue of �̃ , μi is the eigenvalue of L, i = , . . . , M. From Lemma , we
know the μi have a positive real part. Then we find that the λi have a negative real part.
Then all eigenvalues of �̃ have negative real parts.

Under Markov switching topologies, systems () is changed into the following form:

˙̃
ξ (t) = �̃σ (t)ξ̃ (t), ()

where σ (t) is a Markov switching process and takes values from the sets S = {, . . . , s}. We
have

Pr
{
σ (t + h) = j | σ (t) = i

}
= πijh + ◦(h), i �= j, h > , ()

where πij is the transition rate from i to j and πii = –
∑

j �=i πij for i = j.

Theorem  Suppose Assumption  is satisfied. Under Markov switching topologies and the
containment algorithm (), system () can solve the mean square containment control
problem.

Proof Since the union communication topology satisfies Assumption , we know all eigen-
values of �̃i have negative real parts. Then there exists a positive definite matrix P, such
that �̃T

i P + P�̃i <  holds. Choose the Lyapunov function as follows:

Vi(t) = E
[
ξ̃T (t)Pξ̃ (t)σ (t)=i

]
, i ∈ S. ()

Then, calculating the derivative of Vi(t), we have

dVi(t) = E
[(

dξ̃ (t)
)T Pξ̃ (t)σ (t)=i + ξ̃T (t)P dξ̃ (t)σ (t)=i

]
+

s∑

j=

πijVj

= E
[
ξ̃T (t)

(
�̃T

i (t)P + P�̃i(t)
)
ξ̃ (t)

]

< . ()

Then, following the method in [], we obtain limt→∞ E(ξ̃ (t)) = . Thus, we have
limt→∞ E(ζF (t) + (L–

 L ⊗ I)ζL(t)) = . Then system () can solve the mean square con-
tainment control problem. The proof is completed. �
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Remark  In [], containment control for second-order multi-agent systems was dis-
cussed under random switching topologies. However, in this paper, we have given another
method to solve mean square containment control problem, which is different from the
one in [].

Next, we extend Theorem  to the case of a high-order multi-agent system. Consider
the follower’s behavior of the high-order multi-agent system as follows:

ẋi(t) = Axi(t) + Bui(t), i = , . . . , M, ()

where xi(t), ui(t) are position and input control of the ith agent, respectively, A and B are
constant matrices.

The behavior of the leader’s dynamic is described as follows:

ẋi(t) = Axi(t), i = M + , . . . , N , ()

where xi(t) is the ith leader’s position, A is a constant matrix. The containment protocol
is given

ui(t) = K
∑

j∈F∪L

aij
(
xj(t) – xi(t)

)
, ()

where K is the gain matrix, F , L is the same as the ones in Theorem . Set ξi(t) =
∑

j∈F∪L aij(xi(t) – xj(t)), ξ (t) = [ξT
 (t) · · · ξT

M(t)]T , XF (t) = [xT
 (t) · · ·xT

M(t)]T , XL(t) =
[xM+(t) · · ·xN (t)]. By using similar methods in Theorem , we have

ẊF (t) =
(
(IM ⊗ A) – (L ⊗ BK)

)
XF (t) – (L ⊗ BK)XL(t)

ẊL(t) = (IM ⊗ A)XL(t).
()

In view of ξi(t) =
∑

j∈F∪L aij(xi(t) – xj(t)), we have

ξ̇ (t) =
(
(IM ⊗ A) – (L ⊗ BK)

)
ξ (t). ()

Since switching topologies are driven by a Markov process, () can be rewritten as fol-
lows:

ξ̇ (t) = Fσ (t)ξ (t), ()

where F = (IM ⊗ A) – (L ⊗ BK), σ (t), π and πij are the same as the ones in Theorem .

Theorem  Assume that (A, B) is stabilizable and Assumption  holds. Under the con-
tainment control protocol () with K = θBT P, system () can be achieved by the mean
square containment control under the Markov switching topologies, where θ ≥ 

min{π̄i}ε , ε is
the minimum eigenvalue of the matrix L + LT

 , P is defined in ().

Proof Since (A, B) is stabilizable, we have

AT P + PA – PBBT P < . ()
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Then we choose the Lyapunov function as follows:

Vi(t) = E
[
ξT (t)(IN ⊗ P)ξ (t)σ=i

]
, i ∈ {, . . . , s}. ()

Taking the derivative of Vi(t), we have

dVi(t) = E
[

(
dξ (t)

)T (IM ⊗ P)ξ (t)σ=i
]

+
s∑

j=

πijVj(t) dt + ◦(dt). ()

Assume that σ (t) begins in the invariant distribution π̄ = [π̄, . . . , π̄s]T , we have

dV (t)
dt

≤ E
[

ξT (t)
(

IM ⊗ (
AT P + PA

)
–

L + LT


λmin(L + LT
 )

⊗ PBBT P
)

ξ (t)
]

,

where λmin(L + LT
 ) is the minimum eigenvalue of L + LT . Then we have

ξT (t)
(

IM ⊗ (
AT P + PA

)
–

L + LT


λmin(L + LT
 )

⊗ PBBT P
)

ξ (t)

=
M∑

j=

ξT
j (t)

(

AT P + PA –
λj(L + LT

 )
λmin(L + LT

 )
PBBT P

)

ξj(t)

≤
M∑

j=

ξT
j (t)

(
AT P + PA – PBBT P

)
ξj(t)

< . ()

Then, following the method in Theorem , we obtain limt→∞ E(ξ (t)) = . Then
limt→∞ E(XF (t) + L–

 LXL(t)) = . Therefore, mean square containment control problem
for system () can be achieved. The proof is completed. �

Remark  In [], the mean square consensus problem of the high-order multi-agent sys-
tems was investigated, while the mean square containment control of high-order multi-
agent systems has been discussed in this paper.

4 Conclusions
In the paper, we have investigated the mean square containment control for discrete- and
continuous-time second-order multi-agent systems under Markov switching topologies,
respectively. By using graph theory and the tools of stochastic analysis, sufficient condi-
tions for mean square containment control are derived. In addition, we extend the results
of the second-order multi-agent systems to that of the high-order multi-agent system.
Moreover, the topic of containment control problems of multi-agent systems with com-
munication noise is interesting, which is our future work.
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