
Zhang et al. Advances in Difference Equations  (2015) 2015:108 
DOI 10.1186/s13662-015-0438-2

R E S E A R C H Open Access

Dynamical behavior of a third-order rational
fuzzy difference equation
Qianhong Zhang1*, Jingzhong Liu2 and Zhenguo Luo3

*Correspondence:
zqianhong68@163.com
1Key Laboratory of Economics
System Simulation, School of
Mathematics and Statistics, Guizhou
University of Finance and
Economics, Guiyang, Guizhou
550025, People’s Republic of China
Full list of author information is
available at the end of the article

Abstract
According to a generalization of division (g-division) of fuzzy numbers, this paper is
concerned with the boundedness, persistence and global behavior of a positive fuzzy
solution of the third-order rational fuzzy difference equation

xn+1 = A +
xn

xn–1xn–2
, n = 0, 1, . . . ,

where A and initial values x0, x–1, x–2 are positive fuzzy numbers. Moreover, some
examples are given to demonstrate the effectiveness of the results obtained.
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1 Introduction
It is well known that difference equations appear naturally as discrete analogs and as nu-
merical solutions of differential equations and delay differential equations having many
applications in economics, biology, computer science, control engineering, etc. (see, for
example, [–] and the references therein). Recently there has been a lot of work con-
cerning the global asymptotic stability, the periodicity, and the boundedness of nonlinear
difference equations. Moreover, similar results have been derived for systems of two non-
linear difference equations.

Papaschinopoulos and Schinas [] investigated the global behavior for a system of the
following two nonlinear difference equations:

xn+ = A +
yn

xn–p
, yn+ = A +

xn

yn–q
, n = , , . . . ,

where A is a positive real number, p, q are positive integers, and x–p, . . . , x, y–q, . . . , y are
positive real numbers.

In , Yang [] studied the global behavior of the following system:

xn = A +
yn–

xn–pyn–q
, yn = A +

xn–

xn–ryn–s
, n = , , . . . ,
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where p ≥ , q ≥ , r ≥ , s ≥ , A is a positive constant, and initial values x–max{p,r},
x–max{p,r}, . . . , x, y–max{q,s}, y–max{q,s}, . . . , y are positive real numbers.

In , Zhang et al. [] investigated the global behavior for a system of the following
third-order nonlinear difference equations:

xn+ =
xn–

B + yn–yn–yn
, yn+ =

yn–

A + xn–xn–xn
,

where A, B ∈ (,∞), and initial values x–i, y–i ∈ (,∞), i = , , .
Ibrahim and Zhang [] studied dynamics of the third-order system of rational difference

equations

xn+ =
αyn–

β + γxnxn–xn–
, yn+ =

αxn–

β + γynyn–yn–
,

n = , , , . . . , where the parameters α, α, β, β, γ, γ and initial conditions x, x–, x–,
y, y–, y– are positive real numbers.

Although difference equations and a system of difference equations are sometimes very
simple in their forms, they are extremely difficult to understand through the behavior of
their solutions. On the other hand, these models inherently process uncertainty or vague-
ness. In order to consider these uncertain factors, fuzzy set theory is a powerful tool for
modeling uncertainty and for processing vague or subjective information in a mathemati-
cal model. Particularly, the use of fuzzy difference equations is a natural way to model the
dynamical systems with embedded uncertainty.

Fuzzy difference equation is a difference equation where parameters and initial values
are fuzzy numbers, and its solutions are sequences of fuzzy numbers. Due to the appli-
cability of fuzzy difference equation for the analysis of phenomena where imprecision is
inherent, this class of difference equations and its applications is a very important topic
from theoretical point of view. Recently there has been an increasing interest in the study
of fuzzy difference equations (see [–]). For example, fuzzy difference equations are
suitable in finance problems. Chrysafis et al. [] studied the fuzzy difference equation of
finance. Their research is in finance which is about the alternative methodology to study
the time value of money, the method of fuzzy difference equations. Studies have shown
that the fuzzy difference equations have a potential to be applied in the theory of fuzzy
time series, fuzzy differential equations and stochastic fuzzy differential equations. Read-
ers can refer to [–].

Motivated by the discussions above, according to a generalization of division (g-division)
of fuzzy numbers, we study the behavior of solutions of the following fuzzy difference
equation:

xn+ = A +
xn

xn–xn–
, n = , , . . . , ()

where A and initial conditions x–i, y–i ∈ (,∞), i = , , , are positive fuzzy numbers.
The aim of this paper is to study the existence of positive solutions of (). Furthermore,

we give some conditions so that every positive solution of () is bounded and persistent.
Finally, under some conditions we prove that () has a unique positive equilibrium x and
every positive solution of () tends to x as n → ∞. Our results extend the result of refer-
ence [].
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2 Preliminaries and definitions
For the convenience of the readers, we give the following definitions.

Definition . [] A : R → [, ] is said to be a fuzzy number if it satisfies conditions
(i)-(iv) written below:

(i) A is normal, i.e., there exists x ∈ R such that A(x) = ;
(ii) A is fuzzy convex, i.e., for all t ∈ [, ] and x, x ∈ R such that

A
(
tx + ( – t)x

) ≥ min
{

A(x), A(x)
}

;

(iii) A is upper semicontinuous;
(iv) the support of A, supp A =

⋃
α∈(,][A]α = {x : A(x) > } is compact.

For α ∈ (, ], we define the α-cuts of fuzzy number A with [A]α = {x ∈ R : A(x) ≥ α} and
for α = , the support of A is defined as supp A = [A] = {x ∈ R|A(x) > }. It is clear that
[A]α is a closed interval. A fuzzy number is positive if supp A ⊂ (,∞).

It is obvious that if A is a positive real number, then A is a fuzzy number such that
[A]α = [A, A], α ∈ (, ]. Then we say that A is a trivial fuzzy number.

Let A, B be fuzzy numbers with [A]α = [Al,α , Ar,α], [B]α = [Bl,α , Br,α], α ∈ [, ], and k > ,
we define addition and multiplication as follows:

[A + B]α = [Al,α + Bl,α , Ar,α + Br,α], ()

[kA]α = [kAl,α , kAr,α]. ()

The collection of all fuzzy numbers with addition and multiplication as defined by Eqs.
() and () is denoted by E.

Definition . [] The distance between two arbitrary fuzzy numbers A and B is defined
as follows:

D(A, B) = sup
α∈[,]

max
{|Al,α – Bl,α|, |Ar,α – Br,α|}. ()

It is clear that (E, D) is a complete metric space.

Definition . [] Let A, B ∈ E have α-cuts [A]α = [Al,α , Ar,α], [B]α = [Bl,α , Br,α], with
 /∈ [B]α , ∀α ∈ [, ]. The g-division ÷g is the operation that calculates the fuzzy number
C = A ÷g B having level cuts [C]α = [Cl,α , Cr,α] (here [A]–

α = [/Ar,α , /Al,α]) defined by

[C]α = [A]α ÷g [B]α ⇐⇒

⎧
⎪⎨

⎪⎩

(i) [A]α = [B]α[C]α
or
(ii) [B]α = [A]α[C]–

α

()

provided that C is a proper fuzzy number (Cl,α is nondecreasing, Cr,α is nondecreasing,
Cl, ≤ Cr,).

Remark . According to [], in this paper the fuzzy number is positive, if A ÷g B = C ∈
E exists, it is easy to see that the following two cases are possible.

Case (i). If Al,αBr,α ≤ Ar,αBl,α , ∀α ∈ [, ], then Cl,α = Al,α
Bl,α

, Cr,α = Ar,α
Br,α .

Case (ii). If Al,αBr,α ≥ Ar,αBl,α , ∀α ∈ [, ], then Cl,α = Ar,α
Br,α

, Cr,α = Al,α
Bl,α .
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The fuzzy analog of the boundedness and persistence (see [, ]) is as follows: a se-
quence of positive fuzzy numbers (xn) persists (resp. is bounded) if there exists a positive
real number M (resp. N ) such that

supp xn ⊂ [M,∞)
(
resp. supp xn ⊂ (, N]

)
, n = , , . . . .

A sequence of positive fuzzy numbers (xn) is bounded and persists if there exist positive
real numbers M, N >  such that

supp xn ⊂ [M, N], n = , , . . . .

A sequence of positive fuzzy numbers (xn), n = , , . . . , is unbounded if the norm ‖xn‖,
n = , , . . . , is an unbounded sequence.

xn is a positive solution of () if (xn) is a sequence of positive fuzzy numbers which sat-
isfies (). A positive fuzzy number x is called a positive equilibrium of () if

x = A +
x
x .

Let (xn) be a sequence of positive fuzzy numbers and x be a positive fuzzy number,
xn → x as n → ∞ if limn→∞ D(xn, x) = .

3 Main results
3.1 Existence of solution of Eq. (1)
Firstly we study the existence of positive solutions of (). We need the following lemma.

Lemma . [] Let f : R+ × R+ × R+ × R+ → R+ be continuous, A, B, C, D be fuzzy num-
bers. Then

[
f (A, B, C, D)

]
α

= f
(
[A]α , [B]α , [C]α , [D]α

)
, α ∈ (, ]. ()

Theorem . Consider Eq. () where A is a positive fuzzy number. Then, for any positive
fuzzy numbers x–, x–, x, there exists a unique positive solution xn of () with initial con-
ditions x–, x–, x.

Proof The proof is similar to that of Proposition . in []. Suppose that there exists a
sequence of fuzzy numbers (xn) satisfying () with initial conditions x–, x–, x. Consider
the α-cuts, α ∈ (, ],

[xn]α = [Ln,α , Rn,α], n = , , , . . . , [A]α = [Al,α , Ar,α]. ()

It follows from (), () and Lemma . that

[xn+]α = [Ln+,α , Rn+,α] =
[

A +
xn

xn–xn–

]

α

= [A]α +
[xn]α

[xn–]α × [xn–]α

= [Al,α , Arα] +
[Ln,α , Rn,α]

[Ln–,αLn–,α , Rn–,αRn–,α]
.

Noting Remark ., one of the following two cases holds.
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Case (i)

[xn+]α = [Ln+,α , Rn+,α] =
[

Al,α +
Ln,α

Ln–,αLn–,α
, Ar,α +

Rn,α

Rn–,αRn–,α

]
. ()

Case (ii)

[xn+]α = [Ln+,α , Rn+,α] =
[

Al,α +
Rn,α

Rn–,αRn–,α
, Ar,α +

Ln,α

Ln–,αLn–,α

]
. ()

If Case (i) holds true, it follows that for n ∈ {, , , . . .}, α ∈ (, ],

Ln+,α = Al,α +
Ln,α

Ln–,αLn–,α
, Rn+,α = Ar,α +

Rn,α

Rn–,αRn–,α
. ()

Then it is obvious that for any initial condition (Lj,α , Rj,α), j = –, –, , α ∈ (, ], there ex-
ists a unique solution (Ln,α , Rn,α). Now we prove that [Ln,α , Rn,α], α ∈ (, ], where (Ln,α , Rn,α)
is the solution of system () with initial conditions (Lj,α , Rj,α), j = –, –, , determines the
solution xn of () with initial conditions x–, x–, x such that

[xn]α = [Ln,α , Rn,α], α ∈ (, ], n = , , , . . . . ()

From reference [] and since xj, j = –, –, , are positive fuzzy numbers for any α,α ∈
(, ], α ≤ α, we have

 < Lj,α ≤ Lj,α ≤ Rj,α ≤ Rj,α , j = –, –, . ()

We claim that

Ln,α ≤ Ln,α ≤ Rn,α ≤ Rn,α , n = , , , . . . . ()

We prove it by induction. It is obvious from () that () holds true for n = , , . Sup-
pose that () are true for n ≤ k, k ∈ {, , . . .}. Then, from (), () and () for n ≤ k, it
follows that

Lk+,α = Al,α +
Lk,α

Lk–,α Lk–,α
≤ Al,α +

Lk,α

Lk–,α Lk–,α
= Lk+,α

= Al,α +
Lk,α

Lk–,α Lk–,α
≤ Ar,α +

Rk,α

Rk–,α Rk–,α
= Rk+,α

= Ar,α +
Rk,α

Rk–,α Rk–,α
≤ Ar,α +

Rk,α

Rk–,α Rk–,α
= Rk+,α .

Therefore () are satisfied. Moreover, from () we have

L,α = Al,α +
L,α

L–,αL–,α
, R,α = Ar,α +

R,α

R–,αR–,α
, α ∈ (, ]. ()

Since xj, j = –, –, , are positive fuzzy numbers and A is a positive fuzzy number, then
we have that L,α , R,α , L–,α , R–,α , L–,α , R–,α are left continuous. So from () we have
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that L,α , R,α are also left continuous. Inductively we can get that Ln,α , Rn,α , n = , , . . . ,
are left continuous.

Now we prove that the support of xn, supp xn =
⋃

α∈(,][Ln,α , Rn,α] is compact. It is suffi-
cient to prove that

⋃
α∈(,][Ln,α , Rn,α] is bounded. Let n = , since xj, j = –, –, , are pos-

itive fuzzy numbers and A is a positive fuzzy number, there exist constants P > , Q > ,
Mj > , Nj > , j = –, –, , such that for all α ∈ (, ],

[Al,α , Ar,α] ⊂ [P, Q], [Lj,α , Rj,α] ⊂ [Mj, Nj], j = –, –, . ()

Hence from () and () we can easily get

[L,α , R,α] ⊂
[

P +
M

M–M–
, Q +

N

N–N–

]
, α ∈ (, ], ()

from which it is obvious that

⋃

α∈(,]

[L,α , R,α] ⊂
[

P +
M

M–M–
, Q +

N

N–N–

]
, α ∈ (, ]. ()

Therefore () implies that
⋃

α∈(,][L,α , R,α] is compact and
⋃

α∈(,][L,α , R,α] ⊂ (,∞).
Deducing inductively we can easily obtain that

⋃
α∈(,][Ln,α , Rn,α] is compact, and

⋃

α∈(,]

[Ln,α , Rn,α] ⊂ (,∞), n = , , . . . . ()

Therefore, (), () and since Ln,α , Rn,α are left continuous, we have that [Ln,α , Rn,α] deter-
mines a sequence of positive fuzzy numbers xn such that () holds.

We prove now that xn is the solution of () with initial conditions x–, x. Since for all
α ∈ (, ],

[xn+]α = [Ln+,α , Rn+,α]

=
[

Al,α +
Ln,α

Ln–,αLn–,α
, Ar,α +

Rn,α

Rn–,αRn–,α

]

=
[

A +
xn

xn–xn–

]

α

,

we have that xn is the solution of () with initial conditions x–, x–, x.
Suppose that there exists another solution xn of () with initial conditions x–, x–, x.

Then from arguing as above we can easily prove that

[xn]α = [Ln,α , Rn,α], α ∈ (, ], n = , , , . . . . ()

Then from () and () we have [xn]α = [xn]α , α ∈ (, ], n = , , , . . . , from which it fol-
lows that xn = xn, n = , , . . . .

If Case (ii) holds, the proof is similar to that of Case (i). Thus the proof of Theorem .
is completed. �
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3.2 Dynamics of Eq. (1)
To study the dynamical behavior of positive solutions of (), according to Definition .,
we consider the following two cases.

Case (i)

[xn+]α = [Ln+,α , Rn+,α] =
[

Al,α +
Ln,α

Ln–,αLn–,α
, Ar,α +

Rn,α

Rn–,αRn–,α

]
.

Case (ii)

[xn+]α = [Ln+,α , Rn+,α] =
[

Al,α +
Rn,α

Rn–,αRn–,α
, Ar,α +

Ln,α

Ln–,αLn–,α

]
.

Firstly, if Case (i) holds true, we give the following lemma.

Lemma . Consider the system of difference equations

yn+ = p +
yn

yn–yn–
, zn+ = q +

zn

zn–zn–
, n = , , . . . , ()

where p, q ∈ (, +∞), y–, y–, y, z–, z–, z ∈ (, +∞). Then, for n ≥ ,

p ≤ yn ≤ p

p – 
+ y, q ≤ zn ≤ q

q – 
+ z. ()

Proof From () it is clear that yn > p, zn > q for n ≥ . In view of (), we obtain for n ≥ 
that

yn = p +
yn–

yn–yn–
≤ p +


p yn–, zn = q +

zn–

zn–zn–
≤ q +


q zn–. ()

Working inductively, we conclude for n – k ≥  that

yn ≤ p +

p

+


p yn– ≤ p +

p

+


p +


p yn– ≤ p +

p

+


p +


p +


p yn–

≤ · · · ≤
k∑

i=


pi– +

yn–k

pk =
p

 – /p

[
 –

(


p

)k]
+

yn–k

pk

≤ p

p – 
+ yn–k , ()

zn ≤ q +

q

+


q zn– ≤ q +

q

+


q +


q zn– ≤ q +

q

+


q +


q +


q zn–

≤ · · · ≤
k∑

i=


qi– +

zn–k

qk =
q

 – /q

[
 –

(


q

)k]
+

zn–k

qk

≤ q

q – 
+ zn–k . ()

Notice that n – k ≥  is equivalent to k ≤ n – . The assertion is true. �
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Theorem . Consider fuzzy difference equation (), where A is a positive fuzzy number
and the initial values x–, x are positive fuzzy numbers. Suppose that there exist positive
numbers P, Q for all α ∈ (, ] such that  < P ≤ Al,α ≤ Ar,α ≤ Q, then every positive solution
xn of () is bounded and persists.

Proof (i) Let xn be a positive solution of () such that () holds. From () it is obvious that

P ≤ Ln,α , P ≤ Rn,α , n = , , . . . ,α ∈ (, ]. ()

Then from Al,α ≥ P > , () and Lemma . we get

[Ln,α , Rn,α] ⊂ [P, Tα], n ≥ , ()

where

Tα = max

{
P

P – 
+ L,α ,

Q

Q – 
+ R,α

}
.

Then since xn is a positive fuzzy number, there exists a constant T >  such that for all
α ∈ (, ],

Tα ≤ T . ()

Therefore () and () imply that [Ln,α , Rn,α] ⊂ [P, T], n ≥ , from which we get for n ≥ ,
⋃

α∈(,][Ln,α , Rn,α] ⊂ [P, T], and so
⋃

α∈(,][Ln,α , Rn,α] ⊆ [P, T]. Thus the positive solution
is bounded and persists. �

To show that every positive solution xn of system () tends to the positive equilibrium x
as n → ∞, we need the following lemmas.

Lemma . Consider the difference equation

yn+ = p +
yn

yn–yn–
, n = , , , . . . . ()

Assume p > √
 . Then the equilibrium point of () is asymptotically stable.

Proof Let y be an equilibrium point of (), it is easy to get y = p+
√

p+
 . The linearized

equation associated with () about equilibrium point y is

yn+ +


p +  + p
√

p + 
yn –


p +  + p

√
p + 

yn– –


p +  + p
√

p + 
yn–

= , n = , , , . . . . ()

Since p > √
 , we can get


p +  + p

√
p + 

< .
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By virtue of Theorem .. in [], the equilibrium point of () is asymptotically sta-
ble. �

Lemma . Consider the system of difference equations (), and assume that q > p > √
 .

Then every positive solution of () converges to equilibrium (y, z) = ( p+
√

p+
 , q+

√
q+

 ).

Proof It is clear that system () has a unique equilibrium (y, z) = ( p+
√

p+
 , q+

√
q+

 ). Let
{yn, zn} be an arbitrary positive solution of (). Let

� = lim
n→∞ sup yn, λ = lim

n→∞ inf yn, � = lim
n→∞ sup zn, λ = lim

n→∞ inf zn.

From Lemma ., we have  < p < λ ≤ � < ∞,  < q < λ ≤ � < ∞. This and () imply
that

� ≤ p +
�

λ


, � ≤ q +
�

λ


, λ ≥ p +
λ

�


, λ ≥ q +
λ

�


,

which can lead to

� ≤ λ, � ≤ λ.

Thus we have � = λ and � = λ. Then limn→∞ yn and limn→∞ zn exist. From the
uniqueness of the positive equilibrium (y, z) of (), we conclude that limn→∞ yn = y,
limn→∞ zn = z. �

Theorem . Suppose that for all α ∈ (, ], Al,α > /
√

. Then every positive solution xn

of () tends to the positive equilibrium x as n → ∞.

Proof Suppose that there exists a fuzzy number x such that

x = A +
x
x , [x]α = [Lα , Rα], α ∈ (, ], ()

where Lα , Rα ≥ . Then from () we can prove that

Lα = Al,α +
Lα

L
α

, Rα = Ar,α +
Rα

R
α

. ()

Hence from () we can have that

Lα =
Al,α +

√
A

l,α + 


, Rα =

Ar,α +
√

A
r,α + 


.

Let xn be a positive solution of () such that () holds. Since Al,α > /
√

, α ∈ (, ], we
can apply Lemma . to system (), and so we have

lim
n→∞ Ln,α = Lα , lim

n→∞ Rn,α = Rα . ()
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Therefore from () we have

lim
n→∞ D(xn, x) = lim

n→∞ sup
α∈(,]

{
max

{|Ln,α – Lα|, |Rn,α – Rα|}} = .

This completes the proof of the theorem. �

Secondly, if Case (ii) holds true, it follows that for n ∈ {, , , . . .}, α ∈ (, ],

Ln+,α = Al,α +
Rn,α

Rn–,αRn–,α
, Rn+,α = Ar,α +

Ln,α

Ln–,αLn–,α
. ()

We need the following lemmas.

Lemma . Consider the system of difference equations

yn+ = p +
zn

zn–zn–
, zn+ = q +

yn

yn–yn–
, n = , , . . . , ()

where p, q ∈ (, +∞), y–, y–, y, z–, z–, z ∈ (, +∞). Then, for n ≥ ,

p ≤ yn ≤ pq
pq – 

+ y, q ≤ zn ≤ qp
pq – 

+ z. ()

Proof From () it is clear that yn ≥ p, zn ≥ q for n ≥ . And for n ≥  we obtain that

yn ≤ p +


q zn– ≤ p +

q

+


pq yn–, zn ≤ q +


p yn– ≤ q +

p

+


qp zn–. ()

Working inductively, for n – k ≥ , it can concluded that

yn ≤ p +

q

+


pq yn– ≤ p +

q

+


pq

(
p +


q zn–

)

≤ p +

q

+


pq +


pq +


pq yn–

≤ · · · ≤
k∑

i=


pi–qi– +


pkqk yn–k =

p
 – /(pq)

[
 –

(


pq

)k]
+


pkqk yn–k

≤ pq
pq – 

+ yn–k , ()

zn ≤ q +

p

+


qp zn– ≤ q +

p

+


qp

(
q +


p yn–

)

≤ q +

p

+


qp +


qp +


qp zn–

≤ · · · ≤
k∑

i=


qi–pi– +


qkpk zn–k =

q
 – /(pq)

[
 –

(


pq

)k]
+


pkqk zn–k

≤ pq

pq – 
+ zn–k . ()

Notice that n – k ≥  is equivalent to k ≤ (n – )/. The assertion is true. �
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Lemma . Consider the system of difference equations (), if

p > , q > ,
√

pq > max{p – q, q – p} ()

are satisfied, then the unique positive equilibrium point (y, z) is locally asymptotically sta-
ble.

Proof From () the system of difference equations has a unique positive equilibrium

point (y, z) = ( pq+
√

pq+pq
p , pq+

√
pq+pq
q ). The linearized equation of system () about

the equilibrium point (y, z) is

�n+ = B�n, ()

where �n = (yn, yn–, yn–, zn, zn–, zn–)T , and

B =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

   
z – 

z – 
z

     
     


y – 
y – 

y   
     
     

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

.

Let λ,λ, . . . ,λ denote the eigenvalues of matrix B, let D = diag(d, d, . . . , d) be a diago-
nal matrix, where d = d = , di = d+i =  – iε (i = , ), and

 < ε < min

{



–

z ,




–

y

}
. ()

Clearly, D is invertible. Computing matrix DBD–, we obtain that

DBD– =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

   
z dd–

 – 
z dd–

 – 
z dd–



dd–
     

 dd–
    


y dd–

 – 
y dd–

 – 
y dd–

   
   dd–

  
    dd–

 

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

.

From d > d > d > , d > d > d >  it follows that

dd–
 < , dd–

 < , dd–
 < , dd–

 < .

Furthermore, noting () we have


z dd–

 +

z dd–

 +

z dd–

 =

z

(
 +


 – ε

+


 – ε

)
<


z( – ε)

< ,


y dd–

 +

z dd–

 +

z dd–

 =

y

(
 +


 – ε

+


 – ε

)
<


y( – ε)

< .
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It is well known that B has the same eigenvalues as DBD–, we have that

max
≤i≤

|λi| ≤ ∥∥DBD–∥∥∞

= max

{
dd–

 , dd–
 , dd–

 , dd–
 ,


z dd–

 +

z dd–

 +

z dd–

 ,


y dd–

 +

z dd–

 +

z dd–



}

< .

This implies that the equilibrium (y, z) of () is locally asymptotically stable. �

Lemma . Consider the system of difference equations () if p, q ∈ (, +∞) and
√

pq >
max{p – q, q – p}. Then every positive solution of () converges to the equilibrium point
(y, z).

Proof It is clear that system () has a unique positive equilibrium point

(y, z) =
(

pq +
√

pq + pq
q

,
pq +

√
pq + pq
p

)
.

Let {yn, zn} be an arbitrary positive solution of (). From ()-() we have

lim
n→∞ sup yn = L, lim

n→∞ inf yn = l, lim
n→∞ sup zn = L, lim

n→∞ inf zn = l, ()

where li, Li ∈ (, +∞), i = , . Then from () and () we get

L ≤ p +
L

l


, l ≥ p +
l

L


, L ≤ q +
L

l


, l ≥ q +
l

L


,

from which we have

(
Ll

 – L
)
L

 ≤ (
lL

 – l
)
l
,

(
Ll

 – L
)
L

 ≤ (
lL

 – l
)
l
 . ()

We claim that

L = l, L = l. ()

Suppose on the contrary that L > l, then from the first inequality of () we have Ll <
lL, and so L < l, which is a contradiction. So L = l. Similarly we can prove that L = l.
Hence from () and () there exist limn→∞ yn = y, limn→∞ zn = z. This completes the
proof of Lemma .. �

Combining Lemma . with Lemma ., we obtain the following theorem.

Theorem . Consider the system of difference equations (). If relations () are satis-
fied, then the unique positive equilibrium (y, z) is globally asymptotically stable.
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Theorem . Suppose that

Al,α >  and
√

Al,αAr,α > Ar,α – Al,α , ∀α ∈ (, ]. ()

Then every positive solution of () tends to the positive equilibrium x as n → +∞.

Proof The proof is similar to that of Theorem .. Suppose that there exists a fuzzy num-
ber x satisfying (). Then from () we can get

Lα = Al,α +
Rα

R
α

, Rα = Ar,α +
Lα

L
α

. ()

Hence we have from () that

Lα =
Al,αAr,α +

√
A

l,αA
r,α + Al,αAr,α

Ar,α
, Rα =

Al,αAr,α +
√

A
l,αA

r,α + Al,αAr,α

Al,α
.

Let xn be a positive solution of () such that () holds. Since () is satisfied, we can apply
Lemma . and Lemma . to system (), and so we have

lim
n→∞ Ln,α = Lα , lim

n→∞ Rn,α = Rα . ()

Therefore from () we have

lim
n→∞ D(xn, x) = lim

n→∞ sup
α∈(,]

{
max

{|Ln,α – Lα|, |Rn,α – Rα|}} = .

This completes the proof of the theorem. �

4 Numerical example
Example . Consider the following fuzzy difference equation:

xn+ = A +
xn

xn–xn–
, n = , , . . . , ()

we take A and the initial values x–, x–, x such that

x–(x) =

{
x – ,  ≤ x ≤ ,
– 

 x + ,  ≤ x ≤ ,
x–(x) =

{

 x – ,  ≤ x ≤ ,
– 

 x + ,  ≤ x ≤ ,
()

A(x) =

{
x – ,  ≤ x ≤ .,
–x + , . ≤ x ≤ ,

x(x) =

{

 x – .,  ≤ x ≤ ,
– 

 x + .,  ≤ x ≤ .
()

From () we get

[x–]α = [ + α,  – α], [x–]α = [ + α,  – α], α ∈ (, ]. ()

From () we get

[A]α =
[

 +


α,  –



α

]
, [x]α = [ + α,  – α], α ∈ (, ]. ()
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Figure 1 Dynamics of system (54).

Figure 2 The solution of system (54) in α = 0.

Therefore, it follows that

⋃

α∈(,]

[x–]α = [, ],
⋃

α∈(,]

[x–]α = [, ],

⋃

α∈(,]

[x]α = [, ],
⋃

α∈(,]

[A]α = [, ].
()

From (), it results in a coupled system of difference equations with parameter α,

Ln+,α = Al,α +
Ln,α

Ln–,αLn–,α
, Rn+,α = Ar,α +

Rn,α

Rn–,αRn–,α
, α ∈ (, ]. ()

Therefore, Al,α > /
√

, ∀α ∈ (, ], and the initial values x–i (i = , , ) are positive fuzzy
numbers. So from Theorem . we have that every positive solution xn of Eq. () is
bounded and persists. In addition, from Theorem ., Eq. () has a unique positive equi-
librium x = (., ., .). Moreover, every positive solution xn of Eq. () con-
verges to the unique equilibrium x with respect to D as n → ∞ (see Figures -).

Example . Consider the following fuzzy difference equation:

xn+ = A +
xn

xn–xn–
, n = , , . . . , ()
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Figure 3 The solution of system (54) in α = 0.5.

Figure 4 The solution of system (54) in α = 1.

where A and the initial values x–, x–, x are satisfied

A(x) =

{
x – , . ≤ x ≤ ,
–x + ,  ≤ x ≤ ,

x–(x) =

{

 x – .,  ≤ x ≤ ,
– 

 x + ,  ≤ x ≤ ,
()

x–(x) =

{
x – ,  ≤ x ≤ .,
–x + , . ≤ x ≤ ,

x(x) =

{

 x – .,  ≤ x ≤ ,
– 

 x + .,  ≤ x ≤ .
()

From () we get

[A]α =
[

. +


α,  – α

]
, [x–]α = [ + α,  – α], α ∈ (, ]. ()

From () we get

[x–]α =
[

 +


α,  –



α

]
, [x]α = [ + α,  – α], α ∈ (, ]. ()

Therefore, it follows that

⋃

α∈(,]

[A]α = [., ],
⋃

α∈(,]

[x–]α = [, ],

⋃

α∈(,]

[x–]α = [, ],
⋃

α∈(,]

[x]α = [, ].
()
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From () it results in a coupled system of difference equations with parameter α,

Ln+,α = Al,α +
Rn,α

Rn–,αRn–,α
, Rn+,α = Ar,α +

Ln,α

Ln–,αLn–,α
, α ∈ (, ]. ()

It is clear that () is satisfied and the initial values x–i (i = , , ) are positive fuzzy num-
bers, so from Theorem ., Eq. () has a unique positive equilibrium x = (., .,
.). Moreover, every positive solution xn of Eq. () converges to the unique equilib-
rium x with respect to D as n → ∞ (see Figures -).

Figure 5 Dynamics of system (61).

Figure 6 The solution of system (61) in α = 0.

Figure 7 The solution of system (61) in α = 0.5.
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Figure 8 The solution of system (61) in α = 1.

5 Conclusion
In this work, according to a generalization of division (g-division) of fuzzy numbers, we
study the fuzzy difference equation xn+ = A + xn

xn–xn–
. The existence of positive solution

to () is investigated. Furthermore, we obtain the following results:
(i) The positive solution is bounded and persists if Al,α > , α ∈ (, ], every solution xn

tends to the unique equilibrium x under condition Al,α > /
√

, α ∈ (, ] as n → ∞.
(ii) If Al,α >  and

√
Al,αAr,α > Ar,α – Al,α , α ∈ (, ], every solution xn of () converges

to the unique equilibrium x as n → ∞.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors indicated in parentheses made substantial contributions to the following tasks of research: drafting the
manuscript (QHZ, JZL); participating in the design of the study (ZGL); writing and revision of paper (QHZ). All authors read
and approved the final manuscript.

Author details
1Key Laboratory of Economics System Simulation, School of Mathematics and Statistics, Guizhou University of Finance
and Economics, Guiyang, Guizhou 550025, People’s Republic of China. 2Department of Mathematics and Physics, Hunan
Institute of Technology, Hengyang, Hunan 421002, People’s Republic of China. 3Department of Mathematics, Hengyang
Normal University, Hengyang, Hunan 421002, People’s Republic of China.

Acknowledgements
The authors would like to thank the editor and anonymous reviewers for their helpful comments and valuable
suggestions, which have greatly improved the quality of this paper. This work was financially supported by the National
Natural Science Foundation of China (Grant No. 11361012), the China Postdoctoral Science Foundation (No. 2013T60934),
and the Scientific Research Foundation of Guizhou Provincial Science and Technology Department ([2013]J2083).

Received: 28 November 2014 Accepted: 5 March 2015

References
1. DeVault, R, Ladas, G, Schultz, SW: On the recursive sequence xn+1 = A/xn + 1/xn–2 . Proc. Am. Math. Soc. 126(11),

3257-3261 (1998)
2. Abu-Saris, RM, DeVault, R: Global stability of yn+1 = A + yn

yn–k
. Appl. Math. Lett. 16, 173-178 (2003)

3. Amleh, AM, Grove, EA, Ladas, G, Georgiou, DA: On the recursive sequence xn+1 = A + xn–1
xn

. J. Math. Anal. Appl. 233,
790-798 (1999)

4. He, WS, Li, WT, Yan, XX: Global attractivity of the difference equation xn+1 = a + xn–k
xn

. Appl. Math. Comput. 151,
879-885 (2004)

5. DeVault, R, Ladas, G, Schultz, SW: Necessary and sufficient conditions the boundedness of xn+1 = A/xpn + B/xqn–1 .
J. Differ. Equ. Appl. 3, 259-266 (1998)

6. Agarwal, RP, Li, WT, Pang, YH: Asymptotic behavior of a class of nonlinear delay difference equations. J. Differ. Equ.
Appl. 8, 719-728 (2002)

7. Kocic, VL, Ladas, G: Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Kluwer
Academic, Dordrecht (1993)

8. Kulenonvic, MRS, Ladas, G: Dynamics of Second Order Rational Difference Equations with Open Problems and
Conjectures. Chapman & Hall/CRC, Boca Raton (2002)

9. Li, WT, Sun, HR: Dynamic of a rational difference equation. Appl. Math. Comput. 163, 577-591 (2005)



Zhang et al. Advances in Difference Equations  (2015) 2015:108 Page 18 of 18

10. Su, YH, Li, WT: Global attractivity of a higher order nonlinear difference equation. J. Differ. Equ. Appl. 11, 947-958
(2005)

11. Hu, LX, Li, WT: Global stability of a rational difference equation. Appl. Math. Comput. 190, 1322-1327 (2007)
12. Papaschinopoulos, G, Schinas, CJ: On a system of two nonlinear difference equations. J. Math. Anal. Appl. 219,

415-426 (1998)
13. Yang, X: On the system of rational difference equations xn = A + yn–1/xn–pyn–q , yn = A + xn–1/xn–ryn–s . J. Math. Anal. Appl.

307, 305-311 (2005)
14. Zhang, QH, Yang, LH, Liu, JZ: Dynamics of a system of rational third-order difference equation. Adv. Differ. Equ. 2012,

136 (2012)
15. Ibrahim, TF, Zhang, QH: Stability of an anti-competitive system of rational difference equations. Arch. Sci. 66(5), 44-58

(2013)
16. Deeba, EY, De Korvin, A: Analysis by fuzzy difference equations of a model of CO2 level in the blood. Appl. Math. Lett.

12, 33-40 (1999)
17. Deeba, EY, De Korvin, A, Koh, EL: A fuzzy difference equation with an application. J. Differ. Equ. Appl. 2, 365-374 (1996)
18. Papaschinopoulos, G, Schinas, CJ: On the fuzzy difference equation xn+1 =

∑k–1
i=0 Ai/x

pi
n–i + 1/x

pk
n–k . J. Differ. Equ. Appl. 6,

75-89 (2000)
19. Papaschinopoulos, G, Papadopoulos, BK: On the fuzzy difference equation xn+1 = A + B/xn . Soft Comput. 6, 456-461

(2002)
20. Papaschinopoulos, G, Papadopoulos, BK: On the fuzzy difference equation xn+1 = A + xn/xn–m . Fuzzy Sets Syst. 129,

73-81 (2002)
21. Stefanidou, G, Papaschinopoulos, G: A fuzzy difference equation of a rational form. J. Nonlinear Math. Phys. 12,

suppl. 2, 300-315 (2005)
22. Papaschinopoulos, G, Stefanidou, G: Boundedness and asymptotic behavior of the solutions of a fuzzy difference

equation. Fuzzy Sets Syst. 140, 523-539 (2003)
23. Stefanidou, G, Papaschinopoulos, G, Schinas, CJ: On an exponential-type fuzzy difference equation. Adv. Differ. Equ.

2010, Article ID 196920 (2010). doi:10.1155/2010/196920
24. Zhang, QH, Yang, LH, Liao, DX: Behavior of solutions to a fuzzy nonlinear difference equation. Iran. J. Fuzzy Syst. 9,

1-12 (2012)
25. Chrysafis, KA, Papadopoulos, BK, Papaschinopoulos, G: On the fuzzy difference equations of finance. Fuzzy Sets Syst.

159(24), 3259-3270 (2008)
26. Zhang, QH, Yang, LH, Liao, DX: On first order fuzzy Riccati difference equation. Inf. Sci. 270, 226-236 (2014)
27. Kocak, C: First-order ARMA type fuzzy time series method based on fuzzy logic relation tables. Math. Probl. Eng. 2013,

Article ID 769125 (2013)
28. Ivaz, K, Khastan, A, Nieto, JJ: A numerical method of fuzzy differential equations and hybrid fuzzy differential

equations. Abstr. Appl. Anal. 2013, Article ID 735128 (2013)
29. Malinowski, MT: On a new set-valued stochastic integral with respect to semi-martingales and its applications.

J. Math. Anal. Appl. 408, 669-680 (2013)
30. Malinowski, MT: Some properties of strong solutions to stochastic fuzzy differential equations. Inf. Sci. 252, 62-80

(2013)
31. Malinowski, MT: Approximation schemes for fuzzy stochastic integral equations. Appl. Math. Comput. 219,

11278-11290 (2013)
32. Hua, M, Cheng, P, Fei, J, Zhang, J, Chen, J: Robust filtering for uncertain discrete time fuzzy stochastic systems with

sensor nonlinearities and time-varying delay. J. Appl. Math. 2012, Article ID 402480 (2012)
33. Stefanini, L: A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets Syst.

161, 1564-1584 (2010)

http://dx.doi.org/10.1155/2010/196920

	Dynamical behavior of a third-order rational fuzzy difference equation
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries and deﬁnitions
	Main results
	Existence of solution of Eq. (1)
	Dynamics of Eq. (1)

	Numerical example
	Conclusion
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


