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Abstract
This paper presents an existence and uniqueness result for a kind of
forward-backward stochastic differential equations (FBSDEs for short) driven by
Brownian motion and Poisson process under some monotonicity conditions. By
virtue of the conclusion of FBSDEs, we solve a linear-quadratic stochastic optimal
control problem for forward-backward stochastic systems with random jumps.
Moreover, we also solve a linear-quadratic nonzero-sum stochastic differential game
problem. We obtain explicit forms of the unique optimal control and the unique Nash
equilibrium point, respectively.
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1 Introduction
This paper is concerned with a kind of linear-quadratic stochastic optimal control
(LQ SOC) problems and linear-quadratic nonzero-sum stochastic differential game
(LQ NZSSDG) problems for forward-backward systems with random jumps. In detail,
for the LQ NZSSDG problems, the controlled system is given by the following con-
trolled linear forward-backward stochastic differential equation with Poisson process
(FBSDE):
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For simplicity of notation, here we only consider the case of two players. The corre-
sponding conclusions for the case of n players can be obtained in the same way. In
addition, we are given two cost (or utility, performance criterion) functionals for each
player:
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Under suitable conditions, the controlled system () and the cost functionals () are
well defined. Our final objective is to find the unique Nash equilibrium point explic-
itly. It is well known that a stochastic optimal control problem can be regarded as a
game problem with only one player. From this point of view, the LQ SOC problem
is a special case of the LQ NZSSDG problem. We also study its unique optimal con-
trol.

We notice that in the controlled system (), besides a forward stochastic differential
equation (SDE), there is another backward stochastic differential equation (BSDE). The
linear BSDE was introduced by Bismut [] to solve some stochastic optimal control prob-
lems, and the general nonlinear BSDEs were introduced by Pardoux and Peng [] and
Duffie and Epstein [] independently. It worth noting that in [] and the subsequent paper
[] by El Karoui et al., BSDEs were used to characterize a kind of stochastic differential
recursive utility, which is an extension of the standard additive utility with the instanta-
neous utility depending not only on the instantaneous consumption rate but also on the
future utility. From this viewpoint, the LQ SOC problem and LQ NZSSDG problem for
the forward-backward system can be regarded as an extension of the recursive stochastic
optimal control problem and the recursive differential game problem. On the other side,
in the classical stochastic optimal control and differential game theory, the performance
criterion is described by the linear expectation E. However, sometimes the classical lin-
ear expectation E does not quite represent people’s preferences (see Allais [], Ellsberg
[]). A remedial way is to use the so-called generalized expectation introduced by Peng
[, ] instead of the linear expectation. From the theory of the generalized expectation,
it is also defined by some BSDEs. For research of stochastic optimization problems with
generalized expectation, we refer to Yong [] and Hui and Xiao []. Therefore, the LQ
SOC problem and LQ NZSSDG problem studied in this paper can also be regarded as an
extension of stochastic optimization problems with generalized expectations.

Recently, researchers paid much attention to the so-called principal-agent problem due
to its wide applications in finance. Williams [] constructed a model of dynamic principal-
agent problems in continuous time. The actions of the principal and the agent affect the
same controlled system, which is described by a forward SDE. By virtue of the classi-
cal stochastic maximum principle in the optimal control theory, the optimal control of
the agent is given by a coupled FBSDE (called the stochastic Hamiltonian system). Then
the principal’s problem is formulated as a stochastic optimization problem for a coupled
forward-backward system. The LQ SOC problem and the LQ NZSSDG problem (with
forward-backward systems in the decoupled form) studied in this paper can be regarded
as a simple case of those complicated problems.

We also notice that the controlled system () is in a linear form, and the cost functionals
() are in quadratic forms. Such a kind of optimization problem is called a linear-quadratic
(LQ) problem. The LQ problem is an important class of stochastic optimization prob-
lems, which provides a basic knowledge for more general problems since lots of nonlinear
problems can be approximated by LQ problem reasonably. The LQ problem for forward
system was firstly studied by Wonham []. Then Bismut [] proved an existence result
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for optimal controls. By virtue of a square complete technique, Chen et al. [] studied
stochastic LQ problems with indefinite control weight costs. They gave the optimal feed-
back control by the solution of a stochastic Riccati equation. For the forward controlled
system, Hamadène [] linked an LQ nonzero-sum stochastic differential game problem
to a linear coupled FBSDE by virtue of changing variables, and he also gave an existence
result for Nash equilibrium points of the game problem. Wu [] and Wu and Yu [] im-
proved and extended the result of []. Recently, Yu [] considered the LQ problem for
the forward-backward system, which is linked closely to a new type of FBSDEs: the linear
coupled FBSDEs with double dimensions. The solution of this kind of FBSDEs played an
important role in the construction of optimal controls and Nash equilibrium points.

In this paper, we adopt the model driven by both Brownian motion and Poisson pro-
cess (see () and ()), since jump diffusion processes characterize stochastic phenomena
better than just Brownian motion diffusion processes, providing us more realistic models
in practice. For example, in finance stock prices often exhibit some jump behavior. More-
over, financial markets with jump stock prices provide a rich family of incomplete financial
models. For more information as regards jump diffusion models, interested readers may
refer to Cont and Tankov [] and Øksendal and Sulem []. We also refer to Tang and
Li [], Situ [], and Wu and Wang [] for some research on BSDEs driven by both
Brownian motions and Poisson processes.

Inspired by the idea of stochastic maximum principle in optimal control theory and
Hamadène’s transform (see []), both the LQ SOC problem and the LQ NZSSDG prob-
lem are closed linked to a kind of coupled FBSDEs involving Poisson jumps, which is out of
scope of the existing results in the FBSDEs theory. Historically, fully coupled FBSDEs were
firstly studied by Antonelli []. He obtained a local solvability result by the fixed point
theorem. For the global existence and uniqueness results, there exist two main methods.
One concerns a kind of four step scheme approach introduced by Ma et al. [], which can
be regarded as a method combining partial differential equations and probability theory.
In this method, the forward diffusion is required to be non-degenerate and the coeffi-
cients are required to be deterministic. The other one, named the method of continuation,
is probabilistic; it was introduced originally by Hu and Peng [], and then developed by
Peng and Wu [] and Yong [, ]. In this method, the conditions in [] are relaxed, but
some monotonicity assumption is proposed. However, the monotonicity assumption is
naturally satisfied by many coupled FBSDEs arising from stochastic optimal control prob-
lems. Recently, Ma et al. [] proposed a unified approach, which can be regarded as a
combination of existing methods.

In the present paper, we use the method of continuation to obtain an existence and
uniqueness result for a kind of FBSDEs with Poisson jumps under some monotonicity con-
ditions. The solvability of FBSDEs is important for the following optimization problems
and is also interesting in its own right. Then we use the solution of FBSDE to construct
the unique optimal control for the LQ SOC problem. We develop Hamadène’s transform
to study the LQ NZSSDG problem. Under suitable conditions, we prove an existence and
uniqueness result for the Nash equilibrium point. Moreover, we give an explicit form for it.
Our method used in this paper is effective in studying the uniqueness of Nash equilibrium
points, which is not considered in [–]. It is also worthy to point out that for the exis-
tence of Nash equilibrium point our conclusion is more general than the corresponding
results in [–].
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The rest of this paper is organized as follows. In Section , we give some notations.
Section  is devoted to the proof of an existence and uniqueness theorem for adapted
solutions of a new kind of FBSDEs driven by Brownian motion and a Poisson process. In
Section , we give an explicit form of the unique optimal control for LQ SOC problem.
In the last section we study the LQ NZSSDG problem and construct the unique Nash
equilibrium point explicitly.

2 Notations
Let Rn be the n-dimensional Euclidean space with the usual norm ‖ · ‖ and inner product
〈·, ·〉. Let Rm×n be the collection of m × n matrices with the inner product:

〈A, B〉 = tr
{

AB�}
, for any A, B ∈R

m×n,

where � denotes the transpose of matrices.
Let T >  is a constant and [, T] denote the finite time span. Let (	,F ,F,P) be a

complete filtered probability space. The filtration F = {Ft ;  ≤ t ≤ T} is generated by
two mutually independent stochastic processes. One is a -dimensional Brownian mo-
tion W , and the other one is a Poisson random measure N defined on R+ × E , where
E = R

d – {} is a nonempty Borel subset of some Euclidean space. The compensator of N
is N(dt, de) = π (de) dt, which makes {Ñ((, t] × A) = (N – N)((, t] × A)}t≥ a martingale
for any A belonging to the Borel field B(E) with π (A) < ∞. Here π is a given σ -finite mea-
sure on the measurable space (E ,B(E)) satisfying

∫

E (∧|e|)π (de) < ∞. Then Ft is defined
by

σ {Ws :  ≤ s ≤ t} ∨ σ

{∫

E
Ñ(s, de) :  ≤ s ≤ t

}

∨N ,  ≤ t ≤ T ,

where N denotes the totality of P-null sets, and F = FT . We note that in this paper we
assume the dimension of Brownian motion d =  and the number of Poisson random
measure d =  just for the simplicity of notations. Actually, all of the following conclusions
still hold true for the case of d >  and/or d > .

For any Euclidean space R
m, we introduce the following notations:

• L(FT ;Rm) = {ς |ς is an R
m-valued FT -measurable random variable such that

E[|ς |] < ∞},
• L

F
(, T ;Rm) = {g : [, T] × 	 →R

m|g(·) is an R
m-valued F-adapted stochastic

process such that ‖g‖ = E
∫ T

 |g(t)| dt < ∞},
• C

F
(, T ;Rm) = {g : [, T] × 	 →R

m|g(·) is a càdlàg process in L
F

(, T ;Rm) such that
‖g‖ = E[sup≤t≤T |g(t)|] < ∞},

• M
F

(, T ;Rm) = {r : [, T] × E × 	 →R
m| r(·, ·) is an R

m-valued F-adapted process
such that ‖r‖ = E

∫ T


∫

E |r(t, e)|π (de) dt < ∞},
where ‖ · ‖ is the norm in each subspace.

Moreover, we define the space

R = R
n ×R

m ×R
m ×R

m ×R
m ×R

n ×R
n ×R

n,

and the inner product in R is

〈
(λ, ξ ), (λ̄, ξ̄ )

〉
= 〈x, x̄〉 + 〈y, ȳ〉 + 〈z, z̄〉 + 〈k, k̄〉 + 〈p, p̄〉 + 〈q, q̄〉 + 〈r, r̄〉 + 〈θ , θ̄〉,
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for any λ = (x, y, z, k), ξ = (p, q, r, θ ), λ̄ = (x̄, ȳ, z̄, k̄) and ξ̄ = (p̄, q̄, r̄, θ̄ ). Then the norm in R is
deduced by ‖(λ, ξ )‖ =

√〈(λ, ξ ), (λ, ξ )〉. We also define
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The element of G[, T] is often denoted by

κ =
(
μ(·),ν(·),ψ(·, ·),ϕ(·),η,μ(·),ν(·),ψ(·, ·),ϕ(·),η, b

)
.

3 Solvability of forward-backward stochastic differential equation with
Poisson jump

In this section, we consider the solvability of a new kind of forward-backward stochastic
differential equation (FBSDE) with a Poisson jump, which is obtained by adjoint equations
deduced from the stochastic maximum principle. The solution of FBSDE plays a key role to
solve the LQ stochastic optimal control problems in the next section and the LQ nonzero-
sum stochastic differential game problems in Section .

We consider the following FBSDE:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxt = α(t, xt–, Btpt–, Ctqt–, Dtrt ,
∫

E Et(e)θt(e)π (de)) dt
+ β(t, xt–, Btpt–, Ctqt–, Dtrt ,

∫

E Et(e)θt(e)π (de)) dWt

+
∫

E γ(t, e, xt–, Btpt–, Ctqt–, Dtrt ,
∫

E Et(e)θt(e)π (de))Ñ(dt, de),
–dyt = f(t, xt–, yt–, zt , kt , Btpt–, Ctqt–, Dtrt ,

∫

E Et(e)θt(e)π (de)) dt – zt dWt

–
∫

E kt(e)Ñ(dt, de),
dpt = α(t, xt–, yt–, zt , kt , pt–, qt–, rt , θt) dt + β(t, xt–, yt–, zt , kt , pt–, qt–, rt , θt) dWt

+
∫

E γ(t, e, xt–, yt–, zt , kt , pt–, qt–, rt , θt)Ñ(dt, de),
–dqt = f(t, xt–, yt–, zt , kt , pt–, qt–, rt , θt) dt – rt dWt –

∫

E θt(e)Ñ(dt, de),
x = a, qT = �(xT , pT ),
p = �(y), yT = �(xT ),

()

where (x, y, z, k, p, q, r, θ ) takes values in R, B, C, D, E are F-adapted matrix-valued
bounded processes with appropriate dimensions, for each fixed (x, y, z, k, p, q, r, θ ), α, β,
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γ, f, α, β, γ, f, �, �, � are F-adapted mappings with appropriate dimensions, and
a ∈R

n. For convenience, we use the following notations:

λ = (x, y, z, k), ξ = (p, q, r, θ ),

ξM
t =

(

Btp, Ctq, Dtr,
∫

E
Et(e)θ (e)π (de)

)

,

ξ�
t = Btp + Ctq + Dtr +

∫

E
Et(e)θ (e)π (de).

()

Definition . A process (x(·), y(·), z(·), k(·, ·), p(·), q(·), r(·), θ (·, ·)) ∈ L[, T] is called an
adapted solution of FBSDE () if it satisfies (). If there exists a unique adapted solution,
then () is said to be uniquely solvable.

Similar to Hu and Peng [] and Peng and Wu [], for each t ∈ [, T], (λ, ξ ) ∈ R, we
introduce the following notation:

A(t,λ, ξ ) =
(
–f(t,λ, ξ ),α(t,λ, ξ ),β(t,λ, ξ ),γ(t,λ, ξ ),

– f
(
t,λ, ξM

t
)
,α

(
t, x, ξM

t
)
,β

(
t, x, ξM

t
)
,γ

(
t, x, ξM

t
))

.

Now we give assumptions on the coefficients of ().

Assumption  (Lipschitz condition)
(i) For any (λ, ξ ) ∈R, A(·,λ, ξ ) ∈ L

F
(, T ;R). For any x ∈R

n, �(x) ∈ L(FT ;Rm). For
any (x, p) ∈R

n ×R
m, �(x, p) ∈ L(FT ;Rn). For any y ∈R

m, �(y) ∈R
m.

(ii) The mappings A, �, �, and � are uniformly Lipschitz continuous with respect to
(λ, ξ ), x, (x, p), and y, respectively.

Assumption  (Domination condition) There exists a constant L >  such that, for any
λ = (x, y, z, k), any ξ = (p, q, r, θ ) and any ξ̄ = (p̄, q̄, r̄, θ̄ ),

∣
∣g

(
t, x, ξM

t
)

– g
(
t, x, ξ̄M

t
)∣
∣ ≤ L

∣
∣
∣
∣Btp̂ + Ctq̂ + Dtr̂ +

∫

E
Et(e)θ̂ (e)π (de)

∣
∣
∣
∣, a.s. a.e. ()

and
∣
∣f

(
t,λ, ξM

t
)

– f
(
t,λ, ξ̄M

t
)∣
∣ ≤ L

∣
∣
∣
∣Btp̂ + Ctq̂ + Dtr̂ +

∫

E
Et(e)θ̂ (e)π (de)

∣
∣
∣
∣, a.s. a.e., ()

where ξM
t and ξ̄M

t are defined by (), ξ̂ = (p̂, q̂, r̂, θ̂ ) = (p – p̄, q – q̄, r – r̄, θ – θ̄ ), and g =
α,β,γ.

Assumption  (Monotonicity condition)
(i) There exists a constant l >  such that, for any λ = (x, y, z, k), any λ̄ = (x̄, ȳ, z̄, k̄), any

ξ = (p, q, r, θ ), and any ξ̄ = (p̄, q̄, r̄, θ̄ ),
〈
A(t,λ, ξ ) – A(t, λ̄, ξ̄ ), (λ̂, ξ̂ )

〉

≤ –l
∣
∣
∣
∣Btp̂ + Ctq̂ + Dtr̂ +

∫

E
Et(e)θ̂ (e)π (de)

∣
∣
∣
∣



, a.s. a.e.,

where (λ̂, ξ̂ ) = (x̂, ŷ, ẑ, k̂, p̂, q̂, r̂, θ̂ ) = (x – x̄, y – ȳ, z – z̄, k – k̄, p – p̄, q – q̄, r – r̄, θ – θ̄ ).
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(ii) For any x, x̄ ∈R
n and any p, p̄ ∈R

m,

〈
�(x) – �(x̄), p̂

〉
+

〈
�(x, p) – �(x̄, p̄), x̂

〉 ≥ , a.s.

(iii) For any y, ȳ ∈R
m,

〈
�(y) – �(ȳ), ŷ

〉 ≤ .

Now we are in the position to give the main result of this section.

Theorem . Under Assumptions , , and , FBSDE () admits a unique solution,

(
λ(·), ξ (·)) =

(
x(·), y(·), z(·), k(·, ·), p(·), q(·), r(·), θ (·, ·)) ∈L[, T].

We shall employ the ‘method of continuation’ introduced by [, ] to prove Theo-
rem .. To this aim, we consider a family of FBSDEs parameterized by ρ ∈ [, ] as fol-
lows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxρ
t = [–( – ρ)lC�

t ξ
ρ�
t– + ρα(t, xρ

t–, ξρM
t– ) + μ(t)] dt

+ [–( – ρ)lD�
t ξ

ρ�
t– + ρβ(t, xρ

t–, ξρM
t– ) + ν(t)] dWt

+
∫

E [–( – ρ)lE�
t (e)ξρ�

t– + ργ(t, e, xρ
t–, ξρM

t– ) + ψ(t, e)]Ñ(dt, de),
–dyρ

t = [–( – ρ)lB�
t ξ

ρ�
t– + ρf(t,λρ

t–, ξρM
t– ) + ϕ(t)] dt – zρ

t dWt

–
∫

E kρ
t (e)Ñ(dt, de),

dpρ
t = [ρα(t,λρ

t–, ξρ
t–) + μ(t)] dt + [ρβ(t,λρ

t–, ξρ
t–) + ν(t)] dWt

+ [
∫

E ργ(t, e,λρ
t–, ξρ

t–) + ψ(t, e)]Ñ(dt, de),
–dqρ

t = [ρf(t,λρ
t–, ξρ

t–) + ϕ(t)] dt – rρ
t dWt –

∫

E θ
ρ
t (e)Ñ(dt, de),

xρ
 = a, qρ

T = ρ�(xρ
T , qρ

T ) + η,
pρ

 = ρ�(yρ
) + b, yρ

T = ρ�(xρ
T ) + η.

()

Clearly, when ρ =  the FBSDE () is in a decoupled form. From the classical theory of
stochastic differential equations (SDEs) and backward stochastic differential equations
(BSDEs), it is uniquely solvable. When ρ =  and κ = (μ(·),ν(·),ψ(·),ϕ(·),η,μ(·),ν(·),
ψ(·),ϕ(·),η, b) vanishes, FBSDE () coincides with FBSDE (). The following lemma,
which provides a path from the solvable case ρ =  to the desired unsolvable case ρ = ,
plays a key role.

Lemma . Let Assumptions , , and  hold true. There exists a positive constant δ such
that, if for some ρ ∈ [, ), there exists a unique solution (λρ

t , ξρ
t ) of FBSDE () with any

κ ∈ G[, T], then there exists a unique solution (λρ+δ
t , ξρ+δ

t ) of FBSDE () for ρ = ρ + δ

with δ ∈ [, δ] and ρ + δ ≤ .

Proof Let δ >  be undetermined, and δ ∈ [, δ]. We consider the following FBSDE:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXt = [–( – ρ)lC�
t ��

t– + ρα(t, Xt–,�M
t–) + δ(lC�

t ξ�
t– + α(t, xt–, ξM

t– )) + μ(t)] dt
+ [–( – ρ)lD�

t ��
t– + ρβ(t, Xt–,�M

t–) + δ(lD�
t ξ�

t– + β(t, xt–, ξM
t– )) + ν(t)] dWt

+
∫

E [–( – ρ)lE�
t (e)��

t– + ργ(t, e, Xt–,�M
t–) + δ(lE�

t (e)ξ�
t– + γ(t, e, xt–, ξM

t– ))
+ ψ(t, e)]Ñ(dt, de),

–dYt = [–( – ρ)lB�
t ��

t– + ρf(t,�t ,�M
t–) + δ(lB�

t ξ�
t– + f(t,λt , ξM

t– )) + ϕ(t)] dt
– Zt dWt –

∫

E Kt(e)Ñ(dt, de),
dPt = [ρα(t,�t–,�t–) + δα(t,λt–, ξt–) + μ(t)] dt

+ [ρβ(t,�t–,�t–) + δβ(t,λt–, ξt–) + ν(t)] dWt

+ [
∫

E ργ(t, e,�t–,�t–) + δγ(t, e,λt–, ξt–) + ψ(t, e)]Ñ(dt, de),
–dQt = [ρf(t,�t–,�t–) + δf(t,λt–, ξt–) + ϕ(t)] dt – Rt dWt –

∫

E �t(e)Ñ(dt, de),
X = a, QT = ρ�(XT , PT ) + δ�(xT , pT ) + η,
P = ρ�(Y) + δ�(y) + b, YT = ρ�(Xρ

T ) + δ�(xρ
T ) + η,

()

where, similar to (), we denote

� = (X, Y , Z, K), � = (P, Q, R,�),

�M
t =

(

BtP, CtQ, DtR,
∫

E
Et(e)�(e)π (de)

)

,

��
t = BtP + CtQ + DtR +

∫

E
Et(e)θ (e)π (de).

Our assumption says, when ρ = ρ, for any κ ∈ G[, T], FBSDE () admits a unique solu-
tion. Applying it to FBSDE (), we have the result: for each (λ(·), ξ (·)) = (x(·), y(·), z(·), k(·, ·),
p(·), q(·), r(·), θ (·, ·)) ∈L[, T], FBSDE () admits a unique solution (�(·),�(·)) = (X(·), Y (·),
Z(·), K(·, ·), P(·), Q(·), R(·),�(·, ·)) ∈L[, T]. Consequently, this result implies a mapping:

(�,�) = Iρ+δ(λ, ξ ) : L[, T] →L[, T]. ()

Next, we shall prove the above mapping is a contraction.
Let (λ̄, ξ̄ ) = (x̄, ȳ, z̄, k̄, p̄, k̄, q̄, θ̄ ) ∈ L[, T] and (�̄,�) = (X̄, Ȳ , Z̄, K̄ , P̄, Q̄, R̄, �̄) = Iρ+δ(λ̄, ξ̄ ).

We set

(λ̂, ξ̂ ) = (λ – λ̄, ξ – ξ̄ ) = (x̂, ŷ, ẑ, k̂, p̂, q̂, r̂, θ̂ )

= (x – x̄, y – ȳ, z – z̄, k – k̄, p – p̄, q – q̄, r – r̄, θ – θ̄ )

and

(�̂, �̂) = (� – �̄,� – �) = (X̂, Ŷ , Ẑ, K̂ , P̂, Q̂, R̂, �̂)

= (X – X̄, Y – Ȳ , Z – Z̄, K – K̄ , P – P̄, Q – Q̄, R – R̄,� – �̄).

Applying Itô’s formula to 〈X̂t , Q̂t〉 + 〈Ŷt , P̂t〉 yields

ρE
{〈

�(XT , PT ) – �(X̄T , P̄T ), X̂T
〉
+

〈
�(XT ) – �(X̄T ), P̂T

〉}

– ρ
〈
�(Y) – �(Ȳ), Ŷ

〉
+ δ

[
E

{〈
�(xT , pT ) – �(x̄T , p̄T ), X̂T

〉

+
〈
�(xT ) – �(x̄T ), P̂T

〉}]
– δ

〈
�(y) – �(ȳ), Ŷ

〉
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= –( – ρ)lE
∫ T



∣
∣�̂�

t
∣
∣ dt + ρE

∫ T



〈
A(t,�t ,�t) – A(t, �̄t ,�t), (�̂t , �̂t)

〉
dt

+ δlE
∫ T



[
〈
P̂t , B�

t ξ̂�
t–

〉
+

〈
Q̂t , C�

t ξ̂�
t–

〉
+

〈
R̂t , D�

t ξ̂�
t–

〉
+

∫

E

〈
�̂t(e), E�

t (e)ξ̂�
t–

〉
π (de)

]

dt

+ δE

∫ T



[
〈
X̂t , –f̂(t)

〉
+

〈
Ŷt , α̂(t)

〉
+

〈
Ẑt , β̂(t)

〉
+

∫

E

〈
K̂t(e), γ̂(t, e)

〉
π (de)

+
〈
P̂t , –f̂(t)

〉
+

〈
Q̂t , α̂(t)

〉
+

〈
R̂t , β̂(t)

〉
+

∫

E

〈
�̂t(e), γ̂(t, e)

〉
π (de)

]

dt,

where

ĝ(t) = g
(
t, x, ξM

t
)

– g
(
t, x̄, ξ̄M

t
)
, f̂(t) = f(t,λ, ξ ) – f(t, λ̄, ξ̄ ),

ĝ(t) = g(t,λ, ξ ) – g(t, λ̄, ξ̄ ),

with g = α,β,γ and g = α,β,γ, f. By Assumptions , , and , for any ε >  we have

E

∫ T



∣
∣
∣
∣BtP̂t– + CtQ̂t– + DtR̂t +

∫

E
Et(e)�̂tπ (de)

∣
∣
∣
∣



dt

≤ εC
∥
∥(�̂t , �̂t)

∥
∥ +

δC
ε

∥
∥(λ̂t , ξ̂t)

∥
∥, ()

where C >  is a constant. Here and hereafter, C represents some generic constant which
can be changed from line to line. We also apply Itô’s formula to |X̂t|. By Assumptions 
and , combining with Gronwall’s inequality and Burkholder-Davis-Gundy’s inequality,
we have

E sup
t∈[,T]

|X̂t| ≤ CE

∫ T



∣
∣
∣
∣BtP̂t– + CtQ̂t– + DtR̂t +

∫

E
Et(e)�̂tπ (de)

∣
∣
∣
∣



dt

+ δC
[
E sup

t∈[,T]
|x̂t| + ‖ξ̂t‖

]
. ()

Similarly, by applying Itô’s formula to |Ŷt|, |P̂t| and |Q̂t|, respectively, we obtain three
other estimates:

E sup
t∈[,T]

|Ŷt| + E

∫ T


|Ẑt| dt + E

∫ T



∫

E

∣
∣K̂t(e)

∣
∣

π (de) dt

≤ CE

∫ T



∣
∣
∣
∣BtP̂t– + CtQ̂t– + DtR̂t +

∫

E
Et(e)�̂tπ (de)

∣
∣
∣
∣



dt

+ CE sup
t∈[,T]

|X̂t| + δC
∥
∥(λ̂t , ξ̂t)

∥
∥, ()

E sup
t∈[,T]

|P̂t| ≤ C‖�̂t‖ + δC
∥
∥(λ̂t , ξ̂t)

∥
∥, ()

and

E sup
t∈[,T]

|Q̂t| + E

∫ T


|R̂t| dt + E

∫ T



∫

E

∣
∣�̂t(e)

∣
∣

π (de) dt

≤ C‖�̂t‖ + CE sup
t∈[,T]

|P̂t| + δC
∥
∥(λ̂t , ξ̂t)

∥
∥. ()
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By the combination of (), (), (), (), and () and taking ε = /(C), we have

∥
∥(�̂t , �̂t)

∥
∥ ≤ δC

∥
∥(λ̂t , ξ̂t)

∥
∥. ()

We emphasize that the constant C >  appearing in the above inequality is independent
of ρ and δ. Now, we choose δ >  such that Cδ ≤ /; then, for any δ ∈ [, δ],

∥
∥(�̂t , �̂t)

∥
∥ ≤ 


∥
∥(λ̂t , ξ̂t)

∥
∥. ()

This implies that the mapping Iρ+δ is a contraction. It follows immediately that the map-
ping admits a unique fixed point which is exactly the unique solution of () for ρ = ρ + δ.
We thus complete the proof. �

Proof of Theorem . By Lemma ., there exists a fixed step δ >  such that, if for a given
ρ ∈ [, ), FBSDE () is uniquely solvable for any κ ∈ G[, T] and any a ∈ R

n, then () is
also uniquely solvable for ρ = ρ + δ with δ ∈ [, δ]. Obviously, for ρ = , FBSDE () is
in a decoupled form and then can be uniquely solved. So we can increase the parameter
ρ step by step from ρ =  to ρ = . Especially, taking κ =  and ρ = , we get the desired
conclusion: FBSDE () is uniquely solvable. �

4 LQ SOC problem
In this section, we apply the solvability result of FBSDEs studied in the above section to
deal with a linear-quadratic stochastic optimal control (LQ SOC) problem for a forward-
backward system with Poisson random jumps, in which the controlled system is given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dxt = (Atxt– + Btvt + μt) dt + (Ctxt– + Dtvt + νt) dWt

+
∫

E (Et(e)xt– + Ft(e)vt + ψt(e))Ñ(dt, de),
–dyt = (Gtxt– + Htyt– + Itzt +

∫

E Jt(e)kt(e)π (de) + Ktvt + φt) dt,
– zt dWt –

∫

E kt(e)Ñ(dt, de),
x = a, yT = ϒxT + η,

()

where A, B, C, D, E, F , G, H , I , J , K are F-adapted matrix-valued bounded processes
with appropriate dimensions, ϒ is an FT -measurable m × n matrix-valued bounded ran-
dom variable, μ,ν ∈ L

F
(, T ;Rn), ψ ∈ M

F
(, T ;Rn), φ ∈ L

F
(, T ;Rn), a ∈ R

n, and η ∈
L(FT ;Rm). The admissible control set is denoted by V = L

F
(, T ;Rk), in which each el-

ement v(·) is called an admissible control. Clearly, for any admissible control v(·), FBSDE
() admits a unique adapted solution

(
xv(·), yv(·), zv(·), kv(·, ·)) ∈ C

F

(
, T ;Rn) × C

F

(
, T ;Rm)

× L
F

(
, T ;Rm) × M

F

(
, T ;Rm)

,

and we called it the state trajectory corresponding to v(·). Additionally, we give a cost
functional associated with v(·) in quadratic form as follows:

J
(
v(·)) =



E

∫ T



[

〈Ltxt , xt〉 + 〈Mtyt , yt〉 + 〈Ntzt , zt〉 +
∫

E

〈
Ot(e)kt(e), kt(e)

〉
π (de)

+ 〈�tvt , vt〉
]

dt +


E〈RxT , xT 〉 +



〈Sy, y〉. ()
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Here L, M, N , O are F-adapted symmetric and nonnegative definite matrix-valued
bounded processes with appropriate dimensions, � is an F-adapted k × k symmetric and
positive definite matrix-valued bounded process, and there exists a constant δ >  such
that

〈�tv, v〉 ≥ δ|v|, a.s.

for any v ∈ R
k and for almost every t ∈ [, T], R is an FT -measurable n × n symmetric

and nonnegative definite matrix-valued bounded random variable, and S is an m × m
symmetric and nonnegative definite matrix.

Problem (LQ SOC) The problem is to look for an admissible control u(·) ∈ V which sat-
isfies

J
(
u(·)) = inf

v(·)∈V
J

(
v(·)). ()

Such an admissible control u(·) is called an optimal control, and (x(·), y(·), z(·), k(·, ·)) =
(xu(·), yu(·), zu(·), ku(·, ·)) is called the corresponding optimal trajectory.

The following theorem gives an explicit characterization of the unique optimal control.

Theorem . Problem (LQ SOC) admits a unique optimal control which is in the following
form:

ut = –�–
t

(

B�
t qt + D�

t rt +
∫

E
F�

t (e)θt(e)π (de) – K�
t pt

)

, t ∈ [, T], ()

where (x(·), y(·), z(·), k(·, ·), p(·), q(·), r(·), θ (·, ·)) ∈L[, T] is the unique solution of the follow-
ing FBSDE (for the sake of simplicity, we denote it by FBSDE-LQ-SOC):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxt = (Atxt– – Bt�
–
t (B�

t qt– + D�
t rt +

∫

E F�
t (e)θt(e)π (de) – K�

t pt) + μt) dt
+ (Ctxt– – Dt�

–
t (B�

t qt– + D�
t rt +

∫

E F�
t (e)θt(e)π (de) – K�

t pt) + νt) dWt

+
∫

E (Et(e)xt– – Ft(e)�–
t (B�

t qt– + D�
t rt +

∫

E F�
t (e)θt(e)π (de) – K�

t pt)
+ ψt(e))Ñ(dt, de),

–dyt = (Gtxt– + Htyt– + Itzt +
∫

E Jt(e)kt(e)π (de) – Kt�
–
t (B�

t qt– + D�
t rt

+
∫

E F�
t (e)θt(e)π (de) – K�

t pt–) + φt) dt – zt dWt –
∫

E kt(e)Ñ(dt, de),
dpt = (H�

t pt– – Mtyt) dt + (I�
t pt– – Ntzt) dWt

+
∫

E (J�
t (e)pt– – Ot(e)kt(e))Ñ(dt, de),

–dqt = (A�
t qt– + C�

t rt +
∫

E E�
t (e)θt(e)π (de) – G�

t pt– + Ltxt) dt – rt dWt

–
∫

E θt(e)Ñ(dt, de),
x = a, p = –Sy,
yT = ϒxT + η, qT = RxT – ϒ�pT .

()

Proof By Theorem ., FBSDE-LQ-SOC () admits a unique solution (x(·), y(·), z(·), k(·, ·),
p(·), q(·), r(·), θ (·, ·)) ∈L[, T].
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Next, we prove that u(·) defined by () is an optimal control. For any given v(·) ∈ V ,
we denote the corresponding state trajectory by (xv(·), yv(·), zv(·), kv(·, ·)). By applying Itô’s
formula to 〈xv

t – xt , qt〉 + 〈pt , yv
t – yt〉, we have

E
〈
RxT , xv

T – xT
〉
+

〈
Sy, yv

 – y
〉

= –E
∫ T



[
〈
Ltxt , xv

t – xt
〉
+

〈
Mtyt , yv

t – yt
〉
+

〈
Ntzt , zv

t – zt
〉

+
∫

E

〈
Ot(e)kt(e), kv

t (e) – kt(e)
〉
π (de) + 〈�tut , vt – ut〉

]

dt. ()

Then we analyze the difference between J (v(·)) and J (u(·)):

J
(
v(·)) – J

(
u(·))

=


E

∫ T



[
〈
Ltxv

t , xv
t
〉
– 〈Ltxt , xt〉 +

〈
Mtyv

t , yv
t
〉
– 〈Mtyt , yt〉

+
〈
Ntzv

t , zv
t
〉
– 〈Ntzt , zt〉 +

∫

E

〈
Ot(e)kv

t (e), kv
t (e)

〉
π (de) –

∫

E

〈
Ot(e)kt(e), kt(e)

〉
π (de)

+ 〈�tvt , vt〉 – 〈�tut , ut〉
]

dt +


E

[〈
Rxv

T , xv
T
〉
– 〈RxT , xT 〉]

+


[〈

Syv
, yv


〉
– 〈Sy, y〉

]

=


E

∫ T



[
〈
Lt

(
xv

t – xt
)
, xv

t – xt
〉
+

〈
Mt

(
yv

t – yt
)
, yv

t – yt
〉
+

〈
Nt

(
zv

t – zt
)
, zv

t – zt
〉

+
∫

E

〈
Ot(e)

(
kv

t (e) – kt(e)
)
, kv

t (e) – kt(e)
〉
π (de) +

〈
�t(vt – ut), vt – ut

〉
]

dt

+


E

〈
R
(
xv

T – xT
)
, xv

T – xT
〉
+



〈
S
(
yv

 – y
)
, yv

 – y
〉
+ , ()

where

 = E

∫ T



[
〈
Ltxt , xv

t – xt
〉
+

〈
Mtyt , yv

t – yt
〉
+

〈
Ntzt , zv

t – zt
〉

+
∫

E

〈
Ot(e)kt(e), kv

t (e) – kt(e)
〉
π (de) + 〈�tut , vt – ut〉

]

dt

+ E
〈
RxT , xv

T – xT
〉
+

〈
Sy, yv

 – y
〉
.

From (), we have  = . Moreover, since L, M, N , O, R, S are nonnegative definite and
�t is positive definite, from (), we get

J
(
v(·)) – J

(
u(·)) ≥ .

This implies u(·) defined by () is an optimal control.
Finally, we show the uniqueness of optimal control. As we proved above, u defined by

() is an optimal control of Problem (LQ SOC). Let ū be another optimal control, and
denote the corresponding state trajectory by (xū(·), yū(·), zū(·), kū(·, ·)). Obviously,J (ū(·)) =
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J (u(·)). Coming back to (), we have

 = J
(
ū(·)) – J

(
u(·))

=


E

∫ T



[
〈
Lt

(
xū

t – xt
)
, xū

t – xt
〉
+

〈
Mt

(
yū

t – yt
)
, yū

t – yt
〉
+

〈
Nt

(
zū

t – zt
)
, zū

t – zt
〉

+
∫

E

〈
Ot(e)

(
kū

t (e) – kt(e)
)
, kū

t (e) – kt(e)
〉
π (de) +

〈
�t(ūt – ut), ūt – ut

〉
]

dt

+


E

〈
R
(
xū

T – xT
)
, xū

T – xT
〉
+



〈
S
(
yv

 – y
)
, yv

 – y
〉

≥ E

∫ T



〈
�t(ūt – ut), ūt – ut

〉
dt.

Because �t is positive, we get ū(·) = u(·). Due to the arbitrariness of ū, we obtain the
uniqueness of the optimal control. �

5 LQ NZSSDG problem
Now we extend the LQ SOC problem to a linear-quadratic nonzero-sum stochastic differ-
ential game (LQ NZSSDG) problem for a forward-backward system with random jumps.
Without loss of generality, we only consider the case of two players in this paper. The case
of n (> ) players can be treated in the same way. In detail, the game system is described
by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dxt = (Atxt– + B
t v

t + B
t v

t + μt) dt + (Ctxt– + D
t v

t + D
t v

t + νt) dWt

+
∫

E (Et(e)xt– + F
t (e)v

t + F
t (e)v

t + ψt(e))Ñ(dt, de),
–dyt = (Gtxt– + Htyt– + Itzt +

∫

E Jt(e)kt(e)π (de) + K 
t v

t + K
t v

t + φt) dt,
– zt dWt –

∫

E kt(e)Ñ(dt, de),
x = a, yT = ϒxT + η,

()

where A, B, B, C, D, D, E, F, F, G, H , I , J , K , K are F-adapted matrix-valued
bounded processes with appropriate dimensions, ϒ is an FT -measurable m × n matrix-
valued bounded random variable, μ,ν ∈ L

F
(, T ;Rn), ψ ∈ M

F
(, T ;Rn), φ ∈ L

F
(, T ;Rn),

a ∈ R
n, and η ∈ L(FT ;Rm). Different from Problem (LQ SOC), there exist two control

processes v(·) and v(·) belonging to two players, respectively, to affect the state of the
game system at the same time. Let V i = L

F
(, T ;Rki ) (i = , ) denote the set of admissi-

ble controls. Each element vi(·) ∈ V i is called an admissible control for Player i (i = , ).
Moreover, V × V is called the set of admissible controls for the players. For any given
pair of admissible controls (v(·), v(·)) ∈ V × V, FBSDE () admits a unique solu-
tion

(
xv,v (·), yv,v (·), zv,v (·), kv,v (·, ·)) ∈ C

F

(
, T ;Rn) × C

F

(
, T ;Rm) × L

F

(
, T ;Rm)

× M
F

(
, T ;Rm)

,

which is called the state trajectory corresponding to (v(·), v(·)). Additionally, each player
has his own cost functional:
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J i(v(·), v(·))

=


E

∫ T



[
〈
Li

txt , xt
〉
+

〈
Mi

tyt , yt
〉
+

〈
Ni

t zt , zt
〉
+

∫

E

〈
Oi

t(e)kt(e), kt(e)
〉
π (de)

+
〈
�i

tv
i
t , vi

t
〉
]

dt +


E

〈
RixT , xT

〉
+



〈
Siy, y

〉
(i = , ). ()

Here for i = , , Li, Mi, Ni, Oi are F-adapted symmetric and nonnegative definite matrix-
valued bounded processes with appropriate dimensions, �i is an F-adapted k × k sym-
metric and positive definite matrix-valued bounded process, and there exists a constant
δ >  such that

〈
�i

tv, v
〉 ≥ δ|v|, a.s.

for any v ∈ R
k and for almost every t ∈ [, T], Ri is an FT -measurable n × n symmetric

and nonnegative definite matrix-valued bounded random variable, and Si is an m × m
symmetric and nonnegative definite matrix.

Suppose each player hopes to minimize his cost functional J i(v(·), v(·)) by selecting
an appropriate admissible control vi(·) (i = , ), then the game problem ()-() is for-
mulated as follows.

Problem (LQ NZSSDG) The problem is to find a pair of admissible controls (u(·),
u(·)) ∈ V × V such that

J (u(·), u(·)) = inf
v(·)∈V

J (v(·), u(·)),

J (u(·), u(·)) = inf
v(·)∈V

J (u(·), v(·)).
()

Such a pair of admissible controls (u(·), u(·)) is called a Nash equilibrium point. For
notational convenience, we denote by (x(·), y(·), z(·), k(·, ·)) = (xu,u (·), yu,u (·), zu,u (·),
ku,u (·, ·)) the state trajectory corresponding to a Nash equilibrium point (u(·), u(·)).

Similar to Problem (LQ SOC) studied in the above section, we will link Nash equilibrium
points of Problem (LQ NZSSDG) to solutions of some FBSDE.

Theorem . (u(·), u(·)) is a Nash equilibrium point of Problem (LQ NZSSDG), if and
only if (u(·), u(·)) has the form

(
u

t

u
t

)

=

(
–(�

t )–[(B
t )�q

t + (D
t )�r

t +
∫

E (F
t )�(e)θ 

t (e)π (de) – (K 
t )�p

t ]
–(�

t )–[(B
t )�q

t + (D
t )�r

t +
∫

E (F
t )�(e)θ

t (e)π (de) – (K
t )�p

t ]

)

, ()

t ∈ [, T], where (x(·), y(·), z(·), k(·, ·), p(·), q(·), r(·), θ (·, ·), p(·), q(·), r(·), θ(·, ·)) satisfies
the following FBSDE (for simplicity, we denote it by FBSDE-LQ-NZSSDG):
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxt = {Atxt– – B
t (�

t )–[(B
t )�q

t– + (D
t )�r

t +
∫

E (F
t )�(e)k

t (e)π (de) – (K 
t )�p

t–]
– B

t (�
t )–[(B

t )�q
t– + (D

t )�r
t +

∫

E (F
t )�(e)k

t (e)π (de) – (K
t )�p

t–] + μt}dt
+ {Ctxt– – D

t (�
t )–[(B

t )�q
t– + (D

t )�r
t +

∫

E (F
t )�(e)k

t (e)π (de) – (K 
t )�p

t–]
– D

t (�
t )–[(B

t )�q
t– + (D

t )�r
t +

∫

E (F
t )�(e)k

t (e)π (de) – (K
t )�p

t–] + νt}dWt

+
∫

E {Et(e)xt– – F
t (e)(�

t )–[(B
t )�q

t– + (D
t )�r

t +
∫

E (F
t )�(e)k

t (e)π (de)
– (K 

t )�p
t–] – F

t (e)(�
t )–((B

t )�q
t– + (D

t )�r
t +

∫

E (F
t )�(e)k

t (e)π (de)
– (K

t )�p
t–) + ψt(e)}Ñ(dt, de),

–dyt = {Gtxt– + Htyt– + Itzt +
∫

E Jt(e)kt(e)π (de) – K 
t (�

t )–[(B
t )�q

t– + (D
t )�r

t

+
∫

E (F
t )�(e)k

t (e)π (de) – (K 
t )�p

t–] – K
t (�

t )–[(B
t )�q

t– + (D
t )�r

t

+
∫

E (F
t )�(e)k

t (e)π (de) – (K
t )�p

t–] + φt}dt – zt dWt –
∫

E kt(e)Ñ(dt, de),
dp

t = (H�
t p

t– – M
t yt–) dt + (I�

t p
t– – N 

t zt) dWt +
∫

E (J�
t (e)p

t– – O
t (e)kt(e))Ñ(dt, de),

dp
t = (H�

t p
t– – M

t yt–) dt + (I�
t p

t– – N
t zt) dWt

+
∫

E (J�
t (e)p

t– – O
t (e)kt(e))Ñ(dt, de),

–dq
t = (A�

t q
t– + C�

t r
t +

∫

E E�
t (e)θ 

t (e)π (de) – G�
t p

t– + L
t xt–) dt – r

t dWt

–
∫

E θ 
t (e)Ñ(dt, de),

–dq
t = (A�

t q
t– + C�

t r
t +

∫

E E�
t (e)θ

t (e)π (de) – G�
t p

t– + L
t xt–) dt – r

t dWt

–
∫

E θ
t (e)Ñ(dt, de),

x = a, yT = ϒxT + η,
p

 = –Sy, q
T = RxT – ϒ�p

T ,
p

 = –Sy, q
T = RxT – ϒ�p

T .

()

Proof Noticing the definition of Nash equilibrium point, we link Problem (LQ NZSSDG)
with two Problems (LQ SOC) studied in the above section. Precisely, for i = , , we denote
j =  – i. Fix uj(·), to minimize the following cost functional:

J i(vi(·), uj(·)) =


E

∫ T



[
〈
Li

txt , xt
〉
+

〈
Mi

tyt , yt
〉
+

〈
Ni

t zt , zt
〉
+

∫

E

〈
Oi

t(e)kt(e), kt(e)
〉
π (de)

+
〈
�i

tv
i
t , vi

t
〉
]

dt +


E

〈
RixT , xT

〉
+



〈
Siy, y

〉
, ()

subject to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dxt = [Atxt– + Bi
tvi

t + (Bj
tv

j
t + μt)] dt + [Ctxt– + Di

tvi
t + (Dj

tv
j
t + νt)] dWt

+
∫

E [Et(e)xt– + Fi
t (e)vi

t + (Fj
t(e)vj

t + ψt(e))]Ñ(dt, de),
–dyt = [Gtxt– + Htyt– + Itzt +

∫

E Jt(e)kt(e)π (de) + Ki
t vi

t + (Kj
t vj

t + φt)] dt
– zt dWt –

∫

E kt(e)Ñ(dt, de),
x = a, yT = ϒxT + η,

()

over V i is an LQ SOC problem. By Theorem ., the unique optimal control of LQ SOC
problem ()-() has the following form:

ui
t = –

(
�i

t
)–

[
(
Bi

t
)�qi

t +
(
Di

t
)�ri

t +
∫

E

(
Fi

t
)�(e)θ i

t (e)π (de) +
(
Ki

t
)�pi

t

]

, t ∈ [, T],

where (x(·), y(·), z(·), k(·, ·), pi(·), qi(·), ri(·), θ i(·, ·)) is the unique solution of the following
FBSDEF-LQ-SOC (i = , ):
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxt = {Atxt– – Bi
t(�i

t)–[(Bi
t)�qi

t– + (Di
t)�ri

t +
∫

E (Fi
t )�(e)θ i

t (e)π (de) – (Ki
t )�pi

t–]
+ (Bj

tu
j
t + μt)}dt + {Ctxt– – Di

t(�i
t)–[(Bi

t)�qi
t– + (Di

t)�ri
t

+
∫

E (Fi
t )�(e)θ i

t (e)π (de)
– (Ki

t )�pi
t–] + (Dj

tu
j
t + νt)}dWt +

∫

E {Et(e)xt– – Fi
t (e)(�i

t)–[(Bi
t)�qi

t– + (Di
t)�ri

t

+
∫

E (Fi
t )�(e)ki

t(e)π (de) – (Ki
t )�pi

t–] + (Fj
t(e)uj

t + ψt(e))}Ñ(dt, de),
–dyt = {Gtxt– + Htyt– + Itzt +

∫

E Jt(e)kt(e)π (de) – Ki
t (�i

t)–[(Bi
t)�qi

t– + (Di
t)�r

t

+
∫

E (Fi
t )�(e)ki

t(e)π (de) – (Ki
t )�pi

t–] + (Kj
t uj

t + φt)}dt – zt dWt

–
∫

E kt(e)Ñ(dt, de),
dpi

t = (H�
t pi

t– – Mi
tyt–) dt + (I�

t pi
t– – Ni

t zt) dWt +
∫

E (J�
t (e)pi

t– – Oi
t(e)kt(e))Ñ(dt, de),

–dqi
t = (A�

t qi
t– + C�

t ri
t +

∫

E E�
t (e)θ i

t (e)π (de) – G�
t pi

t– + Li
txt–) dt – ri

t dWt

–
∫

E θ i
t (e)Ñ(dt, de),

pi
 = –Siy, qi

T = RixT – ϒ�pi
T .

()

Combining the two FBSDE-LQ-SOCs () for the cases i =  and i = , we get FBSDE-LQ-
NZSSDG (), and we thus finish the proof. �

Next, we would like to employ and extend the linear transform introduce by Hamadène
[] to discuss the solvability of FBSDE-LQ-NZSSDG (). To this aim, we introduce the
following assumptions.

Assumption 
(i) The dimension of x is equal to that of y, i.e. n = m.

(ii) There exist four constants ζB, ζD, ζF , ζK ∈ R and two F-adapted matrix-valued
bounded processes Q

t and Q
t with appropriate dimensions, such that

Bi
t = ζBQi

t , Di
t = ζDQi

t ,

Fi
t (e) = ζFQi

t , Ki
t = ζKQi

t , t ∈ [, T], i = , .
()

(iii) The matrix-valued processes Qi
t(�i

t)–(Qi
t)� (i = , ), are independent of t.

(iv) The following commutation relations among matrices hold true:

Qi
t
(
�i

t
)–(Qi

t
)�P = PQi

t
(
�i

t
)–(Qi

t
)�, t ∈ [, T], i = , , ()

where P = A�
t , C�

t , E�
t , G�

t , H�
t , I�

t , J�
t , Li

t , Mi
t , Ni

t , Oi
t , Ri, Si, Ki

t ,�i
t .

We note that Assumption  is easy to satisfy when the matrix-valued processes appear-
ing in the game system () and the cost functionals () are valued in R and independent
of t.

Theorem . Under Assumption , FBSDE-LQ-NZSSDG () is uniquely solvable. More-
over, (u(·), u(·)) defined by () is the unique Nash equilibrium point of Problem (LQ
NZSSDG).
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Proof Due to Theorem ., we only need to prove the existence and uniqueness of FBSDE-
LQ-NZSSDG (). To this aim, we introduce another FBSDE:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̃t = [Atx̃t– – (ζB)q̃t– – ζBζDr̃t – ζBζF
∫

E θ̃t(e)π (de) + ζBζK p̃t– + μt] dt
+ [Ctx̃t– – ζBζDq̃t– – (ζD)r̃t – ζDζF

∫

E θ̃t(e)π (de) + ζDζK p̃t– + νt] dWt

+
∫

E [Et(e)x̃t– – ζBζF q̃t– – ζDζF r̃t

– (ζF ) ∫

E θ̃t(e)π (de) + ζFζK p̃t– + ψt(e)]Ñ(dt, de),
–dỹt = [Gtx̃t– + Htỹt– + It z̃t +

∫

E Jt(e)k̃t(e)π (de)
– ζBζK q̃t– – ζDζK r̃t – ζFζK

∫

E θ̃t(e)π (de)
+ (ζK )p̃t– + φt] dt – z̃t dWt –

∫

E k̃t(e)Ñ(dt, de),
dp̃t = {H�

t p̃t– – [Q
t (�

t )–(Q
t )�M

t + Q
t (�

t )–(Q
t )�M

t ]ỹt–}dt
+ {I�

t p̃t– – [Q
t (�

t )–(Q
t )�N 

t + Q
t (�

t )–(Q
t )�N

t ]̃zt}dWt

+
∫

E {J�
t (e)p̃t– – [Q

t (�
t )–(Q

t )�O
t (e) + Q

t (�
t )–(Q

t )�O
t (e)]k̃t(e)}Ñ(dt, de),

–dq̃t = {A�
t q̃t– + C�

t r̃t +
∫

E E�
t (e)θ̃t(e)π (de) – G�

t p̃t– + [Q
t (�

t )–(Q
t )�L

t

+ Q
t (�

t )–(Q
t )�L

t ]x̃t–}dt – r̃t dWt –
∫

E θ̃t(e)Ñ(dt, de),
x̃ = a, p̃ = –[Q

t (�
t )–(Q

t )�S + Q
t (�

t )–(Q
t )�S]ỹ,

ỹT = ϒ x̃T + η, q̃T = [Q
t (�

t )–(Q
t )�R + Q

t (�
t )–(Q

t )�R]x̃T – ϒ�p̃T ,

()

and we shall show that the unique solvability of () is equivalent to that of ().
On the one hand, based on the commutation relations among matrices (see ()), if
(x, y, z, k, p, q, r, θ , p, q, r, θ) is a solution of FBSDE-LQ-NZSSDG (), then (x̃, ỹ, z̃, k̃,
p̃, q̃, r̃, θ̃ ) solves FBSDE (), where

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x̃t = xt , ỹt = yt , z̃t = zt , k̃t = kt ,
p̃t = Q

t (�
t )–(Q

t )�p
t + Q

t (�
t )–(Q

t )�p
t ,

q̃t = Q
t (�

t )–(Q
t )�q

t + Q
t (�

t )–(Q
t )�q

t ,
r̃t = Q

t (�
t )–(Q

t )�r
t + Q

t (�
t )–(Q

t )�r
t ,

θ̃t = Q
t (�

t )–(Q
t )�θ 

t + Q
t (�

t )–(Q
t )�θ

t .

On the other hand, when (x̃, ỹ, z̃, k̃, p̃, q̃, r̃, θ̃ ) is a solution of FBSDE (), we let x(·) = x̃(·),
y(·) = ỹ(·), z(·) = z̃(·), k(·, ·) = k̃(·, ·). From the existence and uniqueness results of SDEs and
BSDEs, the equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp
t = (H�

t p
t– – M

t ỹt–) dt + (I�
t p

t– – N 
t z̃t) dWt

+
∫

E (J�
t (e)p

t– – O
t (e)k̃t(e))Ñ(dt, de),

dp
t = (H�

t p
t– – M

t ỹt–) dt + (I�
t p

t– – N
t z̃t) dWt

+
∫

E (J�
t (e)p

t– – O
t (e)k̃t(e))Ñ(dt, de),

–dq
t = (A�

t q
t– + C�

t r
t +

∫

E E�
t (e)θ 

t (e)π (de) – G�
t p

t– + L
t x̃t–) dt – r

t dWt

–
∫

E θ 
t (e)Ñ(dt, de),

–dq
t = (A�

t q
t– + C�

t r
t +

∫

E E�
t (e)θ

t (e)π (de) – G�
t p

t– + L
t x̃t–) dt – r

t dWt

–
∫

E θ
t (e)Ñ(dt, de),

p
 = –Sỹ, q

T = Rx̃T – ϒ�p
T ,

p
 = –Sỹ, q

T = Rx̃T – ϒ�p
T ,
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admits a unique solution denoted by (p(·), q(·), r(·), θ (·, ·), p(·), q(·), r(·), θ(·, ·)). It is
easy to check (x̃(·), ỹ(·), z̃(·), p(·), q(·), r(·), θ (·, ·), p(·), q(·), r(·), θ(·, ·)) defined above is
a solution of FBSDE-LQ-NZSSDG (), i.e. the existence of () is equivalent to that of
(). Moreover, in a similar way, one can prove that the uniqueness of () is also equiva-
lent to that of ().

It is easy to check the coefficients of FBSDE () satisfy Assumption , Assumption ,
and Assumption . By Theorem ., FBSDE () admits a unique solution, then the same
is true for FBSDE-LQ-NZSSDG (). The proof is completed. �

Remark . In [–], when they studied nonzero-sum game problems, some stronger
assumptions, such as the diffusion of the forward equation in the game system () does
not depend on the controls u(·) and u(·) (i.e., Di = , i = , ) and so on, are imposed.
Here we relax this kind of conditions to ().
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