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Abstract
In this paper, we investigate the anti-periodic boundary value problem for first order
impulsive delay difference equations. To begin with, we establish two comparison
theorems. Then, by using these theorems, we prove the existence and uniqueness of
solutions for the linear problem. Finally, by using the method of upper and lower
solutions coupled with the monotone iterative technique, we obtain the new
existence results of extremal solutions. Meanwhile, an example is given to illustrate
the results obtained.
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1 Introduction
Impulsive differential equations are recognized as important models which describe many
evolution processes that abruptly change their state at a certain moment. Such equa-
tions have extensive application in economics, physics, chemical technology, medicine,
dynamic systems, optimal control, population dynamics and many other fields. The theory
of impulsive differential equations has drawn much attention in recent years and is much
richer than the corresponding theory of differential equations. For more information
about the theory of important differential equations, see [–] and the references therein.

Anti-periodic boundary value problem is an important branch of boundary value prob-
lem, and it has recently become an interesting area of investigation. The existence and
uniqueness of solutions for such a problem have received a great deal of attention, we re-
fer the readers to [–] and the references therein. For the case of differential equations,
Chen et al. [] investigated the anti-periodic solutions for first order differential equations,
Aftabizadeh et al. [] discussed the anti-periodic boundary value problem for second or-
der differential equations, Wang and Zhang [] considered the anti-periodic problem for
impulsive differential equations. Ahmad and Nieto [] studied anti-periodic problem for
impulsive functional differential equations. Moreover, for difference equations, a lot of re-
sults have been investigated in the literature [–]. For example, Liu [] studied higher
order functional difference equations with p-Laplacian. Immediately after this, he []
studied higher order nonlinear periodic difference equations. However, we noticed that
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all these known results are related to anti-periodic problem for differential equations and
to difference equations. Motivated by some recent work on anti-periodic problems and
difference equations with impulse (see [–]), in this paper, we attempt to propose some
results concerning the impulsive delay difference equations with anti-periodic boundary
conditions

⎧
⎪⎨

⎪⎩

�u(n) = f (n, u(n), u(θ (n))), n �= nk , n ∈ J ,
�u(nk) = Ik(u(nk)), k = , , . . . , p,
u() = –u(T),

()

where �u(n) = u(n + ) – u(n), f ∈ C(J × R
,R), θ ∈ C[J ,Z],  ≤ θ (n) ≤ n, J = [, T] =

{, , . . . , T}, Ik ∈ C(R,R) (k = , , . . . , p),  < n < n < · · · < np < T , T is a positive integer.
In [], He and Zhang investigated first order impulsive difference equations with peri-

odic boundary conditions. Wang and Wang [] analyzed first order impulsive difference
equations with linear boundary conditions. Zhang et al. [] investigated impulsive anti-
periodic boundary value problems for nonlinear qk-difference equations. To the best of
our knowledge, there are few results on the anti-periodic boundary value problem for im-
pulsive delay difference equations. Hence, we are concerned with the existence of solutions
for anti-periodic boundary value problem (). In Section , we introduce the concept of
upper and lower solutions and establish two comparison principles. In Section , we dis-
cuss the existence of solutions and uniqueness for the linear anti-periodic boundary value
problem. Moreover, by using the monotone iterative technique and the method of upper
and lower solutions, we obtain the existence theorem of extremal solutions for problem ().
Finally, an example is worked out to demonstrate the obtained results.

2 Comparison results
In this section, we introduce relative notation and some lemmas. Throughout this paper,
let N denote the set of all natural numbers and let � denote the set of real-valued functions
defined on J with the norm ‖u‖ = maxn∈J |u(n)| for u ∈ �. For α,β ∈ �, we write α ≤ β if
α(n) ≤ β(n) for all n ∈ J .

A function u ∈ � is said to be a solution of problem () if it satisfies ().

Definition . Functions α,β ∈ � are called lower and upper solutions of problem () if
⎧
⎪⎨

⎪⎩

�α(n) ≤ f (n,α(n),α(θ (n))), n �= nk , n ∈ J ,
�α(nk) ≤ Ik(α(nk)), k = , , . . . , p,
α() ≤ –α(T),

and
⎧
⎪⎨

⎪⎩

�β(n) ≥ f (n,β(n),β(θ (n))), n �= nk , n ∈ J ,
�β(nk) ≥ Ik(β(nk)), k = , , . . . , p,
β() ≥ –β(T).

Lemma . ([]) Assume that
(i) the sequence nk satisfies  ≤ n < n < · · · < nk < · · · with limk→∞ nk = ∞;
(ii) for k ∈N, n ≥ n,

{
�m(n) ≤ lnm(n) + qn, n �= nk ,
m(nk + ) ≤ bkm(nk) + ek ,
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where {ln} and {qn} are two real-valued consequences and ln > –, bk and ek are constants,
and bk ≥ . Then

m(n) ≤ m(n)
∏

n<nk <n
bk

∏

n<i<n,i�=nk ,k∈N
( + li) +

n–∑

i=n,i�=nk

∏

i<nk <n

bk
∏

i<s<n,s �=nk

( + ls)qi

+
∑

n<nk <n
ek

∏

nk <nj<n
bj

∏

nk <i<n,i�=nj ,j∈N
( + li).

Remark . When k is finite, Lemma . also holds. In this paper, we only consider this
case.

Next, we will establish two new comparison results which play an important role in the
monotone iterative technique.

Lemma . Let m ∈ � be such that
⎧
⎪⎨

⎪⎩

�m(n) + Mm(n) + Nm(θ (n)) ≤ , n �= nk , n ∈ J ,
�m(nk) ≤ –Lkm(nk), k = , , . . . , p,
m() ≤ ,

where N ≥ ,  ≤ Lk < M <  for k = , , . . . , p, and

N
T∑

i=,i�=nk

∏

i<nk <n

( – Lk)( – M)θ (i)–i– –
p∏

k=

( – Lk) < M – . ()

Then m(n) ≤  on J .

Proof Let v(n) = ( – M)–nm(n), n ∈ [, T],

�v(n) ≤ –N( – M)θ (n)–n–v
(
θ (n)

)
, ()

v(nk + ) ≤ ( – M)–( – Lk)v(nk). ()

Obviously, v(n) ≤  implies m(n) ≤ . So it suffices to show v(n) ≤  on J . Suppose on the
contrary that there exists n∗ ∈ J such that v(n∗) > . Since v() = m() ≤ , then n∗ ∈ (, T].
Let n̄ ∈ [, n∗) such that v(n̄) = infn∈[,n∗)v(n) = –λ ≤ . We suppose that n̄ �= nk (if n̄ = nk ,
the proof is similar). From () we have

�v(n) ≤ λN( – M)θ (n)–n–, n ∈ [
, n∗]. ()

By () and (), using Lemma ., we have for n ∈ [n̄, n∗]

v(n) ≤ v(n̄)
∏

n̄<nk <n

( – M)–( – Lk) + λN
n–∑

i=n̄,i�=nk

∏

i<nk <n

( – Lk)( – M)θ (i)–i–

≤ –λ

p∏

k=

( – M)–( – Lk) + λN
T∑

i=,i�=nk

∏

i<nk <n

( – Lk)( – M)θ (i)–i–.
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Let n = n∗, we can get

v
(
n∗) ≤ λ

{

N
T∑

i=,i�=nk

∏

i<nk <n

( – Lk)( – M)θ (i)–i– –
p∏

k=

( – M)–( – Lk)

}

= λ( – M)–

{

N
T∑

i=,i�=nk

∏

i<nk <n

( – Lk)( – M)θ (i)–i– –
p∏

k=

( – Lk)

}

< ,

which is a contradiction. Hence v(n) ≤  on J , this completes the proof. �

Lemma . Let () hold and m ∈ �,

⎧
⎪⎨

⎪⎩

�m(n) + Mm(n) + Nm(θ (n)) ≤ , n �= nk , n ∈ J ,
�m(nk) ≤ –Lkm(nk), k = , , . . . , p,
m() ≤ –m(T),

()

where N ≥ ,  ≤ Lk < M <  for k = , , . . . , p.
Then m(n) ≤  on J .

Proof Suppose on the contrary that m(n) >  for some n ∈ J . Then there are two cases as
follows.

Case : There exists n∗ ∈ J such that m(n∗) >  and m(n) ≥  for all n ∈ J . In this
case, () implies �m(n) ≤  and m(nk + ) ≤ ( – Lk)m(nk) ≤ m(nk), k = , , . . . , p. So
m(n) is a nonincreasing function. Then we have m() ≥ m(T). Since m() ≤ –m(T) and
m(n) ≥  for all n ∈ J , we get m() = m(T) = , then m(n) ≡ , which is a contradiction
with m(n∗) > .

Case : There exist n∗ and n∗ such that m(n∗) >  and m(n∗) < . The proof demonstrates
that m() ≤ , so that we can apply Lemma . and affirm that m(n) ≤  on J . If m() > ,
then m(T) < . Let v(n) = ( – M)–nm(n) on J , we get v() > , v(T) < , v(n∗) > , v(n∗) < .
Set minn∈J v(n) = –λ, then λ > . Without loss of generality, we shall suppose v(n∗) = –λ

(if for some k such that v(nk) = –λ, the proof is similar), we have

⎧
⎪⎨

⎪⎩

�v(n) ≤ –N( – M)θ (n)–n–v(θ (n)), n �= nk , n ∈ J ,
v(nk + ) ≤ ( – M)–( – Lk)v(nk), k = , , . . . , p,
v() ≤ –v(T)( – M)T .

()

If n∗ < n∗, using () and Lemma ., for n ∈ [n∗, n∗], we obtain

v(n) ≤ v(n∗)
∏

n∗<nk <n
( – M)–( – Lk) + λN

n–∑

i=n∗ ,i�=nk

∏

i<nk <n

( – Lk)( – M)θ (i)–i–

≤ –λ

p∏

k=

( – M)–( – Lk) + λN
T∑

i=,i�=nk

∏

i<nk <n

( – Lk)( – M)θ (i)–i–.
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Let n = n∗, we get

v
(
n∗) ≤ λ

{

N
T∑

i=,i�=nk

∏

i<nk <n

( – Lk)( – M)θ (i)–i– –
p∏

k=

( – M)–( – Lk)

}

= λ( – M)–

{

N
T∑

i=,i�=nk

∏

i<nk <n

( – Lk)( – M)θ (i)–i– –
p∏

k=

( – Lk)

}

< ,

which is a contradiction.
If n∗ > n∗, using () and Lemma ., for n ∈ [n∗, T], we get

v(n) ≤ v(n∗)
∏

<nk <n

( – M)–( – Lk) + λN
n–∑

i=,i�=nk

∏

i<nk <n

( – Lk)( – M)θ (i)–i–.

Let n = T , it then follows from () that

v(T) ≤ v(n∗)
∏

<nk <n

( – M)–( – Lk) + λN
n–∑

i=,i�=nk

∏

i<nk <n

( – Lk)( – M)θ (i)–i–

≤ λ

{

N
T∑

i=,i�=nk

∏

i<nk <n

( – Lk)( – M)θ (i)–i– –
p∏

k=

( – M)–( – Lk)

}

= λ( – M)–

{

N
T∑

i=,i�=nk

∏

i<nk <n

( – Lk)( – M)θ (i)–i– –
p∏

k=

( – Lk)

}

< –λ = v(n∗),

which is a contradiction with the definition of v(n∗). So m() ≤ . By Lemma ., we get
m(n) ≤  on J , the proof is complete. �

3 Main results
Let us consider the linear problem of () as follows:

⎧
⎪⎨

⎪⎩

�u(n) + Mu(n) + Nu(θ (n)) = σ (n), n �= nk , n ∈ J ,
�u(nk) = –Lku(nk) + γk , k = , , . . . , p,
u() = –u(T),

()

where N ≥ ,  ≤ Lk < M < , γk ∈R, σ ∈ C(J ,R).

Lemma . A function u ∈ � is a solution of () if and only if u is a solution of the following
impulsive summation equation:

u(n) =
T–∑

j=,j �=nk

G(n, j)
(
σ (j) – Nu

(
θ (j)

))
+

∑

<nk≤T–

G(n, nk)
[
(M – Lk)u(nk) + γk

]
, ()

where

G(n, j) =


 + ( – M)T

{ (–M)n

(–M)j+ ,  ≤ j ≤ n – ,
–(–M)T+n

(–M)j+ , n ≤ j ≤ T – .
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Proof Assume that u ∈ � is a solution of (). Set v(n) = u(n)
(–M)n , n ∈ J . From (), we see that

v(n) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

v(n + ) = v(n) + σ (n)–Nv(θ (n))(–M)θ (n)

(–M)n+ , n �= nk , n ∈ J ,
�v(nk) = M–Lk

–M v(nk) + γk
(–M)nk + , k = , , . . . , p,

v() = –v(T)( – M)T .

()

By using (), we have

v(n) = v() +
n–∑

j=,j �=nk

σ (j) – Nv(θ (j))( – M)θ (j)

( – M)j+

+
∑

<nk≤n–

(
M – Lk

 – M
v(nk) +

γk

( – M)nk +

)

. ()

If we set n = T in (), then we get

v(T) = v() +
T–∑

j=,j �=nk

σ (j) – Nv(θ (j))( – M)θ (j)

( – M)j+

+
∑

<nk≤T–

(
M – Lk

 – M
v(nk) +

γk

( – M)nk +

)

. ()

From the boundary condition v(T) = –v()
(–M)T , we obtain

v() = –
( – M)T

 + ( – M)T

[ T–∑

j=,j �=nk

σ (j) – Nv(θ (j))( – M)θ (j)

( – M)j+

+
∑

<nk≤T–

(
M – Lk

 – M
v(nk) +

γk

( – M)nk +

)]

. ()

Substituting () into () and using v(n) = u(n)
(–M)n , n ∈ J , we have

u(n)
( – M)n =


 + ( – M)T

( n–∑

j=,j �=nk

σ (j) – Nu(θ (j))
( – M)j+ +

∑

<nk≤n–

(M – Lk)u(nk) + γk

( – M)nk +

)

–
( – M)T

 + ( – M)T

( T–∑

j=n,j �=nk

σ (j) – Nu(θ (j))
( – M)j+ +

∑

n<nk≤T–

(M – Lk)u(nk) + γk

( – M)nk +

)

.

Let

G(n, j) =


 + ( – M)T

{ (–M)n

(–M)j+ ,  ≤ j ≤ n – ,
–(–M)T+n

(–M)j+ , n ≤ j ≤ T – ,

we see that u is a solution of (). The proof is complete. �
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Lemma . Assume that constants  < M < , N ≥ ,  ≤ Lk < , γk ∈R, σ ∈ C(J ,R), and


 + ( – M)T

(

TN +
p∑

k=

|M – Lk|
)

< . ()

Then () has a unique solution.

Proof Define an operator F : � → � by

(Fu)(n) =
T–∑

j=,j �=nk

G(n, j)
(
σ (j) – Nu

(
θ (j)

))
+

∑

<nk≤T–

G(n, nk)
[
(M – Lk)u(nk) + γk

]
.

For any u, u ∈ �, we have

∣
∣Fu(n) – Fu(n)

∣
∣ ≤

T–∑

j=,j �=nk

∣
∣G(n, j)

∣
∣
∣
∣N

(
u

(
θ (j)

)
– u

(
θ (j)

))∣
∣

+
∑

<nk≤T–

∣
∣G(n, nk)

∣
∣
∣
∣(M – Lk)

(
u(nk) – u(nk)

)∣
∣

≤ 
 + ( – M)T

(

TN +
p∑

k=

|M – Lk|
)

‖u – u‖.

Hence, ‖Fu(n) – Fu(n)‖ = maxn∈J |Fu(n) – Fu(n)| = τ‖u – u‖, where

τ =


 + ( – M)T

(

TN +
p∑

k=

|M – Lk|
)

< .

By the Banach contraction principle, F has a unique fixed point. The proof is complete.
�

Theorem . Let the following conditions hold:

(A) Functions α,β ∈ � are lower and upper solutions for () with α ≤ β .
(A) There exist N ≥ ,  ≤ Lk < M <  for k = , , . . . , p such that the function f ∈ C(J ×

R
,R) satisfies

f (n, x, y) – f (n, u, v) ≥ –M(x – u) – N(y – v),

where α(n) ≤ u ≤ x ≤ β(n), α(θ (n)) ≤ v(θ (n)) ≤ y(θ (n)) ≤ β(θ (n)), n ∈ J .
(A) The functions Ik ∈ C(R,R) satisfy

Ik(x) – Ik(y) ≥ –Lk(x – y),

where α(nk) ≤ y ≤ x ≤ β(nk),  ≤ Lk < , k = , , . . . , p.
(A)

N
T∑

i=,i�=nk

∏

i<nk <T

( – Lk)( – M)θ (i)–i– –
p∏

k=

( – Lk) < M – .
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(A)


 + ( – M)T

(

TN +
p∑

k=

|M – Lk|
)

< .

Then there exists a solution u of problem () such that α(n) ≤ u(n) ≤ β(n) on J .

Proof We consider the following modified problem:

⎧
⎪⎨

⎪⎩

�u(n) + Mu(n) + Nu(θ (n)) = σq(n), n �= nk , n ∈ J ,
�u(nk) = –Lku(nk) + dk , k = , , . . . , p,
u() = –u(T),

()

where

σq(n) = f
(
n, q

(
n, u(n)

)
, q

(
θ (n), u

(
θ (n)

)))
+ Mq

(
n, u(n)

)
+ Nq

(
θ (n), u

(
θ (n)

))
,

dk = Ik
(
q
(
nk , u(nk)

))
+ Lkq

(
nk , u(nk)

)
,

q
(
n, u(n)

)
= max

{
α(n), min

{
u,β(n)

}}
for n ∈ J .

We can easily see that if α(n) ≤ u(n) ≤ β(n) on J , then u is a solution of () if and only if
u is a solution of (). Indeed, suppose that u ∈ � is a solution of (), we now prove that
α(n) ≤ u(n) on J . Set m(n) = α(n) – u(n), n ∈ J . Owing to (A)-(A), we acquire

�m(n) = �α(n) – �u(n)

≤ f
(
n,α(n),α

(
θ (n)

))
–

[
–Mu(n) – Nu

(
θ (n)

)

+ f
(
n, q

(
n, u(n)

)
, q

(
θ (n), u

(
θ (n)

)))
+ Mq

(
n, u(n)

)
+ Nq

(
θ (n), u

(
θ (n)

))]

≤ –Mm(n) – Nm
(
θ (n)

)
,

�m(nk) = �α(nk) – �u(nk)

≤ Ik
(
α(nk)

)
– Ik

(
q
(
nk , u(nk)

))
– Lkq

(
nk , u(nk)

)
+ Lku(nk)

≤ –Lkm(nk),

and

m() = α() – u() ≤ –α(T) + u(T) = –m(T).

By Lemma ., we have m(n) ≤  on J , i.e., α(n) ≤ u(n) on J . Similarly, we can show that
u(n) ≤ β(n) on J .

Next, we need to prove that problem () has a solution. To do this, we write problem
() in the following way by Lemma .:

u(n) =
T–∑

j=,j �=nk

G(n, j)
(
σ (j) – Nu

(
θ (j)

))
+

∑

<nk≤T–

G(n, nk)
[
(M – Lk)u(nk) + dk

]
.
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We define the continuous and compact operator A : � → � by

[Au](n) =
T–∑

j=,j �=nk

G(n, j)
(
σ (j) – Nu

(
θ (j)

))

+
∑

<nk≤T–

G(n, nk)
[
(M – Lk)u(nk) + dk

]
, n ∈ J .

The continuity of f and the definition of q imply that σq and dk are bounded. We can
choose constants h >  and w >  such that |σq| ≤ h, |dk| ≤ w. For λ ∈ (, ), we find that
any solution of u = λAu satisfies

‖u‖ = λ‖Au‖

≤ max
n∈J

T–∑

j=,j �=nk

∣
∣G(n, j)

∣
∣
[∣
∣σq(j)

∣
∣ + N

∣
∣u

(
θ (j)

)∣
∣
]

+ max
n∈J

∑

<nk≤T–

∣
∣G(n, nk)

∣
∣
[|M – Lk|

∣
∣u(nk)

∣
∣ + |dk|

]

≤ hT
 + ( – M)T +

TN
 + ( – M)T ‖u‖ +

∑p
k= |M – Lk|

 + ( – M)T ‖u‖ +
pw

 + ( – M)T .

Then by (A) we have

‖u‖ ≤
(

 –


 + ( – M)T

(

TN +
p∑

k=

|M – Lk|
))–(

hT + pw
 + ( – M)T

)

.

From the Schaefer fixed-point theorem,A has at least a fixed point. It is clear that this fixed
point is the solution of (). Such a solution lies between α and β and in consequence is a
solution of (). The proof is complete. �

Theorem . Let all assumptions of Theorem . hold. Then there exist monotone se-
quences {αj(n)}, {βj(n)} with α = α, β = β such that limj→∞ αj(n) = ρ(n), limj→∞ βj(n) =
r(n) uniformly on J , and ρ(n), r(n) are the extremal solutions of problem ().

Proof Let

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�αj(n) + Mαj(n) + Nαj(θ (n))
= f (n,αj–(n),αj–(θ (n))) + Mαj–(n) + Nαj–(θ (n)), n �= nk , n ∈ J ,

�αj(nk) + Lkαj(nk) = Ik(αj–(nk)) + Lkαj–(nk), k = , , . . . , p,
αj() = –αj(T),

()

and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�βj(n) + Mβj(n) + Nβj(θ (n))
= f (n,βj–(n),βj–(θ (n))) + Mβj–(n) + Nβj–(θ (n)), n �= nk , n ∈ J ,

�βj(nk) + Lkβj(nk) = Ik(βj–(nk)) + Lkβj–(nk), k = , , . . . , p,
βj() = –βj(T),

()
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for j = , , . . . , where α = α, β = β . It follows from Lemma . that problems () and ()
have a unique solution, respectively.

First, we show that α ≤ α ≤ β ≤ β.
Let m = α – α, then owing to (A) and α() = –α(T), we obtain

�m(n) = �α(n) – �α(n)

≤ f
(
n,α(n),α

(
θ (n)

))
–

[
–Mα(n) – Nα

(
θ (n)

)

+ f
(
n,α(n),α

(
θ (n)

))
+ Mα(n) + Nα

(
θ (n)

)]

≤ –Mm(n) – Nm
(
θ (n)

)
,

�m(nk) = �α(nk) – �α(nk)

≤ Ik
(
α(nk)

)
–

[
Ik

(
α(nk)

)
+ Lkα(nk) – Lkα(nk)

]

≤ –Lkm(nk),

and

m() = α() – α() ≤ –α(T) + α(T) = –m(T).

It then follows from Lemma . that we have m(n) ≤  on J , which implies α(n) ≤ α(n)
for n ∈ J . Similarly, we get β(n) ≤ β(n) on J .

Next, take m = α – β, by using (A), (A), we have

�m(n) + Mm(n) + Nm
(
θ (n)

)

= �α(n) + Mα(n) + Nα
(
θ (n)

)
– �β(n) – Mβ(n) – Nβ

(
θ (n)

)

≤ f
(
n,α(n),α

(
θ (n)

))
+ Mα(n) + Nα

(
θ (n)

)
– f

(
n,β(n),β

(
θ (n)

))

– Mβ(n) – Nβ
(
θ (n)

) ≤ .

Noticing α ≤ β and (A), we get

�m(nk) = –Lkα(nk) + Ik
(
α(nk)

)
+ Lkα(nk) – Ik

(
β(nk)

)
– Lkβ(nk)

≤ –Lkm(nk),

m() = α() – β() = –α(T) + β(T) = –m(T).

Again by Lemma . we get m(n) ≤  on J , that is, α(n) ≤ β(n) for all n ∈ J . Thus we get
α ≤ α ≤ β ≤ β. Continuing this process, by induction, we can get the sequences {αj(n)}
and {βj(n)} such that

α ≤ α ≤ · · · ≤ αj ≤ · · · ≤ βj ≤ · · · ≤ β ≤ β on J .

Clearly, the sequences {αj(n)}, {βj(n)} are uniformly bounded and equi-continuous.
Since they are monotone sequences, by the Ascoli-Arzela theorem, we can get that the
entire sequences {αj(n)} and {βj(n)} converge uniformly and monotonically on J with
limj→∞ αj(n) = ρ(n) and limj→∞ βj(n) = r(n).



Wang and Wang Advances in Difference Equations  (2015) 2015:93 Page 11 of 13

Obviously ρ , r are the solutions of (). Next we prove that ρ , r are extremal solutions
of (), let u ∈ � be any solutions of problem () such that α ≤ u ≤ β. Suppose that there
exists a positive integer j such that αj ≤ u ≤ βj on J . Setting m = αj+ – u, we have

�m(n) = �αj+(n) – �u(n)

≤ f
(
n,αj(n),αj

(
θ (n)

))
– Mαj+(n) – Nαj+

(
θ (n)

)

– f
(
n, u(n), u

(
θ (n)

))
+ Mαj(n) + Nαj

(
θ (n)

)

≤ – M
(
αj+(n) – u(n)

)
– N

(
αj+

(
θ (n)

)
– u

(
θ (n)

))

= – Mm(n) – Nm
(
θ (n)

)
, n �= nk , n ∈ J ,

�m(nk) = �αj+(nk) – �u(nk)

= Ik
(
αj(nk)

)
– Ik

(
u(nk)

)
– Lkαj+(nk) + Lkαj(nk)

≤ –Lkm(nk), k = , , . . . , p,

m() = αj+() – u() = –αj+(T) + u(T) = –m(T).

By Lemma ., m(n) ≤  on J , i.e., αj+(n) ≤ u(n) n ∈ J . Similarly, one derives αj+(n) ≤
u(n) ≤ βj+(n) on J . Since α(n) ≤ u(n) ≤ β(n) on J , by induction we see that αj(n) ≤ u(n) ≤
βj(n) on J for every j. Taking the limit as j → ∞, we conclude ρ(n) ≤ u(n) ≤ r(n) on J . The
proof is then finished. �

Example . Consider the equations

⎧
⎪⎨

⎪⎩

�u(n) = f (n, u(n), u(θ (n))) = –u(n) – 
 u( 

 n) + –n

 , n ∈ Z[, ], n �= n,
�u(nk) = – 

 u(n), n = ,
u() = –u().

()

It is easy to verify that α = – 
 is a lower solution and β(n) = 

 ( – –n) is an upper
solution for (). Indeed,

�β(n) =



(
–n – –n–) ≥ –

[



(
 – –n)

]

–



· 


(
 – – 

 n) +



· –n,

�β() =



(
– – –) > –




· 


(
 – –),

β() =



( – ) > –




(
 – –) = –β(),

f (n, x, y) – f (n, u, v) = –
(
x – u) –




(y – v) ≥ –



(x – u) –



(y – v),

for α ≤ u ≤ x ≤ β . Taking M = 
 , N = 

 , Lk = 
 , we get

p∏

k=

( – Lk) + M –  =



+



–  =



,
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∑

i=,i�=nk

∏

i<nk <

( – Lk)( – M)– 
 i– =




∑

i=,i�=nk

∏

i<nk <




·
(




)– 
 i–

=




∑

i=

(



)– 
 i–

+




∑

i=




·
(




)– 
 i–

<



,

which shows that condition (A) is satisfied, and


 + ( – 

 )

(

 · 


+
p∑

k=

(



–



))

< ,

which shows that condition (A) is satisfied. Hence, by Theorem ., we obtain the exis-
tence of monotone sequences that converge to the extremal solutions of () in a function
interval contained in [α,β].
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