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time scales,

�
ϕp

�
x�(t)

��∇ + λf
�
t,x(t),x�(t)

�
= , t ∈ (,T)T, ()

with integral boundary condition

x�() = , αx(T) – βx() =
� 

T
g(s)x(s)∇s. ()

By using the Legget-Williams fixed point theorem, they obtained some criteria for the
existence of at least three positive solutions to problems ()-().

In [], Han and Kang considered the existence of multiple positive solutions for the
following third-order p-Laplacian dynamic equation on time scales:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(�p(u��(t)))∇ + f (t,u(t)) = , t ∈ [a,b],
αu(ρ(a)) – βu�(ρ(a)) = ,
γu(b) + δu�(b) = ,
u��(ρ(a)) = .

()

By using fixed point theorems in cones, they obtained the existence criteria of at least two
positive solutions to problem ().

However, to the best of our knowledge, there is no paper published on the existence of
multiple positive solutions to nonlinear third-order boundary value problems with inte-
gral boundary conditions on time scales. This paper attempts to fill this gap in the litera-
ture.

Motivated by the above, in this paper, we are concerned with the following third-order
boundary value problem with integral boundary conditions on time scale T:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(φ(–u��(t)))� + q(t)f (t,u(t),u�(t)) = , t ∈ [, ]T,
au() – bu�() =

� 
 g(s,u(s))�s,

cu() + du�() =
� 

 g(s)(u(s))�s,
u��() = ,

()

where T is a time scale,  and  are points in T, [, ]T := [, ]∩T, φ : R → R is an increas-
ing and positive homeomorphism (see Definition .) with φ() = .

Our main purpose of this paper is to study the existence of multiple positive solutions
to (). Our method of this paper is based on some recent fixed point theorems derived by
Bai and Ge (see []). As an application, we give an example to illustrate our results.

Throughout this paper, we assume that the following conditions are satisfied:

(C) a,b, c,d ∈ [, +∞) with ρ := ac + ad + bc > ,
(C) f ∈ C([, ]T × R+ × R+, R+) with f (t, , ) �=  for all t ∈ [, ]T,
(C) g ∈ C([, ]T × R+, R+), g ∈ C([, ]T, R+) and q ∈ C([, ]T, R+).
(C) ρ –

� 
 g(s)(b + as)�s > .

2 Preliminaries and statements
In this section, we provide some background materials from theory of cones in Banach
spaces. The following definitions can be found in the book by Deimling [] as well as in
the book by Guo and Lakshmikantham [].
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Definition . Let E be a real Banach space. A nonempty closed convex set P ⊂ E is called
a cone if it satisfies the following two conditions:

(i) x ∈ P, λ ≥  implies λx ∈ P;
(ii) x ∈ P, –x ∈ P implies x = .

Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if y – x ∈ P.

Definition . A map ψ is said to be a nonnegative continuous concave functional on a
cone P of a real Banach space E if ψ : P → [,∞) is continuous and

ψ
�
tx + ( – t)y

� ≥ tψ(x) + ( – t)ψ(y)

for all x, y ∈ P and t ∈ [, ]. Similarly, we say that a map α is a nonnegative continuous
convex functional on a cone P of a real Banach space E if α : P → [,∞) is continuous and

α
�
tx + ( – t)y

� ≤ tα(x) + ( – t)α(y)

for all x, y ∈ P and t ∈ [, ].

Definition . A projection φ : R → R is called an increasing and positive homomor-
phism if the following conditions are satisfied:

(i) If x ≤ y, then φ(x) ≤ φ(y) for all x, y ∈ R;
(ii) φ is a continuous bijection, and its inverse mapping is also continuous;

(iii) φ(xy) = φ(x)φ(y) for all x, y ∈ R+, where R+ = [, +∞).

Let ψ be a nonnegative continuous concave functional on P, and α and β be nonnegative
continuous convex functionals on P. For nonnegative real numbers r, a, and l, we define
the following convex sets:

P(α, r;β , l) =
�
u ∈ P : α(u) < r,β(u) < l

�
,

P̄(α, r;β , l) =
�
u ∈ P : α(u) ≤ r,β(u) ≤ l

�
,

P(α, r;β , l;ψ ,a) =
�
u ∈ P : α(u) < r,β(u) < l,ψ(u) > a

�
,

P̄(α, r;β , l;ψ ,a) =
�
u ∈ P : α(u) ≤ r,β(u) ≤ l,ψ(u) ≥ a

�
.

To prove our main results, we need the following fixed point theorem, which comes
from Bai and Ge in [].

Lemma . [] Let P be a cone in real Banach space E. Assume that constants r, b, d, r,
l, and l satisfy  < r < b < d ≤ r and  < l ≤ l. If there exist two nonnegative continuous
convex functionals α and β on P and a nonnegative continuous concave functional ψ on P
such that:

(A) there exists M >  such that �u� ≤ Mmax{α(u),β(u)} for all u ∈ P;
(A) P(α, r;β , l) �= ∅ for any r >  and l > ;
(A) ψ(u) ≤ α(u) for all u ∈ P̄(α, r;β , l);

and if F : P̄(α, r;β , l) → P̄(α, r;β , l) is a completely continuous operator which satisfies

(B) {u ∈ P̄(α,d;β , l;ψ ,b : ψ(u) > b)} �= ∅, ψ(Fu) > b for u ∈ P̄(α,d;β , l;ψ ,b);
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(B) α(Fu) < r, β(Fu) < l for u ∈ P̄(α, r;β , l);
(B) ψ(Fu) > b for u ∈ P̄(α, r;β , l;ψ ,b) with α(Fu) > d,

then F has at least three different fixed points u, u, and u in P̄(α, r;β , l) with

u ∈ P(α, r;β , l), u ∈ �
P̄

�
α, r;β , l;ψ ,b : ψ(u) > b

��
,

u ∈ P̄(α, r;β , l) \ �
P̄(α, r;β , l;ψ ,b) ∪ P̄(α, r;β , l)

�
.

Let E = C�[, ] = {u and u� are continuous on [, ]T}. Then E is a Banach space with
respect to the norm

�u� = max


max
t∈[,]T

��u(t)
��, max
t∈[,]T

��u�(t)
��
�

.

Define

P =
�
u ∈ E : u(t) ≥ ,u�(t) ≥ ,u(t) is concave on [, ]T

�
.

Clearly, P is a cone.

Lemma . Assume that (C)-(C), and ρ –
� 

 g(s)(b + as)�s �=  hold. Then u ∈ E is a
solution of the boundary value problem () if and only if u(t) is a solution of the following
integral equation:

u(t) =
� 


G(t, s)φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s +

�
d + c( – t)

�
�f + (b + at)�f ,

where

G(t, s) =

ρ

�
(b + aσ (s))(d + c( – t)),  ≤ σ (s) ≤ t ≤ ,
(b + at)(d + c( – σ (s))),  ≤ t ≤ s≤ ,

()

�f :=

ρ

� 


g

�
s,u(s)

�
�s, ()

�f :=
�
ρ –

� 


g(s)(b + as)�s

�–�� 


g(s)�f (s)�s

+

ρ

�� 


g(s)

�
d + c( – s)

�
�s

�� 


g

�
s,u(s)

�
�s

�
, ()

�f (t) :=
� 


G(t, s)φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s.

Proof Let

u(t) =
� t




ρ

�
b + aσ (s)

��
d + c( – t)

�
φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s

+
� 

t


ρ

(b + at)
�
d + c

�
 – σ (s)

��
φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s

+
�
d + c( – t)

�
�f + (b + at)�f . ()
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Taking the �-derivative of (), we get

u�(t) = –
� t



c
ρ

�
b + aσ (s)

�
φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s

+
� 

t

a
ρ

�
d + c

�
 – σ (s)

��
φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s

– c�f + a�f .

It follows that

u��(t) =

ρ

�
–c

�
b + aσ (t)

�
– a

�
d + c

�
 – σ (t)

���

× φ–
�� 

t
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�

= –

ρ

(ac + ad + bc)φ–
�� 

t
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�

= –φ–
�� 

t
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
, ()

hence, u��() = –φ–() =  and

φ
�
–u��(t)

�
=

� 

t
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ ,

so

�
φ

�
–u��(t)

��� = –q(t)f
�
t,u(t),u�(t)

�
,

that is,

�
φ

�
–u��(t)

��� + q(t)f
�
t,u(t),u�(t)

�
= .

Furthermore, we have

u() =
� 



b
ρ

�
d + c

�
 – σ (s)

��
φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s + (d + c)�f + b�f ,

u�() =
� 



a
ρ

�
d + c

�
 – σ (s)

��
φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s – c�f + a�f ,

hence

au() – bu�() = ρ�f

=
� 


g

�
s,u(s)

�
�s. ()

Since

u() =
� 



d
ρ

�
b + aσ (s)

�
φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s + d�f + (b + a)�f ,
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u�() = –
� 



c
ρ

�
b + aσ (s)

�
φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s – c�f + a�f ,

we obtain

cu() + du�() = ρ�f

=
� 


g(ζ )

�� 


G(ζ , s)φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s

+
�
d + c( – ζ )

�
�f + (b + aζ )�f

�
�ζ . ()

From () and (), we find that �f and �f satisfy

⎧
⎪⎨

⎪⎩

�f = 
ρ

� 
 g(s,u(s))�s,

[ –
� 

 g(s)(d + c( – s))�s]�f + [ρ –
� 

 g(s)(b + as)�s]�f

=
� 

 g(s)�f (s)�s,

which implies that �f and �f are defined by () and (), respectively. The proof is com-
plete. �

Define an operator F : P → E by

(Fu)(t) =
� 


G(t, s)φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s

+
�
d + c( – t)

�
�f + (b + at)�f , ()

where G, �f , and �f are defined by (), (), and (), respectively.

Lemma . Assume that (C)-(C) hold. Then for u ∈ P, we have:
(i) (Fu)(t) is concave on [, ]T.

(ii) (Fu)(t) ≥  for t ∈ [, ]T.

Proof For u ∈ P:
(i) By the definition of F and similar to the proof of (), we have

(Fu)��(t) = –φ–
�� 

t
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
≤ , ()

so (Fu)�(t) is nonincreasing. This implies that (Fu)(t) is concave.
(ii) From () and (), we can verify that (Fu)(t) ≥  for t ∈ [, ]T.

The proof is complete. �

Lemma . Let (C)-(C) hold. Assume that

(C) c –
� 

 g(s)�s < .

Then (Fu)�(t) ≥  for u ∈ P and t ∈ [, ]T.
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Proof On the contrary, we assume that the inequality (Fu)�(t) <  holds for u ∈ P and
t ∈ [, ]T. By Lemma ., we see that (Fu)�(t) is nonincreasing on [, ]T. Hence

(Fu)�() ≤ (Fu)�(t), t ∈ [, ]T.

Similar to the proof of (), we easily obtain

c(Fu)() + d(Fu)�() =
� 


g(s)(Fu)(s)�s.

Hence

–
c
d

(Fu)() +

d

� 


g(s)(Fu)(s)�s = (Fu)�() ≤ (Fu)�(t) < .

Clearly, we have

(Fu)()
� 


g(s)�s =

� 


g(s)(Fu)()�s≤

� 


g(s)(Fu)(s)�s < c(Fu)(),

that is,

�
c –

� 


g(s)�s

�
(Fu)() > .

According to Lemma ., we have (Fu)() ≥ . So, c –
� 

 g(s)�s > . However, this con-
tradicts condition (C). Consequently, (Fu)�(t) ≥  for t ∈ [, ]T. The proof is complete.

�

Lemma . Suppose that (C)-(C) hold. Then F : P → P is a completely continuous op-
erator.

Proof From Lemmas . and . it follows that F : P → P is well defined. Next, we show
that F is completely continuous. To this end, we assume that m is a positive constant and
u ∈ P̄m = {u ∈ P : �u� ≤ m}. Note that the continuity of f (t,u(t),u�(t)) and q(t) guarantees
that there is an M >  such that q(t)f (t,u(t),u�(t)) ≤ φ(M) for all t ∈ [, ]T. Therefore,
according to Lemma . and Lemma .(i), we have

max
t∈[,]T

��(Fu)(t)
�� = (Fu)()

=
� 



d
ρ

�
b + aσ (s)

�
φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s

+ d�f + (b + a)�f

≤
� 



d
ρ

(b + a)φ–
�� 


q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s + d�f + (b + a)�f

≤
� 



d
ρ

(b + a)φ–
�� 


φ(M)�τ

�
�s + d�f + (b + a)�f

≤ dM
ρ

(b + a) + d�f + (b + a)�f
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and

max
t∈[,]T

��(Fu)�(t)
�� = (Fu)�()

=
� 



a
ρ

�
d + c

�
 – σ (s)

��
φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s

– c�f + a�f

≤
� 



a
ρ

(d + c)φ–
�� 


q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s + a�f

≤
� 



a
ρ

(d + c)φ–
�� 


φ(M)�τ

�
�s + a�f

≤ aM
ρ

(d + c) + a�f ,

which imply that FP̄m is uniformly bounded. In addition, since FP̄m is uniformly bounded,
according to the mean value theorem (Theorem . in []), one can easily see that, for
u ∈ P̄m, t, t ∈ [, ]T,

��(Fu)(t) – (Fu)(t)
�� → , as t – t → . ()

From (), for all u ∈ P̄m, t ∈ [, ]T, it follows that

(Fu)�(t) = (Fu)�() –
� t


φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s.

Hence, for all u ∈ P̄m, t, t ∈ [, ]T, we have

��(Fu)�(t) – (Fu)�(t)
�� =

����

� t


φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s

–
� t


φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s

����

=
����

� t

t
φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s

����

≤
����

� t

t
φ–�φ(M)

�
�s

����

= M|t – t|,

which implies that

��(Fu)�(t) – (Fu)�(t)
�� → , as t – t → . ()

Therefore, () and () imply that Fu is equicontinuous for all u ∈ P̄m. By applying the
Arzela-Ascoli theorem on time scales, we can see that FP̄m is relatively compact. In view
of Lebesgue’s dominated convergence theorem on time scales, it is clear that F is a con-
tinuous operator. Hence, F : P → P is completely continuous operator. The proof is com-
plete. �
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3 Main results
For u ∈ P, we define

α(u) = max
t∈[,]T

��u(t)
�� = u(), β(u) = max

t∈[,]T

��u�(t)
�� = u�(),

ψ(u) = min
t∈[ω,]T

u(t) = u(ω).

It is easy to see that α,β : P → [,∞) are nonnegative continuous convex functionals with
�u� = max{α(u),β(u)}; ψ : P → [,∞) is nonnegative concave functional. We have ψ(u) ≤
α(u) for u ∈ P, this means that assumptions (A)-(A) in Lemma . hold.

Suppose that ω ∈ T with  < ω < . For convenience, we introduce the following nota-
tions:

� :=
� ω


G(ω, s)φ–

�� 

ω

q(τ )�τ

�
�s,

�(s) :=
� 


G(s,γ )φ–

�� 


q(τ )�τ

�
�γ ,

� :=
� 



a
ρ

(d + c)φ–
�� 


q(τ )�τ

�
�s

+ a
�
ρ –

� 


g(s)(b + as)�s

�– � 


g(s)

�
�(s) +


ρ

�
d + c( – s)

��
�s,

E :=
� 



d
ρ

(a + b)φ–
�� 


q(τ )�τ

�
�s +

d
ρ

+ (b + a)
�
ρ –

� 


g(s)(b + as)�s

�– � 


g(s)

�
�(s) +


ρ

�
d + c( – s)

��
�s.

Theorem . Assume that (C)-(C) hold. If there exist constants r, r, r, l, and l with
 < r < r < r

ω
≤ r,  < l ≤ l such that r

�
≤ min{ r

E , l
�

}. Suppose further that f , g satisfy
the following three conditions:

(i) f (t,u, v) ≤ min{φ( r
E ),φ( l

�
)},

� 
 g(s,u)�s ≤ min{ r

E , l
�

}, for
(t,u, v) ∈ [, ]T × [, r] × [–l, l];

(ii) f (t,u, v) > φ( r
�

) for (t,u, v) ∈ [ω, ]T × [r, r
ω

] × [–l, l];
(iii) f (t,u, v) < min{φ( r

E ),φ( l
�

)},
� 

 g(s,u)�s ≤ min{ r
E , l

�
}, for

(t,u, v) ∈ [, ]T × [, r] × [–l, l].
Then problem () has at least three nonnegative solutions u, u, u, which satisfy

max
t∈[,]T

�
u(t)

�
< r, max

t∈[,]T

��u�
 (t)

�� < l;

r < min
t∈[ω,]T

�
u(t)

� ≤ max
t∈[,]T

�
u(t)

� ≤ r, max
t∈[,]T

��u�
 (t)

�� ≤ l;

min
t∈[ω,]T

�
u(t)

�
< r, r < max

t∈[,]T

�
u(t)

�
<

r
ω

, l < max
t∈[,]T

��u�
 (t)

�� ≤ l.

Proof The boundary value problem () has a solution u = u(t) if and only if u solves the
operator equation Fu = u. Thus, we set out to verify that the operator F satisfies the gen-
eralization of the Leggett-Williams fixed point theorem, which will prove the existence of
a fixed point of F .
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We first prove that if assumption (i) is satisfied, then F : P̄(α, r;β , l) → P̄(α, r;β , l).
Let u ∈ P̄(α, r;β , l), then

α(u) = max
t∈[,]T

��u(t)
�� ≤ r, β(u) = max

t∈[,]T

��u�(t)
�� ≤ l,

and assumption (i) implies

f
�
t,u(t),u�(t)

� ≤ min

�
φ

�
r

E

�
,φ

�
l
�

��
, t ∈ [, ]T.

For all u ∈ P, we have Fu ∈ P, therefore,

α(Fu) = max
t∈[,]T

��(Fu)(t)
�� = (Fu)()

=
� 



d
ρ

�
b + aσ (s)

�
φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s + d�f + (b + a)�f

≤
� 



d
ρ

�
b + aσ (s)

�
φ–

�� 


q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s + d�f + (b + a)�f

≤
� 



d
ρ

(b + a)φ–
�� 


q(τ )φ

�
r

E

�
�τ

�
�s +

dr

Eρ

+ (a + b)
r

E

�
ρ –

� 


g(s)(b + as)�s

�– � 


g(s)

�
�(s) +


ρ

�
d + c( – s)

��
�s

=
r

E

�� 



d
ρ

(b + a)φ–
�� 


q(τ )�τ

�
�s +

d
ρ

+ (a + b)
�
ρ –

� 


g(s)(b + as)�s

�– � 


g(s)

�
�(s) +


ρ

�
d + c( – s)

��
�s

�

= r

and

β(Fu) = max
t∈[,]T

��(Fu)�(t)
�� = (Fu)�()

=
� 



a
ρ

�
d + c

�
 – σ (s)

��
φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s – c�f + a�f

≤
� 



a
ρ

�
d + c

�
 – σ (s)

��
φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s + a�f

≤
� 



a
ρ

�
d + c

�
 – σ (s)

��
φ–

�� 


q(τ )φ

�
l
�

�
�τ

�
�s

+
al
�

�
ρ –

� 


g(s)(b + as)�s

�– � 


g(s)

�
�(s) +


ρ

�
d + c( – s)

��
�s

=
l
�

�� 



a
ρ

�
d + c

�
 – σ (s)

��
φ–

�� 


q(τ )�τ

�
�s

+ a
�
ρ –

� 


g(s)(b + as)�s

�– � 


g(s)

�
�(s) +


ρ

�
d + c( – s)

��
�s

�

= l.

Thus, F ∈ P̄(α, r;β , l) and F(P̄(α, r;β , l)) ⊂ P̄(α, r;β , l).
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Secondly, we show that condition (B) of Lemma . holds. We let u(t) = r
ω

for t ∈ [, ]T.
It is obvious that u(t) = r

ω
∈ P̄(α, r

ω
;β , l) and ψ(u) = r

ω
> r, and consequently

�
u ∈ P̄

�
α,

r
ω

;β , l;ψ , r
�

: ψ(u) > r
�

�= ∅.

For all u ∈ P̄(α, r
ω

;β , l;ψ , r), we have r ≤ u(t) ≤ r
ω

, |u�(t)| ≤ l for t ∈ [ω, ]T. Thus, by
assumption (ii) we get

f
�
t,u(t),u�(t)

�
> φ

�
r
�

�
, for t ∈ [ω, ]T.

From the definition of the functional ψ we see that

ψ(Fu) = min
t∈[ω,]T

��(Fu)(t)
�� = (Fu)(ω)

=
� 


G(ω, s)φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s

+
�
d + c( – ω)

�
�f + (b + aω)�f

≥
� 


G(ω, s)φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s

≥
� ω


G(ω, s)φ–

�� 

ω

q(τ )f
�
τ ,u(τ ),u�(τ )

�
�τ

�
�s

>
� ω


G(ω, s)φ–

�� 

ω

q(τ )φ
�
r
�

�
�τ

�
�s

=
r
�

� ω


G(ω, s)φ–

�� 

ω

q(τ )�τ

�
�s = r.

So, we obtain ψ(Fu) > r for u ∈ P̄(α, r
ω

;β , l;ψ , r). Therefore, condition (B) of Lemma .
is satisfied.

Thirdly, we show that the condition (B) of Lemma . is satisfied. For allu ∈ P̄(α, r;β , l),
we have  ≤ u(t) ≤ r, –l ≤ u�(t) ≤ l for t ∈ [, ]T. From assumption (iii) we obtain

f
�
t,u(t),u�(t)

�
< min

�
φ

�
r

E

�
,φ

�
l
�

��
, t ∈ [, ]T.

Thus

α(Fu) = max
t∈[,]T

��(Fu)(t)
�� = (Fu)()

=
� 



d
ρ

�
b + aσ (s)

�
φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s + d�f + (b + a)�f

≤
� 



d
ρ

�
b + aσ (s)

�
φ–

�� 


q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s + d�f + (b + a)�f

<
� 



d
ρ

�
b + aσ (s)

�
φ–

�� 


q(τ )φ

�
r

E

�
�τ

�
�s +

dr

ρE
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+ (b + a)
r

E

�
ρ –

� 


g(s)(b + as)�s

�– � 


g(s)

�
�(s) +


ρ

�
d + c( – s)

��
�s

=
r

E

�� 



d
ρ

(a + b)φ–
�� 


q(τ )�τ

�
�s +

d
ρ

+ (b + a)
�
ρ –

� 


g(s)(b + as)�s

�– � 


g(s)

�
�(s) +


ρ

�
d + c( – s)

��
�s

�

= r

and

β(Fu) = max
t∈[,]T

��(Fu)�(t)
�� = (Fu)�()

=
� 



a
ρ

�
d + c

�
 – σ (s)

��
φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s – c�f + a�f

≤
� 



a
ρ

�
d + c

�
 – σ (s)

��
φ–

�� 

s
q(τ )f

�
τ ,u(τ ),u�(τ )

�
�τ

�
�s + a�f

<
� 



a
ρ

(d + c)φ–
�� 


q(τ )φ

�
l
�

�
�τ

�
�s

+
al
�

�
ρ –

� 


g(s)(b + as)�s

�– � 


g(s)

�
�(s) +


ρ

�
d + c( – s)

��
�s

=
l
�

�� 



a
ρ

(d + c)φ–
�� 


q(τ )�τ

�
�s

+ a
�
ρ –

� 


g(s)(b + as)�s

�– � 


g(s)

�
�(s) +


ρ

�
d + c( – s)

��
�s

�

= l.

We get F : P̄(α, r;β , l) → P(α, r;β , l), which means that (B) in Lemma . is satisfied.
Finally, we show that

ψ(Fu) > b for u ∈ P̄(α, r;β , l;ψ ,b) with α(Fu) > d.

It is easy to see that (Fu)��(t) ≤  for any t ∈ [, ]T. Hence (Fu)� is a decreasing function
on [, ]T. This means that graph of Fu is concave down on (ω, )T. So, we have

(Fu)(ω) – (Fu)()
ω

≥ (Fu)() – (Fu)(),

namely,

(Fu)(ω) ≥ ω(Fu)() + ( – ω)(Fu)() ≥ ω(Fu)(). ()

For all u ∈ P̄(α, r;β , l;ψ , r) with α(Fu) > r
ω

and (), we have

ψ(Fu) = min
t∈[ω,]T

Fu(t) = Fu(ω) ≥ ωFu() = ω max
t∈[,]T

Fu(t) = ωα(Fu) > r.
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Therefore, condition (B) of Lemma . is satisfied. So, all the conditions of Lemma . are
satisfied. It follows from Lemma . and the assumption that f (t, , ) �=  on [, ]T that F
has at least three fixed points u, u, u satisfying

max
t∈[,]T

�
u(t)

�
< r, max

t∈[,]T

��u�
 (t)

�� < l;

r < min
t∈[ω,]T

�
u(t)

� ≤ max
t∈[,]T

�
u(t)

� ≤ r, max
t∈[,]T

��u�
 (t)

�� ≤ l;

min
t∈[ω,]T

�
u(t)

�
< r, r < max

t∈[,]T

�
u(t)

�
<

r
ω

, l < max
t∈[,]T

��u�
 (t)

�� ≤ l.

The proof is complete. �

If φ(x) = �p(x) = |x|p–x for some p > , where �–
p = �q, then () can be written as a BVP

with a p-Laplace operator:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(�p(–u��(t)))� + q(t)f (t,u(t),u�(t)) = , t ∈ [, ]T,
au() – bu�() =

� 
 g(s,u(s))�s,

cu() + du�() =
� 

 g(s)u(s)�s,
u��() = .

()

Then, by Theorem ., we have the following.

Corollary . Assume that (C)-(C) hold. If there exist constants r, r, r, l, and l with
 < r < r < r

ω
≤ r,  < l ≤ l such that r

�
≤ min{ r

E , l
�

}. Suppose further that f , g satisfy
the following three conditions:

(i) f (t,u, v) ≤ min{�p( r
E ),�p( l

�
)},

� 
 g(s,u)�s ≤ min{ r

E , l
�

}, for
(t,u, v) ∈ [, ]T × [, r] × [–l, l];

(ii) f (t,u, v) > �p( r
�

) for (t,u, v) ∈ [ω, ]T × [r, r
ω

] × [–l, l];
(iii) f (t,u, v) < min{�p( r

E ),�p( l
�

)},
� 

 g(s,u)�s≤ min{ r
E , l

�
}, for

(t,u, v) ∈ [, ]T × [, r] × [–l, l].
Then problem () has at least three nonnegative solutions u, u, u, which satisfy

max
t∈[,]T

�
u(t)

�
< r, max

t∈[,]T

��u�
 (t)

�� < l;

r < min
t∈[ω,]T

�
u(t)

� ≤ max
t∈[,]T

�
u(t)

� ≤ r, max
t∈[,]T

��u�
 (t)

�� ≤ l;

min
t∈[ω,]T

�
u(t)

�
< r, r < max

t∈[,]T

�
u(t)

�
<

r
ω

, l < max
t∈[,]T

��u�
 (t)

�� ≤ l.

4 An example
Let T = [, ]. Take q(t) = , a = , b = , c = 

 , and d =  for t ∈ [, ]. Consider the follow-
ing BVP:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(φ(–u��(t)))� + f (t,u(t),u�(t)) = , t ∈ [, ],
u() – u�() =

� 
 g(s,u(s))�s,


u() + u�() =

� 
 g(s)u(s)�s,

u��() = ,

()
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where

f (t,u, v) =

�
t

 + 
u

 + ( v
 ), u≤ ,

t
 + 

 + ( v
 ), u > ,

and

φ(u) = u, g(t,u) = tu +
�

u


�

t, g(t) = .

By calculating, we have ρ = 
 , and

G(t, s) =




�
( + s)( 

 – t
 ),  ≤ s ≤ t ≤ ,

( + t)( 
 – s

 ),  ≤ t ≤ s ≤ .

Set ω = 
 , then we obtain

� =



, � =
,
,

, E =
,
,

.

Clearly, assumptions (C)-(C) hold and f (t, , ) �=  on [, ]. We choose r = 
 , r = ,

r = , and l = 
 , l = . So  < r < r < r

ω
and  < l < l, and it is easy to check that

r
�

≤ min{ r
E , l

�
}. Now, we show that conditions (i)-(iii) are satisfied:

(i) f (t,u, v) ≤ . < . ≈ min{φ( r
E ),φ( l

�
)},� 

 g(s,u(s))�s ≤ � 
 (t + ( 

 )t)�s = . < . ≈ min{ r
E , l

�
}, for

(t,u, v) ∈ [, ] × [, ] × [– 
 , 

 ];
(ii) f (t,u, v) ≥ . > . ≈ φ( r

�
), for (t,u, v) ∈ [ 

 , ] × [, ] × [–, ];
(iii) f (t,u, v) ≤ . < . ≈ min{φ( r

E ),φ( l
�

)},� 
 g(s,u(s))�s ≤ � 



 t

�s ≈ . < . ≈ min{ r
E , l

�
}, for

(t,u, v) ∈ [, ] × [, 
 ] × [– 

 , 
 ].

From the above, we see that all the conditions of Theorem . are satisfied. Hence, by
Theorem ., BVP () has at least three nonnegative solutions u, u, u such that

max
t∈[,]T

�
u(t)

�
<




, max
t∈[,]T

��u�
 (t)

�� <



;

 < min
t∈[,]T

�
u(t)

� ≤ max
t∈[,]T

�
u(t)

� ≤ , max
t∈[,]T

��u�
 (t)

�� ≤ ;

min
t∈[ω,]T

�
u(t)

�
< ,




< max
t∈[,]T

�
u(t)

�
< ,




< max
t∈[,]T

��u�
 (t)

�� ≤ .
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