
Deng and Wei Advances in Difference Equations  (2015) 2015:103 
DOI 10.1186/s13662-015-0443-5

R E S E A R C H Open Access

Stability analysis for optimal control problems
governed by semilinear evolution equation
Hongyong Deng1 and Wei Wei1,2*

*Correspondence:
wwei@gzu.edu.cn
1Department of Mathematics,
Guizhou University, Guiyang,
550025, P.R. China
2Department of Mathematics,
Guizhou Minzu University, Guiyang,
550025, P.R. China

Abstract
In this paper, the stability of solutions of optimal control for the distributed parameter
system governed by a semilinear evolution equation with compact control set in the
space L1(0, T ; E) is discussed. The stability results for optimal control problems with
respect to the right-hand side functions are obtained by the theory of set-valued
mapping and the definition of essential solutions for optimal control problems.
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1 Introduction
The stability analysis of systems governed by differential equations in modern mathemat-
ics is very important for practical applications (see [, ]), especially in numerical compu-
tation (see [, ]).

In recent years, there has been growing interest in stability analysis of optimal control
problems for the ODE system or PDE system (see [, ]). But most of the results are based
on the existence and uniqueness of an optimal control for problems, there are only a small
number of articles discussing a stability analysis for optimal control problems without the
uniqueness in view of set-valued analysis. In recent years, Yu et al. discussed the stabil-
ity of optimal controls with respect to the right-hand side function based on set-valued
mapping (see []). But all results are established under the control admissible set U [, T]
assumed as the compact set of C([, T]; Rm) in the optimal control problem for an ODE
system. Moreover, we have done some work concerning the control admissible set U [, T]
assumed as the compact set of L(, T ; Rm) in order to include many cases of practical sit-
uations (see []). Therefore, it is natural for us to ask whether these results are still valid
for infinite dimensional controlled systems.

This paper studies the existence and stability properties of solutions of optimal control
problems governed by a semilinear evolution equation, and it is stated as follows.

Problem (P): Given T > , ŷ(·) ∈ L(, T ; X), y ∈ X, and yT ∈ X, find an optimal control
ū ∈ U [, T] such that

J(ū) ≤ J(u) for all u ∈ U [, T], ()

where

J(u) =
∥
∥y(T) – yT

∥
∥


X +

∫ T



∥
∥y(t) – ŷ(t)

∥
∥


X dt ()
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subject to

{

ẏ(t) = Ay(t) + f (t, y(t), u(t)), t ∈ [, T],
y() = y,

()

where A is infinitesimal generator of C-semigroup on a Banach space X, the set of ad-
missible controls in the space L(, T ; E) is defined by

U [, T] =
{

u | u(t) is measurable w.r.t. t, u(t) ∈ U ⊂ E
}

, ()

where E is another separable reflexive Banach space from which the controls u take values.
The paper is organized as follows. In Section , we give some properties of C-semigroup

and some results as regards compact sets. In Section , the existence of an optimal control
is obtained. In Section , for the reader’s convenience, the set-valued mapping theory is
recalled, then we show stability results for the optimal control problem in the sense of
the Baire category. In the last section, some examples demonstrate the applicability of our
results.

2 Preliminaries
Throughout the paper, constants  ≤ p < +∞ and T >  are given. Let X be a Banach space
and eAt the C-semigroup generated by a linear operator A. In this section, we recall some
related results about semigroups and compact sets from [, ] and [] which will be used
in this paper.

Proposition . ([]) There exist constants ω ≥  and M ≥  such that

∥
∥eAt∥∥ ≤ Meωt for  ≤ t < +∞.

Denote Lp(, T ; X) the space of measurable functions from [, T] into X equipped with
the norm

‖y‖Lp(,T ;X) =
(∫ T



∥
∥y(t)

∥
∥

p
X dt

) 
p

,

and C([, T]; X) the space of continuous functions from [, T] into X equipped with the
norm

‖y‖C([,T];X) = sup
t∈[,T]

∥
∥y(t)

∥
∥

X .

Lemma . ([]) A set V is called totally bounded if for every ε > , there exist some
δ > , a metric space W , and a mapping � : V → W such that �(V ) is totally bounded,
and d(x, y) < ε if d(�(x),�(y)) < δ whenever x, y ∈ V .

Denote (τhu)(t) = u(t + h) for h > , the compactness of Lp(, T ; X) is recalled as follows.

Lemma . ([]) Suppose that S is a subset of Lp(, T ; X). S is relatively compact in
Lp(, T ; X) if and only if:
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() The set {∫ t
t

u(t) dt | u ∈ S} is relatively compact in X , for any  < t < t < T .
() The limit ‖τhu – u‖Lp(,T–h;X) →  as h → , uniformly for u ∈ S.

Now we consider the compactness of the admissible set ().

Proposition . Suppose that U ⊆ E is compact and ‖τhu – u‖L(,T–h;E) →  as h → 
uniformly for u ∈ U [, T]. Then U [, T] is compact in L(, T ; E).

Proof It follows from the compactness of U ⊆ E that there exists a constant M >  such
that

‖ω‖E ≤ M for all ω ∈ U , ()

hence for any  < t < t < T , we get

∥
∥
∥
∥

∫ t

t

u(t) dt
∥
∥
∥
∥

E
≤

∫ t

t

∥
∥u(t)

∥
∥

E dt ≤
∫ T



∥
∥u(t)

∥
∥

E dt ≤
∫ T


M dt ≤ TM

for all u ∈ U [, T], this implies that
∫ t

t
‖u(t)‖E dt is bounded in R, so the set

{∫ t
t

‖u(t)‖E dt | u ∈ U [, T]} is relatively compact in R. Since
∫ t

t
u(t) dt ∈ E, by the Hahn-

Banach theorem, there exists a bounded linear functional P ∈ E∗ such that

‖P‖ = , P(u) = ‖u‖E .

By the continuity and linearity of P, we have

P
(∫ t

t

(

u(t) – u(t)
)

dt
)

=
∫ t

t

P
(

u(t) – u(t)
)

dt =
∫ t

t

∥
∥u(t) – u(t)

∥
∥

E dt

and
∥
∥
∥
∥

∫ t

t

(u – u) dt
∥
∥
∥
∥

E
≤

∫ t

t

‖u – u‖E dt

=
∫ t

t

P
(

u(t) – u(t)
)

dt

= P
(∫ t

t

(

u(t) – u(t)
)

dt
)

,

namely,

∥
∥
∥
∥

∫ t

t

u(t) dt –
∫ t

t

u(t) dt
∥
∥
∥
∥

E
≤

∣
∣
∣
∣
P
(∫ t

t

u(t) dt
)

– P
(∫ t

t

u(t) dt
)∣

∣
∣
∣
. ()

Due to {∫ t
t

‖u(t)‖E dt | u ∈ U [, T]} = {P(
∫ t

t
u(t) dt) | u ∈ U [, T]} is relatively compact

in R and inequality (), by Lemma ., we see that {∫ t
t

u(t) dt | u ∈ U [, T]} is relatively
compact in E, for any  < t < t < T .

To this end, by Lemma ., U [, T] is relatively compact in L(, T ; E). We only need
next to prove that U [, T] is closed.
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If {un} ⊆ U [, T] and un → u in L(, T ; E), namely,

∫ T



∥
∥un(t) – u(t)

∥
∥

E dt → ,

then ‖u(t)‖E is measurable in [, T] and there exists a subsequence of {un}, denoted by
{unk }, such that

∥
∥unk (t) – u(t)

∥
∥

E →  a.e. t ∈ [, T] as k → +∞,

i.e., ‖unk (t) – u(t)‖E →  for all t ∈ A, where A is some subset of [, T] and μ([, T]\A) = .
Since U is compact, for any fixed t ∈ A and unk (t) ∈ U , there exists u(t) ∈ U such that

unk (t) → u(t) in E as k → +∞.

Without loss of generality, we define

û(t) =

⎧

⎨

⎩

u(t), t ∈ A,

u(t), t ∈ [, T]\A,
()

where t can be chosen by any point of A, then u(t) = û(t) a.e. t ∈ [, T]. It is clear that
û(t) ∈ U for all t ∈ [, T]. u and û are equivalent in L(, T ; E). Namely,

unk → û in L(, T ; E) as k → +∞,

then U [, T] is closed. From the above, we complete this proposition. �

We give an example of the compact set in L(, T ; E) in the following.

Example . Let u ∈ U [, T] ⊂ L(, T ; W ,p(�)). For any fixed x ∈ �, u(t, x) is a piece-
wise continuous with respect to t containing only a finite number of discontinuous points.
S(x) = {u(t, x) | t ∈ [, T]}, S(x) is a bounded closed set in W ,p(�), where � is a bounded
open subset of Rn and ∂� is C. Then U [, T] is compact in L(, T ; Lp(�)).

Proof From the compact embedding theorem of [], that is, W ,p(�) is compactly em-
bedded in Lp(�), written W ,p(�) ⊂⊂ Lp(�), since S(x) is a bounded closed set in W ,p(�),
then S(x) is compact in Lp(�).

Suppose that D = {t, . . . , tN } ⊂ [, T] and t =  < t < t < · · · < tN < T = tN+. We define

ũ(t, x) =

⎧

⎨

⎩

u(t, x), t ∈ [, T]\{t, . . . , tN }, x ∈ �,

u(ti – , x), t = ti, i = , , , . . . , N , x ∈ �.

Without loss of generality, we may assume h > , then

‖τhu – u‖L(,T–h;Lp(�))

=
∫ T–h



∥
∥u(t + h) – u(t)

∥
∥

Lp(�) dt
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=
N

∑

i=

∫ ti

ti–

∥
∥u(t + h) – u(t)

∥
∥

Lp(�) dt +
∫ T–h

tN

∥
∥u(t + h) – u(t)

∥
∥

Lp(�) dt

=
N+
∑

i=

∫ ti–h

ti–

∥
∥ũ(t + h) – ũ(t)

∥
∥

Lp(�) dt +
N

∑

i=

∫ ti

ti–h

∥
∥ũ(t + h) – ũ(t)

∥
∥

Lp(�) dt

≤
N+
∑

i=

∫ ti–h

ti–

∥
∥ũ(t + h) – ũ(t)

∥
∥

Lp(�) dt + MNh.

It follows from the continuity of u in (ti–, ti) (i = , , , . . . , N + ) that, for any fixed h > ,
ũ(·) is uniform continuous in [ti–, ti –h] (i = , , , . . . , N +). That is, for any t ∈ [ti–, ti –h]
and any ε > , there exists δi >  such that

∥
∥ũ(t + h) – ũ(t)

∥
∥

Lp(�) <
ε

TN

holds whenever h < δi. Let δ = min≤i≤N+ δi, then when h < δ, we have

∥
∥ũ(t + h) – ũ(t)

∥
∥

Lp(�) <
ε

TN
for all t ∈ [, T]\{t, . . . , tN }.

Hence

N+
∑

i=

∫ ti–h

ti–

∥
∥ũ(t + h) – ũ(t)

∥
∥

Lp(�) dt ≤ ε


.

If we take h < min{δ, ε
MN }, then

‖τhu – u‖L(,T–h;Lp(�)) ≤ ε


+ MNh ≤ ε


+

ε


= ε.

By Proposition ., U [, T] is compact in L(, T ; Lp(�)). �

3 Existence of optimal control
In order to study the optimal control problem (P), we assume that:

(Hu) The set U ⊆ E is compact, U [, T] ⊂ L(, T ; E), and

‖τhu – u‖L(,T–h;E) →  as h → ,

uniformly for u ∈ U [, T].
(Hf ) The function f : [, T]×X ×U → X is continuous w.r.t. t and u. There exist a function

L(t) >  and constant C >  such that

∥
∥f (t, x, u) – f (t, y, u)

∥
∥

X ≤ L(t)‖x – y‖X ,
∥
∥f (t, x, u)

∥
∥

X ≤ C

for all x, y ∈ X , t ∈ [, T], u ∈ U .
(HA) The operator A : D(A) ⊆ X → X generates a C-semigroup eAt on X .
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Definition . For given u ∈ U [, T], a function y : [, T] → X is called a mild solution of
() if y ∈ C([, T]; X) satisfies

y(t) = eAty +
∫ t


eA(t–s)f

(

s, y(s), u(s)
)

ds, t ∈ [, T].

This solution is denoted by y(·, u(·)).

From Proposition . of [], we have the following theorem.

Theorem . Suppose assumptions (Hf ), (HA), and (Hu) hold. Then, for any u ∈ U [, T],
the Cauchy problem () has a unique mild solution y ∈ C([, T]; X).

Moreover, we also have the following result.

Theorem . Suppose assumptions (Hf ), (HA), and (Hu) hold. y ∈ C([, T]; X) is the mild
solution of system (), then the map u(·) → y(·, u(·)) is continuous from L(, T ; E) into
C([, T]; X).

Proof Suppose yk(t) and y(t) are mild solutions of the system () with respect to uk and u,
respectively. Then

yk(t) = eAty +
∫ t


eA(t–s)f

(

s, yk(s), uk(s)
)

ds

and

y(t) = eAty +
∫ t


eA(t–s)f

(

s, y(s), u(s)
)

ds.

Since

uk → u in L(, T ; E) as k → +∞,

by the Chebyshev inequality of Theorem .. in [], we have

∥
∥uk(t) – u(t)

∥
∥

E →  for almost all t ∈ [, T] as k → +∞,

and the function f is continuous w.r.t. u, it follows from Corollary .. of [] that

∥
∥f (t, y, uk) – f (t, y, u)

∥
∥

X →  for almost all t ∈ [, T] as k → +∞,

and combining the Riesz Theorem ..(i) and Theorem .. of [], then for any subse-
quence {uk′ } we can extract a further subsequence {uk′′ } such that

∥
∥uk′′ (t) – u(t)

∥
∥

E →  a.e. t ∈ [, T],

then

∥
∥f

(

t, y(t), uk′′ (t)
)

– f
(

t, y(t), u(t)
)∥
∥

X →  a.e. t ∈ [, T].
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Also from Proposition ., there exist constants ω ≥  and M ≥  such that

∥
∥eAt∥∥ ≤ Meωt for  ≤ t ≤ T . ()

Due to assumption (Hf ) and the Lebesgue dominated convergence theorem, it follows that

lim
k′′→∞

∫ T


MeωT∥

∥f
(

s, y(s), uk′′ (s)
)

– f
(

s, y(s), u(s)
)∥
∥

X ds = . ()

Since the subsequence of {uk′ } is arbitrary, we can conclude that

lim
k→∞

∫ T


MeωT∥

∥f
(

s, y(s), uk(s)
)

– f
(

s, y(s), u(s)
)∥
∥

X ds = , ()

namely, for any ε > , there exists N >  such that

∫ T


MeωT∥

∥f
(

s, y(s), uk(s)
)

– f
(

s, y(s), u(s)
)∥
∥

X ds ≤ ε ()

holds whenever k ≥ N . So

∥
∥yk(t) – y(t)

∥
∥

X =
∥
∥
∥
∥

∫ t


eA(t–s)[f

(

s, yk(s), uk(s)
)

– f
(

s, y(s), u(s)
)]

ds
∥
∥
∥
∥

X

≤
∫ t


MeωT∥

∥
[

f
(

s, yk(s), uk(s)
)

– f
(

s, y(s), uk(s)
)]∥

∥
X ds

+
∫ T


MeωT∥

∥
[

f
(

s, y(s), uk(s)
)

– f
(

s, y(s), u(s)
)]∥

∥
X ds

≤ MeωT
∫ t


L(t)

∥
∥yk(t) – y(t)

∥
∥

X ds + ε, ()

and using the Gronwall inequality, we obtain

∥
∥yk(t) – y(t)

∥
∥

X ≤ εeMeωT ∫ t
 L(s) ds ≤ εeMTeωT ∫ T

 L(s) ds, ∀t ∈ [, T]. ()

That is, y(·, uk) → y(·, u) ∈ C([, T]; X). �

From Proposition ., we have the following lemma.

Lemma . If assumption (Hu) holds, U [, T] is compact in L(, T ; E).

Now, we discuss the existence of an optimal control for problem (P).

Theorem . Suppose assumptions (Hu), (HA), and (Hf ) hold, then problem (P) admits at
least one optimal control.

Proof Assume that there exists a minimizing sequence of {uk} ⊆ U [, T] such that

lim
k→∞

J(uk) = inf
u∈U [,T]

J(u). ()
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Since U [, T] is compact, there exists a subsequence {uk′ } of {uk} and ū ∈ U [, T] such
that

uk′ → ū in L(, T ; E) as k′ → +∞. ()

From Theorem . we have

yuk′ (·) → yū(·) in C
(

[, T]; X
)

as k′ → +∞, ()

where yuk′ (·, ·) and yū(·, ·) are solutions of () with respect to uk′ and ū, respectively. Hence

yuk′ (T) → yū(T) in X as k′ → +∞

and

∥
∥yuk′ (T) – yT

∥
∥

X → ∥
∥yū(T) – yT

∥
∥

X in R as k′ → +∞,

then

∥
∥yuk′ (T) – yT

∥
∥


X → ∥

∥yū(T) – yT
∥
∥


X in R as k′ → +∞.

Thanks to (), there exists a subsequence of {uk′ }, denoted by {uk′′ }, such that

∥
∥uk′′ (t) – ū(t)

∥
∥

E →  for almost all t ∈ [, T]. ()

It follows from () and () that

∥
∥yuk′′ (t) – ŷ(t)

∥
∥

X → ∥
∥yū(t) – ŷ(t)

∥
∥

X a.e. t ∈ [, T].

Since uk′′ (t) ∈ U (compact set in E) and yk′′ (·) ∈ C([, T]; X), the image of the compact set
under y is compact (see Theorem .- of []). For all k′′, there exists a positive constant
M, such that

∥
∥yuk′′ (t) – ŷ(t)

∥
∥

X ≤ M. ()

From the Lebesgue dominated convergence theorem (see Theorem .. of []), we
have

lim
k′′→+∞

∫ T



∥
∥yuk′′ (t) – ŷ(t)

∥
∥


X dt =

∫ T



∥
∥yū(t) – ŷ(t)

∥
∥


X dt. ()

From all the above, we have

J(ū) =
∥
∥yū(T) – yT

∥
∥


X +

∫ T



∥
∥yū(t) – ŷ(t)

∥
∥


X dt

= lim
k′′→+∞

∥
∥yuk′′ (T) – yT

∥
∥


X + lim

k′′→+∞

∫ T



∥
∥yuk′′ (t) – ŷ(t)

∥
∥


X dt

= lim
k′′→+∞

J(uk′′ ) = inf
u∈U [,T]

J(u).

That is, ū ∈ U [, T] is an optimal control. This completes the proof of the theorem. �
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4 Stability analysis of optimal control problems
In this section, we will use the set-valued mapping theory to study the stability of the
optimal control. At first, we recall some definitions and a lemma on set-valued mappings
for convenience of the reader (see [, , ]). Let W and Z be metric spaces.

Definition . A set-valued mapping F : W → Z is called upper (respectively, lower)
semicontinuous at x ∈ W if and only if for each open set G in Z with G ⊃ F(x) (respectively,
G ∩ F(x) �= ∅), there exists δ >  such that G ⊃ F(x′) (respectively, G ∩ F(x′) �= ∅) for any
x′ ∈ W with ρ(x, x′) < δ. It is said to be upper (respectively, lower) semicontinuous in W if
and only if it is upper (respectively, lower) semicontinuous at any point of W .

A set-valued mapping F : W → Z is continuous at x if it is both upper semicontinuous
and lower semicontinuous at x, and that it is continuous if and only if it is continuous at
every point of W .

Definition . A set-valued mapping F : W → Z is called compact upper semicontinu-
ous (called USCO) if F(x) is nonempty compact, for each x ∈ W , and F is upper semicon-
tinuous.

Definition . A set-valued mapping F : W → Z is called closed if Graph(F) is closed,
where Graph(F) = {(x, z) ∈ W × Z | z ∈ F(x)} is the graph of F .

Lemma . If the set-valued mapping F : W → Z is closed and Z is compact, then F is an
USCO mapping.

Definition . A subset Q ⊂ W is called a residual set if it contains a countable intersec-
tion of open dense subsets of W .

If W is a complete metric space, any residual subset of W must be dense in W .

Lemma . Let W be a complete metric space, and F : W → Z be an USCO mapping,
then there exists a dense residual subset Q of W such that F is lower semicontinuous at
each x ∈ Q.

Now, we consider the stability of optimal controls. Denote

Y =
{

f | f satisfies conditions of (Hf )
}

.

For every f, f ∈ Y , we define

ρ(f, f) = sup
(t,y,u)∈[,T]×X×U

∥
∥f(t, y, u) – f(t, y, u)

∥
∥

X .

Then the space (Y ,ρ) is a complete metric space [].
Let

S(f ) =
{

ū | ū is the optimal control of problem (P) associated with f ∈ Y
}

.

Then the correspondence f → S(f ) is a set-valued mapping S : Y → U [,T].
From Theorem ., we have the following theorem.
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Theorem . If assumptions (Hu), (HA), and (Hf ) hold, S(f ) �= ∅ for each f ∈ Y .

The following proposition is important in studying the stability of optimal controls.

Proposition . Let {fk} be any sequence of Y such that fk → f in Y and {uk} any sequence
of U [, T] such that uk → u in L(, T ; E), then yfk (·, uk(·)) → yf (·, u(·)) in C([, T]; X) as
k → +∞.

Proof By Definition . of a mild solution of Cauchy problem () we have

y(t) � yf
(

t, u(t)
)

= eAty +
∫ t


eA(t–s)f

(

s, y(s), u(s)
)

ds

and

yk(t) � yfk
(

t, uk(t)
)

= eAty +
∫ t


eA(t–s)fk

(

s, yk(s), uk(s)
)

ds

for every t ∈ [, T].
It follows from fk → f in Y that for any ε >  there exists a constant N >  such that

ρ(fk , f ) ≤ ε

MTeωT

whenever k ≥ N. The inequality () implies that

∫ T



∥
∥eA(T–s)(fk

(

s, yk(s), uk(s)
)

– f
(

s, yk(s), uk(s)
))∥

∥
X ds

≤
∫ T


MeωT∥

∥fk
(

s, yk(s), uk(s)
)

– f
(

s, yk(s), uk(s)
)∥
∥

X ds

≤
∫ T


MeωT ε

MTeωT ds =
ε


. ()

The uk → u in L(, T ; E) and () imply that there exists a constant N >  such that

∫ T


MeωT∥

∥f
(

s, y(s), uk(s)
)

– f
(

s, y(s), u(s)
)∥
∥

X ds ≤ ε


()

whenever k ≥ N.
Let N = max{N, N}, then

∥
∥yk(t) – y(t)

∥
∥

X =
∥
∥
∥
∥

∫ t


eA(t–s)[fk

(

s, yk(s), uk(s)
)

– f
(

s, y(s), u(s)
)]

ds
∥
∥
∥
∥

X

≤
∫ T


MeωT∥

∥fk
(

s, yk(s), uk(s)
)

– f
(

s, yk(s), uk(s)
)∥
∥

X ds

+
∫ t


MeωT∥

∥f
(

s, yk(s), uk(s)
)

– f
(

s, y(s), uk(s)
)∥
∥

X ds

+
∫ T


MeωT∥

∥f
(

s, y(s), uk(s)
)

– f
(

s, y(s), u(s)
)∥
∥

X ds

≤ MeωT
∫ t


L(t)

∥
∥yk(t) – y(t)

∥
∥

X ds + ε ()
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holds for any k ≥ N , and it follows from the Gronwall inequality that

∥
∥yk(t) – y(t)

∥
∥

X ≤ εeMeωT ∫ t
 L(s) ds ≤ εeMTeωT ∫ T

 L(s) ds, ∀t ∈ [, T]. ()

This implies yk → y in C([, T]; X), which completes the proof of the theorem. �

We denote

Jfk (uk) =
∥
∥yk(T) – yT

∥
∥


X +

∫ T



∥
∥yk(t) – ŷ(t)

∥
∥


X dt.

One can easily obtain the following proposition from Proposition ..

Proposition . Let {fk} be any sequence of Y such that fk → f in Y and {uk} any sequence
of U [, T] such that uk → u in L(, T ; E). Then Jfk (uk) → Jf (u) as k → +∞.

Theorem . Suppose that (Hu), (HA), and (Hf ) hold. Then S : Y → U [,T] is an USCO
mapping.

Proof By the compactness of U [, T] and Lemma ., we only need to show that

Graph(S) =
{

(f , u) ∈ Y × U [, T] | u ∈ S(f )
}

is closed. Let {fk} ⊂ Y with fk → f in Y and {ūk} ⊂ S(fk) with ūk → ū in L(, T ; E). Now
we need to show that ū ∈ S(f ).

Due to ūk ∈ S(fk), we have

Jfk (ūk) ≤ Jfk (u) for all u ∈ U [, T]. ()

Proposition . yields

Jfk (ūk) → Jf (ū) ()

and

Jfk (u) → Jf (u) for all u ∈ U [, T]. ()

Combining (), (), and (), we have

Jf (ū) ≤ Jf (u) for all u ∈ U [, T], ()

namely, ū ∈ S(f ). The proof is completed. �

We introduce the following definition for considering the stability of solutions of an
optimal control problem.

Definition . u ∈ S(f ) is called an essential solution iff for any ε >  there exists δ > 
such that for any f ′ ∈ Y with ρ(f ′, f ) < δ, there is u′ ∈ S(f ′) with ‖u – u′‖L(,T ;E) < ε. The
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optimal control problem (P) associated with f is called essential iff its solutions are all
essential.

From [], we can obtain the following theorem.

Theorem . The optimal control problem (P) associated with f is essential if and only if
S : Y → U [,T] is lower semicontinuous at f ∈ Y .

Now we need to consider that S is lower semicontinuous in Y . From Lemma . and
Theorem ., we have the following lemma.

Lemma . There exists a dense residual subset Q ⊂ Y such that S is lower semicontinuous
at each f ∈ Q, namely, S is continuous at each f ∈ Q.

Since S is continuous at each f ∈ Q and Y is a complete metric space, Q is a second
category []. Lemma . and Theorem . yield the generic stability in the sense of the
Baire category.

Theorem . There exists a dense residual subset Q of Y such that for any f ∈ Q, S(f )
is stable in the sense of Hausdorff metric and Jf is robust with respect to f ∈ Q. So every
optimal control problem associated f ∈ Y can be closely approximated arbitrarily by an
essential optimal control problem.

We need to note that when the solution S(f ) is a singleton, the result also holds. By
Theorem . we can also see that any f ∈ Y can be closely approximated by an essential
optimal control problem.

Remark . In this paper, we only discuss the stability results as regards the optimal con-
trol problem with quadratic cost functional. In fact, the results also hold for the optimal
control problem with general cost functional such as Bolza problems under some assump-
tions.

5 Example
Our main result can be applied to the controlled systems of heat equations and wave equa-
tions with the C-semigroup. We will state optimal control problems with parabolic con-
trolled systems and hyperbolic controlled systems, respectively, in the following.

Problem (P): Given T > , ŷ(t, x), and yT (x), find an optimal control ū ∈ U [, T] such
that

J(ū) ≤ J(u) for all u ∈ U [, T], ()

where

J(u) =
∫

�

∣
∣y(T , x) – yT (x)

∣
∣
 dx +

∫ T



∫

�

∣
∣y(t, x) – ŷ(t, x)

∣
∣
 dx dt ()

subject to
⎧

⎪⎨

⎪⎩

∂y
∂t (t, x) = 
y(t, x) + f (t, y(t, x), u(t, x)), t ∈ [, T], x ∈ �,
y(, x) = y(x), x ∈ �,
y|∂� = ,

()
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where � ⊂ Rn is a bounded domain with a smooth boundary ∂�, let X = L(�) and A =

 = ∂

∂x


+ · · · + ∂

∂x
n

with D(A) = W ,(�) ∩ W ,
 (�). Then A is infinitesimal generator of a

C-semigroup eAt on the infinite dimensional Banach space X. Suppose that y ∈ X and
the set of admissible controls in the space L(, T ; E) is defined by () where E = L(�).
With the assumptions (Hu) and (Hf ) holding, the stability results are valid.

Problem (P): Given T > , ŷ(t, x), and yT (x), find an optimal control ū ∈ U [, T] such
that

J(ū) ≤ J(u) for all u ∈ U [, T], ()

where

J(u) =
∫

�

∣
∣y(T , x) – yT (x)

∣
∣
 dx +

∫ T



∫

�

∣
∣y(t, x) – ŷ(t, x)

∣
∣
 dx dt ()

subject to

⎧

⎪⎨

⎪⎩

∂y
∂t (t, x) = 
y(t, x) + f (t, y(t, x), u(t, x)), t ∈ [, T], x ∈ �,
y(, x) = y(x), ∂y

∂t |t= = y(x), x ∈ �,
y|∂� = ,

()

where � ⊂ Rn is a bounded domain with a smooth boundary ∂� and X = W ,(�)×L(�).
Let (y, y) ∈ X, 
 = ∂

∂x


+ · · · + ∂

∂x
n

, A =
(  I


 

)

with D(A) = (W ,(�) ∩ W ,
 (�)) × W ,(�).

Then A is the infinitesimal generator of a C-semigroup eAt on the infinite dimensional
Banach space X, the set of admissible controls in the space L(, T ; E) is defined by ()
where E = L(�). With the assumptions (Hu) and (Hf ) holding, the stability results are
also valid.

The following example is provided to show that not all optimal control problems are
essential.

Example . Let H = [, ], � = [,π ] ⊂ R. Consider the optimal problem

min
u∈U [,]

J(u) =
∫ π



(

v(, x)
) dx

subject to the distributed parameter system

⎧

⎪⎨

⎪⎩

∂
∂t v(t, x) = ∂

∂x v(t, x) + f (t, v(t, x), u(t, x)), t ∈ H , x ∈ �,
v(t, ) = v(t,π ) = , t ∈ H ,
v(, x) = v, x ∈ �,

where u ∈ U [, ], X = L(�), v ∈ X, A = ∂

∂x , and D(A) = W ,(�) ∩ W ,
 (�). Then the A

generate a C-semigroup eAt . The mild solution can be given by

v(t, x) = eAtv +
∫ t


eA(t–s)f

(

s, v(s, x), u(s, x)
)

ds.
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Let

U [, ] =

( N
⋃

k=

{

uk(t, x) ∈ {

sin x, –e– 
k sin x

}}

)

∪
(+∞

⋃

m=

{

um(t, x) ≡ –

m

sin x
})

,

here we set

uk(t, x) =

⎧

⎨

⎩

sin x if t ∈ [ l
k , l+

k ), l = , , . . . , k – ,

–e– 
k sin x otherwise.

Similarly to Example ., U [, ] is compact.
In order to simplify the calculation, let v = .
() Let f (t, v(t, x), u(t, x)) = u(t, x) ∈ U [, ], we see that the A generate a C-semigroup

T(t) = e–t ; then the mild solution is

v(t, x) =
∫ t


e–(t–s)u(s, x) ds,

we have v(, x) = , for any uk , k = , , . . . , N , hence J(uk) = , k = , , . . . , N . So

S(f ) = arg min
u∈U [,]

Jf (u) = {uk , k = , , . . . , N}.

() Let fm(t, v(t, x), u(t, x)) = u(t, x) + 
m sin x, t ∈ H , x ∈ �, for every m = , , . . . . Then

v(, x) = , and J(um) = , m = , , . . . , we get

S(fm) = arg min
u∈U [,]

Jfm (u) =
{

um}

.

We see ρ(f , fm) =
√

π
m →  as m → +∞. For any uk ∈ S(f ), we have

∫ 



∥
∥uk(t, x) – um(t, x)

∥
∥

L(�) dt

=
√

π



[∫

H

(

 –

m

)

dt +
∫

H

(

e– 
k +


m

)

dt
]

=
√

π


(

 + e– 
k

)

,

where H is the union of intervals in which uk takes the value sin x and H is the union of
intervals in which uk takes the value –e– 

k sin x, which shows that uk is not essential. If let
u(t, x) ≡ , we have

∫ 



∥
∥u(t, x) – um(t, x)

∥
∥

L(�) dt =
√

π

m
→  as m → ∞.

Then all solutions in S(f ) except u(t, x) ≡  are not essential.
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