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Abstract
The incomplete inverse spectral and inverse nodal problems for Dirac operator
defined on a finite interval with separated boundary conditions are considered. We
prove uniqueness theorems for the so-called incomplete inverse spectral problem.
Using the obtained result we show that for a unique determination of the operator it
is sufficient to specify the nodal points only on a part of the interval slightly
exceeding its half.
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1 Introduction
Consider the eigenvalue problem corresponding to the Dirac operator, denoted by L :=
L(Q(x);α,β), of the form

ly := By′ – Q(x)y = λy,  < x < , (.)

with

B =

(
 

– 

)
, Q(x) =

(
p(x) 

 q(x)

)
, y(x) =

(
y(x)
y(x)

)

subject to the boundary conditions

{
U(y) := y() cosα + y() sinα = ,
V (y) := y() cosβ + y() sinβ = ,

 ≤ α,β < π . (.)

Here λ is a spectral parameter, p(x), q(x) ∈ C[, ] and they are real-valued functions. The
Dirac operator is the relativistic Schrödinger operator in quantum physics. Here we mainly
investigate inverse spectral and inverse nodal problems for the Dirac operator (.)-(.)
and establish a connection between them.

The basic and comprehensive results about Dirac operators were given in []. Further-
more, spectral problems for Sturm-Liouville or Dirac operators were extensively studied
in various publications; see e.g. [–]. Moreover, sampling theory is one of the most impor-
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tant mathematical tools used in communication engineering, the Whittaker-Kotel’nikov-
Shannon (WKS) sampling theorem is viewed as the fundamental result in information the-
ory [–]. In the past years, this sampling theorem has been investigated and improved by
several authors. In particular, Tharwat and Bhrawy, etc. [–]) used the derivative sam-
pling theorem (Hermite interpolations and sinc-method) to compute the eigenvalues of
the discontinuous Dirac systems.

Inverse spectral problems consist in recovering operators from their spectral character-
istics. Such problems play an important role in mathematics and have many applications
in natural sciences and engineering (see [, ] and the references therein). Some aspects
of inverse spectral problems for the Dirac systems were studied in [, –] and other
papers. In particular, in [] it is proved that under some conditions finitely many partially
known spectra and partial information on the potential entirely determine the potential.
Inverse nodal problems, in turn, consist in constructing operators from given nodes (ze-
ros) of their eigenfunctions (refer to [–]). From the physical point of view this corre-
sponds to finding, e.g., the density of a string or a beam from the zero-amplitude positions
of the eigenvibrations. In [] inverse nodal problems of reconstructing the Dirac opera-
tor on a finite interval were studied, where it was proved that the operator L is determined
uniquely by specifying a dense set of nodal points.

In the present paper, we will consider inverse problems of recovering Q(x), α, β from
the given spectral and nodal characteristics. In what follows without loss of generality we
always assume the mean value of p(x) + q(x) is known a priori. Under this assumption we
obtain uniqueness theorems and provide a constructive procedure for the solution. The
novelty of this paper lies in the established connections between inverse nodal and spectral
problems and the use of a set of nodal points of the components y(x,λn) of the eigenfunc-
tions y(x,λn) = (y(x,λn), y(x,λn))T as the given nodal data. As far as we know, incomplete
inverse nodal problem for the Dirac system had not been considered before and the ob-
tained results are natural generalizations of the well-known results on the classical inverse
problems.

The paper is organized as follows. In Section , we prove the uniqueness theorems for
so-called incomplete inverse spectral problem for the Dirac operator L. Using the obtained
result we show that for unique determination of the operator it is sufficient to specify the
nodal points only on (b, ) with b < / in Section .

2 Incomplete inverse spectral problem
In the first part of the paper we study the so-called incomplete inverse problem of recov-
ering the coefficients of (.)-(.) from a part of the spectrum of L provided that they are
known a priori on a part of the interval. We note that for recovering Q(x) on the whole
interval [, ] it is necessary to specify two spectra of boundary value problems with dif-
ferent boundary conditions (see []). We also note that the analogous problem for the
Sturm-Liouville operators and differential pencils were investigated in [, –] and
other work.

Let S(x,λ), ϕ(x,λ) and ψ(x,λ) be the solutions of Eq. (.) under the initial conditions

S(,λ) =

(



)
, ϕ(,λ) =

(
sinα

– cosα

)
, ψ(,λ) =

(
sinβ

– cosβ

)
.
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It is clear that, for each fixed x ∈ [, ], these solutions are entire in λ. Let τ = Imλ. Then
the following representations hold uniformly in x as |λ| → ∞ (see [], p., (.) and
(.)):

{
ϕ(x,λ) = sin(λx + α + η(x)) + V(x,λ)

λ
+ O( e|τ |x

λ ),
ϕ(x,λ) = – cos(λx + α + η(x)) + V(x,λ)

λ
+ O( e|τ |x

λ ).
(.)

Here

V(x,λ) =
(q – p)(x)


sin

(
λx + η(x) + α

)
+

(q – p)()


sin
(
λx + η(x) – α

)

–
∫ x

 (p(t) – q(t)) dt


cos
(
λx + η(x) + α

)
,

V(x,λ) =
(q – p)(x)


cos

(
λx + η(x) + α

)
+

(p – q)()


cos
(
λx + η(x) – α

)

–
∫ x

 (p(t) – q(t)) dt


sin
(
λx + η(x) + α

)
,

and

η(x) =



∫ x



(
p(t) + q(t)

)
dt. (.)

Denote 
(λ) := 〈ψ(x,λ),ϕ(x,λ)〉, where 〈y(x), z(x)〉 := y(x)z(x)–y(x)z(x). The function

(λ) is called the characteristic function of L and it does not depend on x. Substituting
x =  and x =  into 
(λ) we obtain 
(λ) = V (ϕ) = –U(ψ). The function 
(λ) is entire in
λ and its zeros {λn}n∈Z coincide with the eigenvalues of L. It follows from (.) that for
|λ| → ∞


(λ) = cosβϕ(,λ) + sinβϕ(,λ)

= sin
(
λ + α – β + η()

)
–

∫ 
 (p(t) – q(t)) dt

λ
cos

(
λ + α – β + η()

)
+

(q – p)()
λ

sin
(
λ + α + β + η()

)
+

(q – p)()
λ

sin
(
λ – α – β + η()

)

+ O
(

e|τ |

λ

)
, (.)

where η(x) is defined in (.). It is well known that the spectrum of the problem (.)-
(.) consists of the eigenvalues λn, n ∈ Z, which are all real and simple, and the sequence
{λn, n ∈ Z} satisfies the classical asymptotic form []

λn = nπ + c +
c

nπ
+ O

(


n

)
, (.)

where c = β – α – η() and

c =



[
(p – q)() sin β – (p – q)() sin α +




∫ 


(p – q) dt

]
.
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For our purpose of this paper, together with the problem L defined by (.)-(.), we
consider another problem L̃ of the same form but with different coefficients p̃(x), q̃(x),
α̃, β̃ . We agree that, everywhere below if a certain symbol δ denotes an object related to L,
then δ̃ will denote an analogous object related to L̃. Thus from the assumption we have
η() = η̃().

For the rest of the paper, we shall only consider the boundary condition α,β > . The
other cases can be treated similarly.

Denote e(x) = (exp(ix), exp(–ix))T . The following theorem has been proven by
Horváth [] for the Sturm-Liouville operator. We show it also holds for the Dirac op-
erator (.)-(.).

Theorem . Fix b ∈ (, /]. Let � ⊂ Z be a subset of integer numbers, and let  :=
{λn}n∈� be a part of the spectrum of L such that the system of functions {e(λnx)}n∈� is
complete in {L(, b)}. If p(x) = p̃(x), q(x) = q̃(x) on [b, ], and β = β̃ ,  = ̃, η() = η̃(),
then p(x) = p̃(x), q(x) = q̃(x) on [, ] and α = α̃.

Remark . It is easy to see that if b = / then Theorem . reduces to the Hochstadt and
Lieberman’s theorem [] for the Dirac operator, which is studied by Malamud in []. At
this point, our results are generalizations and improvements of the well-known results.

Proof Since  = ̃, it follows from (.) that c = c̃, which together with the conditions
β = β̃ and η() = η̃() yields α = α̃. Let us denote by ϕ(x,λ) = (ϕ(x,λ),ϕ(x,λ))T the solution
to the equation

By′ – Q(x)y = λy (.)

with the initial condition

(
y(,λ)
y(,λ)

)
=

(
sinα

– cosα

)
, (.)

and by ϕ̃(x,λ) = (ϕ̃(x,λ), ϕ̃(x,λ))T the solution to the equation

Bỹ′ – Q̃(x)ỹ = λỹ (.)

with the same initial condition as (.). Suppose  ≤ a < b ≤ π , for all (a, a)T and (b, b)T

in (L[a, b]), define the inner product

〈
(a, a)T , (b, b)T 〉

= ab + ab.

Multiplying (.) by ϕ̃(x,λ) and (.) by ϕ(x,λ) (in the sense of scalar product in R
), re-

spectively, and subtracting, we get

d
dx

[
ϕ̃(x,λ)ϕ(x,λ) – ϕ̃(x,λ)ϕ(x,λ)

]
+

〈(
Q̃(x) – Q(x)

)
ϕ(x,λ), ϕ̃(x,λ)

〉
= .
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Integrating the above equality from  to  with respect to x, we infer from the conditions
p(x) = p̃(x), q(x) = q̃(x) on [b, ] and α = α̃ that

∫ b



〈(
Q(t) – Q̃(t)

)
ϕ(t,λ), ϕ̃(t,λ)

〉
dt = ϕ̃(,λ)ϕ(,λ) – ϕ̃(,λ)ϕ(,λ)

=
[
ϕ̃(,λ)
(λ) – 
̃(λ)ϕ(,λ)

]
/ sinβ . (.)

Define

p(x) = p(x) – p̃(x), q(x) = q(x) – q̃(x)

and

H(λ) =
∫ b



〈(
Q(t) – Q̃(t)

)
ϕ(t,λ), ϕ̃(t,λ)

〉
dt.

Since 
(λn) = 
̃(λn) =  for n ∈ �, it follows from (.) that

H(λn) = , n ∈ �. (.)

It is known [] that there exist kernels K(x, t) = (Kij(x, t))
i,j= and K̃(x, t) = (K̃ij(x, t))

i,j= with
entries continuously differentiable on  ≤ t ≤ x ≤  such that

{
ϕ(x,λ) = ϕ(x,λ) +

∫ x
 K(x, t)ϕ(t,λ) dt,

ϕ̃(x,λ) = ϕ(x,λ) +
∫ x

 K̃(x, t)ϕ(t,λ) dt,
(.)

where ϕ(x,λ) = (sin(λx + α), – cos(λx + α))T . Thus we can show from (.) that

H(λ) =
∫ b



〈(
Q(t) – Q̃(t)

)
ϕ(t,λ), ϕ̃(t,λ)

〉
dt

=
∫ b


p(t)

[
– cos (λt + α) +

∫ t


R(t, s)eiλs ds +

∫ t


R(t, s)e–iλs ds

]
dt

+
∫ b


q(t)

[
– sin (λt + α) +

∫ t


R(t, s)eiλs ds +

∫ t


R(t, s)e–iλs ds

]
dt

=
∫ b


f(t)

[
eiλt +

∫ t


S(t, s)eiλs ds +

∫ t


S(t, s)e–iλs ds

]
dt

+
∫ b


f(t)

[
e–iλt +

∫ t


S(t, s)eiλs ds +

∫ t


S(t, s)e–iλs ds

]
dt

=
∫ b


eiλs

[
f(s) +

∫ b

s
f(t)S(t, s) + f(t)S(t, s) dt

]
ds

+
∫ b


e–iλs

[
f(s) +

∫ b

s
f(t)S(t, s) + f(t)S(t, s) dt

]
ds

=
∫ b



〈
e(λs), f (s) +

∫ b

s
S(t, s)f (t)dt

〉
ds,
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where

f (x) =
(
f(x), f(x)

)T =
(

–
eiα

i
(
q(x) + ip(x)

)
,

e–iα

i
(
q(x) – ip(x)

))T

,

and Rl(x, t), l = , . . . , , S(x, t) = (Sij(x, t)), i, j = ,  are matrix functions with entries which
are piecewise-continuously differentiable on  ≤ t ≤ x ≤ . Taking (.) into account, it
yields

 = H(λn) =
∫ b



〈
e(λns), f (s) +

∫ b

s
S(t, s)f (t) dt

〉
ds, n ∈ �.

Thus from the completeness of the functions {e(λnx)}n∈� in {L(, b)}, it follows that

f (s) +
∫ b

s
S(t, s)f (t) dt =  for s ∈ (, b).

But this equation is a homogeneous Volterra integral equation and has only the zero so-
lution. Thus we have obtained f (x) = (f(x), f(x))T =  on [, b] and consequently p(x) =
q(x) = , i.e. p(x) = p̃(x), q(x) = q̃(x) on [, b]. This completes the proof. �

In Section  the following theorem will be used.

Theorem . Fix b < / and N ∈ N. Let β = β̃ , p(x) = p̃(x), q(x) = q̃(x) on [b, ]. If
{λn}|n|≥N = {λ̃n}|n|≥N and η() = η̃(), then L = L̃, i.e., p(x) = p̃(x), q(x) = q̃(x) on [, ] and
α = α̃.

Proof It follows from the conditions of the theorem that

α = α̃, η(a) = η̃(a). (.)

Let �(x,λ) and �(x,λ) be the solutions of Eq. (.) under the boundary conditions

U(�) = , V (�) = ; �(,λ) = , V (�) = .

Then a direct calculation yields

{
�(x,λ) = – ψ(x,λ)


(λ) = 
sinα

[S(x,λ) + M(λ)ϕ(x,λ)],
�(x,λ) = ψ(x,λ)

ψ(,λ) = 
sinα

[ϕ(x,λ) + M(λ)S(x,λ)],
(.)

where

M(λ) = –
ψ(,λ)

(λ)

and M(λ) = –

(λ)

ψ(,λ)
=


M(λ)

. (.)

Denote

D(λ) =
〈
ϕ(x,λ), ϕ̃(x,λ)

〉|x=b. (.)
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With the help of (.)-(.), we calculate for all |n| ≥ N

D(λ)
sinα

∣∣∣
λ=λn

=
〈
�(b,λ), �̃(b,λ)

〉|λ=λn =
〈ψ(b,λ), ψ̃(b,λ)〉
ψ(,λ)ψ̃(,λ)

∣∣∣
λ=λn

.

Under the conditions of the theorem we have ψ(x,λ) = ψ̃(x,λ) for x ∈ [b, ], hence

D(λn) = , |n| ≥ N . (.)

Moreover, we can infer from (.), (.) and (.) that

D(λ) = O
(

e|τ |a

λ

)
. (.)

Consider the function

F(λ) =
D(λ)

(λ)

(λ – λ)
N–∏
n=

(λ – λ–n)(λ – λn),

which by virtue of (.) is entire in λ. On the other hand, according to (.) and with the
help of [], pp.-, we have for sufficiently large |λ|

∣∣
(λ)
∣∣ ≥ Cδe|τ |, λ ∈ Gδ , (.)

where Gδ = {λ : |λ – nπ – c| ≥ δ, n ∈ Z}, which together with (.) implies that

F(λ) = O
(
λN– exp

(
(a – )|τ |)), |λ| → ∞,λ ∈ Gδ .

Using Phragmen-Lindelöf and Liouville’s theorems we arrive at F(λ) ≡ . Consequently,
D(λ) ≡ , which means

m–(b,λ) = –
ϕ(b,λ)
ϕ(b,λ)

= –
ϕ̃(b,λ)
ϕ̃(b,λ)

= m̃–(b,λ). (.)

The result is obtained immediately from the uniqueness theorem in [] and this com-
pletes the proof. �

3 Incomplete inverse nodal problem
In the first part of this section we obtain uniqueness theorem of recovering the potential
Q(x) on the whole interval [, ] and the parameters α, β in the boundary conditions from a
dense subset of nodal points. Further, using the obtained result in Section  and developing
the idea of the works [, ] we prove that for a unique determination of L it is sufficient
to specify the set of nodal points only on [b, ] with b < /.

First we study the oscillation property of the first component y(x,λn) of the eigenfunc-
tion y(x,λn) of the Dirac system for sufficiently large |n|.
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Lemma . For sufficiently large |n|, the first component y(x,λn) of the eigenfunction
y(x,λn) of the Dirac system has exactly |n| nodes in the interval (, ):

 < x
n < · · · < xn

n <  for n > ,

 < x
n < · · · < xn+

n <  for n < .
(.)

Moreover,

xj
n =

jπ – α – η(xj
n)

nπ
–

c(jπ – α – η(xj
n)) – c

(nπ )

+
(c

 – c)(jπ – α – η(xj
n))

(nπ ) + O
(


n

)
(.)

uniformly with respect to j ∈ Z, where

c =
sin α


(q – p)() +




∫ xj
n



(
p(t) – q(t)

) dt. (.)

Proof We note that the eigenfunctions (y(x,λn), y(x,λn))T of the Dirac operator L are
real-valued. From (.) we see that the function y(x,λn) has the following asymptotic for-
mula for sufficiently large |n|, uniformly in x:

y(x,λn) = sin
(
λnx + α + η(x)

)
–

∫ x
 (p(t) – q(t)) dt

λn
cos

(
λnx + α + η(x)

)

+
(q – p)(x)

λn
sin

(
λnx + α + η(x)

)
+

(q – p)()
λn

sin
(
λnx – α + η(x)

)
+ O

(

λ

n

)
.

From y(xj
n,λn) = , we get

tan
(
λnxj

n + α + η
(
xj

n
))

=
∫ xj

n
 (p – q) dt +  sin α(q – p)()

λn
+ O

(

λ

n

)
.

Using Taylor’s expansion for the arctangent, we have

xj
n =


λn

[
jπ – α – η

(
xj

n
)]

+
c

λ
n

+ O
(


λ

n

)
,

where c is defined in (.). Furthermore, using the asymptotic formula

λ–
n =


nπ

–
c

(nπ ) +
c

 – c

(nπ ) + O
(


n

)

we conclude that equality (.) holds.
Equality (.) gives the asymptotic expansion for the nodal lengths lj

n := xj+
n –xj

n; we have
uniformly with respect to j

lj
n =

π – 

∫ xj+

n
xj

n
(p(t) + q(t)) dt

nπ
–

c(π – 

∫ xj+

n
xj

n
(p(t) + q(t)) dt)

(nπ ) + O
(


n

)

=

n

+ o
(


n

)
, |n| → ∞. (.)
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Consequently, for large |n| we have xj
n < xj+

n for positive n and xj
n > xj+

n for negative n. The
asymptotic formula (.) gives for j = ,±, n, n +  that

x–
n =

–π – α

nπ
+ O

(


n

)
, x

n =
–α

nπ
+ O

(


n

)
,

x
n =

π – α

nπ
+ O

(


n

)
, . . . , xn

n =  –
α

nπ
+ O

(


n

)
,

xn+
n =  +

π – α

nπ
+ O

(


n

)
.

Thus, according to the order of xj
n, for large |n|, the first component y(x,λn) of the eigen-

function y(x,λn) of the Dirac system has exactly |n| nodes in the interval (, ), i.e., xj
n,

j = , n for positive n and xj
n, j = n + ,  for negative n. The proof is complete. �

Corollary . From Lemma . and (.) it follows that the sets X = {xj
n}n>, X = {xj

n}n<

and X = X ∪ X are all dense in (, ).

Definition . Let X ⊂ Xj, j = , , . The set X is called twin if together with each of its
points xj

n the set X contains at least one of adjacent nodal points xj–
n and/or xj+

n .

Let us now formulate a uniqueness theorem and provide a constructive procedure for
the solution of the inverse nodal problem.

Theorem . Fix i = , . Let X ⊂ Xi be a subset nodal points which is dense and twin in
(, ). If X = X̃ and η() = η̃(), then p(x) = p̃(x), q(x) = q̃(x) on [, ] and α = α̃, β = β̃ .

Remark . Note that in this theorem the dense subset X only need to be known for
n >  or n <  rather than both, i.e., the known subset X do not need to be contained
in X. Similar results can be obtained using a dense subset of nodal points of the second
component y(x,λn) as the given spectral data for recovering the Dirac system.

Proof of Theorem . We first prove the given nodal set X uniquely determines the param-
eters α, β and the function p(x) + q(x) on [, ]. For each fixed x ∈ [, ] choose a sequence
{xj

n} ⊂ Xi such that xj
n → x as |n| → ∞. Using the asymptotic expansion (.), we get

nπxj
n – jπ = –α – η

(
xj

n
)

–
j
n

c + O
(


n

)
. (.)

Also the fact lim|n|→∞ xj
n = x implies that j/n → x and η(xj

n) → η(x). From this it follows
that as |n| → ∞ the limit of the left-hand side of (.) exists and

gi(x) := lim|n|→∞
[
nπxj

n – jπ
]

= –α – η(x) – cx. (.)

Taking the values for gi(x) at x =  and x = , respectively, we obtain

α = –gi(), β = –gi(). (.)
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After α and β are reconstructed, taking derivatives of the function gi(x), we derive

p(x) + q(x) –
∫ 



(
p(t) + q(t)

)
dt = –

[
g ′

i(x) – α + β
]
. (.)

Note that if X = X̃ , then (.) yields gi(x) ≡ g̃i(x), x ∈ [, ]. By virtue of (.)-(.) and the
assumption η() = η̃(), we get

α = α̃, β = β̃, p(x) + q(x) = p̃(x) + q̃(x) on [, ]. (.)

Next we are going to show p(x) = p̃(x), q(x) = q̃(x) on [, ]. Multiply (.) with λ = λn by
ϕ̃(x, λ̃n) and (.) with λ = λ̃n by ϕ(x,λn) (in the sense of scalar product in R

), respectively,
subtract the two equations and integrate it from xj

n to xj+
n . This result is

 =
∫ xj+

n

xj
n

〈(
Q̃(t) – Q(t) – (λn – λ̃n)I

)
ϕ(t,λn), ϕ̃(t, λ̃n)

〉
dt

=
∫ xj+

n

xj
n

(
p̃(t) – p(t)

)
ϕ(t,λn)ϕ̃(t, λ̃n) dt +

∫ xj+
n

xj
n

(
q̃(t) – q(t)

)
ϕ(t,λn)ϕ̃(t, λ̃n) dt

+ (λ̃n – λn)
∫ xj+

n

xj
n

[
ϕ̃(t, λ̃n)ϕ(t,λn) + ϕ(t,λn)ϕ̃(t, λ̃n)

]
dt. (.)

Since η() = η̃(), it yields from (.), (.) and (.)

λn – λ̃n = O
(


n

)
(.)

and {
ỹ(x, λ̃n)y(x,λn) = 

 [ – cos((λn + λ̃n)x + (α + η(x)))] + O( 
n ),

ỹ(x, λ̃n)y(x,λn) = 
 [ + cos((λn + λ̃n)x + (α + η(x)))] + O( 

n ).

From the above equalities we get from (.) and (.)

 =
∫ xj+

n

xj
n

[(
q̃(t) – q(t)

)
+

(
p̃(t) – p(t)

)]
dt

+
∫ xj+

n

xj
n

[(
q̃(t) – q(t)

)
–

(
p̃(t) – p(t)

)]
cos

(

(
α + η(t)

)
+ (λn + λ̃n)t

)
dt + O

(


n

)

=

lj
n

∫ xj+
n

xj
n

[(
q̃(t) – q(t)

)
–

(
p̃(t) – p(t)

)]
cos

(

(
α + η(t)

)
+ (λn + λ̃n)t

)
dt + O

(

n

)
.

Thus applying the result in [], we derive with j = jn(x) that for n → ∞
[(

q̃(x) – q(x)
)

–
(
p̃(x) – p(x)

)]
cos

(

(
α + η(x)

)
+ (λn + λ̃n)x

)
= , (.)

which means q(x)–p(x) = q̃(x)– p̃(x), since the quantity cos((α +η(x))+(λn + λ̃n)x) cannot
be identically zero for all n ∈ Z and x ∈ [, ]. Hence we obtain from (.) that p(x) = p̃(x),
q(x) = q̃(x) on [, ]. The proof is complete. �
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According to Lemma . one can choose sufficiently large N such that for all n > N there
are exactly the first component y(x,λn) of the eigenfunction y(x,λn) and the first compo-
nent y(x,λ–n) of the eigenfunction y(x,λ–n), corresponding to the eigenvalues λn >  and
λ–n < , respectively, of the operator L that posses precisely n nodes in the interval (, ).
Analogous to the proof of [], Theorem , the same assertion with the same N is also
valid for the operator La of the form

By′ – Q(x)y = λy,  ≤ a < x < , y(a) = V (y) = , (.)

which can be formulated thus: for all a ∈ [, ) and n > N there are exactly the first com-
ponent y(x,λn,a) of the eigenfunctions y(x,λn,a) and the first component y(x,λ–n,a) of the
eigenfunctions y(x,λ–n,a), corresponding to the eigenvalues λn,a >  and λ–n,a < , respec-
tively, for the operator La possess precisely n zeros in the interval (a, ).

Let us go on to the investigation of an incomplete inverse nodal problem when the nodal
points are given only on a part of the interval.

Theorem . Fix b < /. If X ∩ (b, ) = X̃ ∩ (b, ) and η() = η̃(), then L = L̃. Thus, the
specification of the nodes on any interval (b, ), b < /, together with the mean values of
p + q, uniquely determines the functions p(x), q(x), and the coefficients α, β of the boundary
conditions.

Proof By the same arguments in the proof of Theorem ., it is easy to see that

β = β̃ , p(x) = p(x), q(x) = q(x) on [b, ]. (.)

Choose N ≥ N so that xn–N–
n > b and x–n+N+

–n > b for n ≥ N . Fix n ≥ N and put
a := xn–N–

n . Consider the operator La, then for n ≥ N the component-function y(x,λn,a)
of the eigenfunction y(x,λn,a) and the component-function y(x,λ–n,a) of the eigenfunc-
tion y(x,λ–n,a) for the operator La both have precisely n zeros in the interval (a, ),
corresponding to the eigenvalues λn,a >  and λ–n,a < , respectively. Moreover, these
component-functions also satisfy the boundary conditions in (.) for the correspond-
ing eigenvalues. Since the function y(x,λn) has precisely N zeros in the interval (a, )
and V (y) = y(a,λn) = , thus we have λn = λN,a or λn = λ–N,a. Furthermore, (.) yields
λ̃n = λN,a or λ̃n = λ–N,a. Since λnλ̃n >  and λN,aλ–N,a < , we get λn = λ̃n. Analogously
putting a := x–n+N+

–n we arrive at λ–n = λ̃–n. Thus, we have λn = λ̃n for |n| ≥ N and it re-
mains to apply Theorem . to get p(x) = p̃(x), q(x) = q̃(x) on [, b] and α = α̃. The proof is
complete. �
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