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Abstract
A predator-prey model with Beddington-DeAngelis functional response and disease
in the predator population is proposed, corresponding to the deterministic system,
a stochastic model is investigated with parameter perturbation. In Additional file 1,
qualitative analysis of the deterministic system is considered. For the stochastic
system, the existence of a global positive solution and an estimate of the solution are
derived. Sufficient conditions of persistence in the mean or extinction for all the
populations are obtained. In contrast to conditions of permanence for the
deterministic system in Additional file 1, it shows that environmental stochastic
perturbation can reduce the size of population to a certain extent. When the white
noise is small, there is a stationary distribution. In addition, conditions of global
stability for the deterministic system are also established from the above result. These
results mean that the stochastic system has a similar property to the corresponding
deterministic system when the white noise is small. Finally, numerical simulations are
carried out to support our findings.
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1 Introduction
Recently, epidemiological models have received much attention from scientists. Since the
pioneering work of Kermack-Mckendrick, there have been many relevant papers [–],
but only single-species is considered in these models. However, species does not exist
alone; while species spreads the disease in the natural world, it also competes with other
species for resource to exist, or is predated by their enemies. Therefore, it is more impor-
tant to consider the effect of multi-species when we consider the dynamical behaviors of
epidemiological models. There are not many papers [–] considering these two areas.

Due to its universal existence and importance, the dynamic relationship between the
predator and the prey has been a dominant theme in ecology. The predator’s functional
response is one significant component of the predator-prey relationship. Generally, the
classical Holling types I-III are only related to the density of the prey, and Hassell-Varley
type [], Beddington-DeAngelis type [–] as well as Crowley-Martin type [] are
functions of both the prey and the predator densities. A lot of data show that the func-
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tional response related to prey and predator densities performs much better. The classical
predator-prey model with Beddington-DeAngelis type functional response is

{
x′(t) = x(t)[b – ax(t) – ay(t)

+mx(t)+ny(t) ],
y′(t) = y(t)[–b + ax(t)

+mx(t)+ny(t) – ay(t)],
()

where x = x(t) and y = y(t) represent prey and predator densities at time t, all the coeffi-
cients are positive. We can refer to [, , ] for the biological representation of each
coefficient in model ().

In this paper, we first introduce a deterministic predator-prey model with disease in
the predator and Beddington-DeAngelis functional response. We assume that the disease
only spreads among the predator population based on the basic epidemiological model,
namely the SI:

⎧⎪⎪⎨
⎪⎪⎩

x′(t) = x(t)[r – ax(t) – ay(t)
+mx(t)+ny(t) ],

y′
(t) = y(t)[–d – ay(t) + ax(t)

+mx(t)+ny(t) – βy(t)],
y′

(t) = y(t)[βy(t) – d – ay(t)].

()

Let x(t) denote the population density of prey, y(t) and y(t) represent the population
density of the susceptible predator and the infected predator, respectively.

Model () is derived under the following assumptions: r is the intrinsic growth rate of
the prey, a is the overcrowding rate of prey population, and a is the capturing rate of the
predator. d is the death rate of the susceptible predator, a is the overcrowding rate of the
susceptible predator. a

a
is the rate of conversion of nutrient into the reproduction of the

predator. β is the transmission rate of the disease. We assume that infected predators do
not have capturing ability and do not recover or become immune, d and a are the death
rate and the overcrowding rate of the infected predator, all the coefficients are positive
here. System () has four non-negative equilibria O(, , ), E( r

a
, , ), the disease-free

equilibrium E(x̂, ŷ, ) and the positive equilibrium E∗ = (x∗, y∗
 , y∗

). E exists if

ar > d(a + mr). ()

E∗ exists if

ar >
(

d +
da

β

)(
a + mr +

nda

β

)
. ()

Define the basic reproduction number R = ar
(d+ da

β
)(a+mr+ nda

β
)
, obviously, E∗ exists

when R > . In addition, we can compute a useful result: ŷ < d
β

if R < .
In fact, all the populations in the natural world are inevitably affected by environmen-

tal white noise which is an important component in reality. Therefore, many stochastic
models for single-species or multi-species have been developed [–]. In this paper,
considering the effect of environmental noise, we introduce stochastic perturbation into
some parameters. As we known, r is the intrinsic growth rate of preys, d and d are both
death rates of susceptible predators and infected predators. In practice, these parameters
can be estimated by an average value plus an error term. By the well-known central limit
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theorem, we know the error term follows a normal distribution and sometimes depends
on how much the current population sizes differ from the equilibrium state. Hence, we
consider the perturbation as the following form [–]:

r → r + σḂ(t), –d → –d + σḂ(t), –d → –d + σḂ(t),

where σ 
i (i = , , ) is the intensity of noise and Ḃi(t) (i = , , ) is a standard Brownian

motion. Corresponding to the deterministic model (), a stochastic system has the follow-
ing form:

⎧⎪⎪⎨
⎪⎪⎩

dx(t) = x(t)[r – ax(t) – ay(t)
+mx(t)+ny(t) ] dt + σx(t) dB(t),

dy(t) = y(t)[–d – ay(t) + ax(t)
+mx(t)+ny(t) – βy(t)] dt + σy(t) dB(t),

dy(t) = y(t)[βy(t) – d – ay(t)] dt + σy(t) dB(t).

()

Throughout this paper, unless otherwise specified, let (�,F ,P) be a complete probability
space with a filtration {Ft}t∈R satisfying the usual conditions (i.e., it is right continuous
and increasing and F contains all P-null sets).

The qualitative analysis of system () is in Additional file , here we mainly discuss the
stochastic system. In the following section, we derive the existence of a positive solution of
system (), an estimate of the solution, and give the conditions of persistence in the mean
or extinction for both populations. We also show that there exists a stationary distribution
of the solution. As a result, conditions of global stability for model () are obtained.

2 Existence of the positive solution
In order for a stochastic differential equation to have a unique global solution for any given
initial value, the coefficients of the equation are generally required to satisfy the linear
growth condition and the local Lipschitz condition [].

Theorem  For any initial value x > , y >  and y > , there is a unique solution
(x(t), y(t), y(t)) of system () on t ≥ , and the solution will remain in R

+ with probability .

Proof Define a C-function V : R
+ → R+ by V (x, y, y) = (x –  – log x) + (y –  – log y) +

(y –  – log y), by a similar way of the proof in Theorem . of [], Theorem . of []
and Lemma  of [], we can have the required assertion. �

Though we cannot get an explicit solution for model (), an estimate of positive solution
of () can be derived, we firstly show a very useful lemma derived from [].

Consider the equation

dN(t) = N(t)
[(

a(t) – b(t)N(t)
)

dt + α(t) dB(t)
]
. ()

Lemma  Assume that a(t), b(t) and α(t) are bounded continuous functions defined on
[,∞), a(t) >  and b(t) > . Then there exists a unique continuous positive solution N(t)
for any initial value N() = N > , which is global and represented by

N(t) =
exp{∫ t

 [a(s) – α(s)
 ] ds + α(s) dB(s)}

/N +
∫ t

 b(s) exp{∫ s
 [a(τ ) – α(τ )

 ] dτ + α(τ ) dB(τ )}ds
, t ≥ . ()
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Since the solution is positive, we have dx(t) ≤ x(t)[r – ax(t)] dt + σx(t) dB(t) from
system (), let

�(t) =
exp(r–

σ

 )t+σB(t)

/x + a
∫ t

 exp(r–
σ


 )s+σB(s) ds

,

by Lemma , it is easy to see that �(t) is the unique solution of the following equation:

{
d�(t) = �(t)(r – a�(t)) dt + σ�(t) dB(t),
�() = x.

The comparison theorem for stochastic equations yields x(t) ≤ �(t), t ≥ , a.s. Besides,

dy(t) ≤ y(t)
[

–d – ay(t) +
a

m

]
dt + σy(t) dB(t).

Obviously, by Lemma ,

�(t) =
exp( a

m –d–
σ


 )t+σB(t)


y

+ a
∫ t

 exp( a
m –d–

σ

 )s+σB(s) ds

is the solution to the equation

{
d�(t) = �(t)( a

m – d – a�(t)) dt + σ�(t) dB(t),
�() = y,

and y(t) ≤ �(t), t ≥ , a.s. On the other hand,

dx(t) ≥ x(t)
[

r – ax(t) –
a

n

]
dt + σx(t) dB(t),

similarly, we can get x(t) ≥ φ(t), t ≥ , a.s., where

φ(t) =
exp(r– a

n –
σ


 )t+σB(t)

/x + a
∫ t

 exp(r– a
n –

σ

 )s+σB(s) ds

is the solution of
{

dφ(t) = φ(t)(r – a
n – aφ(t)) dt + σφ(t) dB(t),

φ() = x.

It is easy to see that dy(t) ≤ y(t)[β�(t) – d – ay(t)] dt + σy(t) dB(t), we also have
y(t) ≤ �(t), t ≥ , a.s., and

�(t) =
exp{∫ t

 (β�(s) – d – σ

 ) ds + σ dB(s)}


y

+ a
∫ t

 exp{∫ s
 (β�(τ ) – d – σ


 ) dτ + σ dB(τ )}ds
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is the solution of{
d�(t) = �(t)(β�(t) – d – a�(t)) dt + σ�(t) dB(t),
�() = y.

By system (), we have dy(t) ≥ y(t)[–d – ay(t) + aφ(t)
+m�(t)+n�(t) – β�(t)] dt + σ ×

y(t) dB(t). Therefore, we derive y(t) ≥ ψ(t), t ≥ , a.s., where

ψ(t) =
exp{∫ t

 ( aφ(s)
+m�(s)+n�(s) – d – β�(s) – σ


 ) ds + σ dB(s)}


y

+ a
∫ t

 exp{∫ s
 ( aφ(τ )

+m�(τ )+n�(τ ) – d – β�(τ ) – σ

 ) dτ + σ dB(τ )}ds

is a solution of{
dψ(t) = ψ(t)( aφ(t)

+m�(t)+n�(t) – d – β�(t) – aψ(t)) dt + σψ(t) dB(t),
ψ() = y.

We can also get y(t) ≥ ψ(t), t ≥ , a.s., where

ψ(t) =
exp{∫ t

 (βψ(s) – d – σ

 ) ds + σ dB(s)}


y

+ a
∫ t

 exp{∫ s
 (βψ(τ ) – d – σ


 ) dτ + σ dB(τ )}ds

is a solution of{
dψ(t) = ψ(t)(βψ(t) – d – aψ(t)) dt + σψ(t) dB(t),
ψ() = y,

then we derive the following theorem.

Theorem  Assume (x(t), y(t), y(t)) on t ≥  is the positive solution of system () for initial
value x > , y >  and y > , then there exist functions �(t), φ(t), �i(t), ψi(t) (i = , ),
defined as above, such that

φ(t) ≤ x(t) ≤ �(t), ψi(t) ≤ yi(t) ≤ �i(t) (i = , ), t ≥ , a.s.

3 Persistence in the mean and extinction
In order to consider the conditions of persistence in the mean and extinction for the prey
and predator population, at first, we give two useful lemmas. Applying Itô’s formula to
system () yields

⎧⎪⎪⎨
⎪⎪⎩

d ln x(t) = [r – 
σ 

 – ax(t) – ay(t)
+mx(t)+ny(t) ] dt + σ dB(t),

d ln y(t) = [–d – 
σ 

 – ay(t) + ax(t)
+mx(t)+ny(t) – βy(t)] dt + σ dB(t),

d ln y(t) = [βy(t) – d – 
σ 

 – ay(t)] dt + σ dB(t).

()

Lemma  The solution (x(t), y(t), y(t)) of system () for any initial value (x, y, y) ∈ R+


satisfies the following inequalities:

lim sup
t→∞

ln x(t)
t

≤ , lim sup
t→∞

ln y(t)
t

≤ , lim sup
t→∞

(
ln y(t)

t
+

ln y(t)
t

)
≤ .
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Proof It follows from Eq. () that

⎧⎪⎨
⎪⎩

d ln x(t) ≤ [r – 
σ 

 – ax(t)] dt + σ dB(t),
d ln y(t) ≤ [ a

m – d – 
σ 

 – ay(t)] dt + σ dB(t),
d ln y(t) = [βy(t) – d – 

σ 
 – ay(t)] dt + σ dB(t).

Consider the following system:

⎧⎪⎨
⎪⎩

d ln u(t) = [r – 
σ 

 – au(t)] dt + σ dB(t),
d ln v(t) = [ a

m – d – 
σ 

 – av(t)] dt + σ dB(t),
d ln v(t) = [βv(t) – d – 

σ 
 – av(t)] dt + σ dB(t),

()

with initial value (x, y, y) ∈ R+
 . By the comparison theorem for stochastic differential

equations, we have

x(t) ≤ u(t), yi(t) ≤ vi(t) (i = , ), t ∈ [, +∞), a.s.

In fact, by virtue of Theorem . and Corollary . in [], we can get

lim sup
t→∞

ln u(t)
t

≤ , lim sup
t→∞

ln v(t)
t

≤ .

Hence, lim supt→∞
ln x(t)

t ≤ , lim supt→∞
ln y(t)

t ≤ . In the following, we show that
lim supt→∞( ln y(t)

t + ln y(t)
t ) ≤ .

Applying Itô’s formula to exp(t) ln vi(t) (i = , ) results in

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp(t) ln v(t) = ln y +
∫ t

 exp(s)[ln v(s) + a
m – d – 

σ 
 – av(s)] ds

+ M(t),
exp(t) ln v(t) = ln y +

∫ t
 exp(s)[ln v(s) + βv(s) – d – 

σ 
 – av(s)] ds

+ M(t),

()

where Mi(t) =
∫ t

 σi exp(s) dBi(s) (i = , ) is a real-valued continuous local martingale with
quadratic form 〈Mi(t), Mi(t)〉 =

∫ t
 σ 

i exp(s) ds.
By virtue of the exponential martingale inequality of [], for any positive constants T ,

δ and η, we have

P
{

sup
≤t≤T

[
Mi(t) –

δ


〈
Mi(t), Mi(t)

〉]
> η

}
≤ exp(–δη).

Choosing T = γ k, δ = exp(–γ k), η = θ exp(γ k) ln k gives that

P
{

sup
≤t≤γ k

[
Mi(t) –

exp(–γ k)


〈
Mi(t), Mi(t)

〉]
> θ exp(γ k) ln k

}
≤ k–θ ,

where k ∈ N , θ >  and γ > . It follows from the Borel-Cantelli lemma that there exists
�i ⊂ � (i = , ) with P(�i) =  such that for any ω ∈ �i, an integer ki = ki(ω) satisfying

Mi(t) ≤ exp(–γ k)


〈
Mi(t), Mi(t)

〉
+ θ exp(γ k) ln k
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for all  ≤ t ≤ γ k and k ≥ ki(ω) can be found. Now let � =
⋂

i= �i, clearly, P(�) = .
Moreover, let k(ω) = max{ki(ω), i = , }, then for any ω ∈ �, it follows from Eq. () that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp(t) ln v(t) ≤ ln y +
∫ t

 exp(s)[ln v(s) + a
m – d – 

σ 
 – av(s)] ds

+
∫ t

 exp(s) σ

 exp(s – γ k) ds + θ exp(γ k) ln k,

exp(t) ln v(t) ≤ ln y +
∫ t

 exp(s)[ln v(s) + βv(s) – d – 
σ 

 – av(s)] ds
+

∫ t
 exp(s) σ


 exp(s – γ k) ds + θ exp(γ k) ln k

()

for all  ≤ t ≤ γ k and k ≥ ki(ω). Then

exp(t)
[
ln v(t) + ln v(t)

]
≤ ln y + ln y +

∫ t


exp(s)

[
ln v(s) – (a – β)v(s) +

a

m

– d –


σ 

 + ln v(s) – av(s) – d –


σ 



]
ds

+
∫ t


exp(s)

∑
i=

σ 
i


exp(s – γ k) ds

+ θ exp(γ k) ln k.

It is easy to see that for any  ≤ s ≤ γ k and (u(s), v(s), v(s)) ∈ R
+, there exists a constant

A independent of k such that

ln v(s) – (a – β)v(s) +
a

m
– d –



σ 

 + ln v(s) – av(s) – d –


σ 



+
∑

i=

σ 
i


exp(s – γ k) ≤ A.

Hence, it follows that for all  ≤ t ≤ γ k, with k ≥ k(ω), we have

exp(t)
[
ln v(t) + ln v(t)

] ≤ ln y + ln y +
∫ t


A exp(s) ds + θ exp(γ k) ln k.

Thus,

ln v(t) + ln v(t) ≤ exp(–t)[ln y + ln y] + A
[
 – exp(–t)

]
+ θ exp(–t) exp(γ k) ln k.

Consequently, for γ (k – ) ≤ t ≤ γ k and k ≥ k(ω), it follows that

ln v(t)
t

+
ln v(t)

t
≤ 

t
exp(–t)[ln y + ln y] +

A[ – exp(–t)]
t

+
θ exp(–γ (k – )) exp(γ k) ln k

t
.

Now let k → +∞, then t → +∞, we have

lim sup
t→∞

(
ln v(t)

t
+

ln v(t)
t

)
≤ .
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Therefore,

lim sup
t→∞

(
ln y(t)

t
+

ln y(t)
t

)
≤ . �

Definition 
() The population x(t) is said to be non-persistent in the mean if 〈x(t)〉∗ = , where

〈f (t)〉 = 
t
∫ t

 f (s) ds, f ∗ = lim supt→+∞ f (t), f∗ = lim inft→+∞ f (t).
() The population x(t) is said to be weakly persistent in the mean if 〈x(t)〉∗ > .
() The population x(t) is said to be strongly persistent in the mean if 〈x(t)〉∗ > .

Lemma  [] Suppose that x(t) ∈ C[� × R+, R
+], where R

+ := {a|a > , a ∈ R}.
(I) If there are positive constants λ, T and λ ≥  such that

ln x(t) ≤ λt – λ

∫ t


x(s) ds +

n∑
i=

βiBi(t)

for t ≥ T , where βi is a constant,  ≤ i ≤ n, then 〈x〉∗ ≤ λ/λ, a.s. (i.e., almost surely).
(II) If there are positive constants λ, T and λ ≥  such that

ln x(t) ≥ λt – λ

∫ t


x(s) ds +

n∑
i=

βiBi(t)

for t ≥ T , where βi is a constant,  ≤ i ≤ n, then 〈x〉∗ ≥ λ/λ, a.s.

Theorem  For the prey population, we have:
(i) If r < 

σ 
 , then the prey population x(t) will go to extinction a.s.

(ii) If r = 
σ 

 , then the prey population x(t) is non-persistent in the mean a.s.
(iii) If r > 

σ 
 , then the prey population x(t) is weakly persistent in the mean a.s.

(iv) If r > 
σ 

 + a
n , then the prey population x(t) is strongly persistent in the mean a.s.

Proof It follows from the first equation of system () that

dx(t) ≤ x(t)
[
r – ax(t)

]
dt + σx(t) dB(t),

the right-hand side is a logistic system, because of the comparison theorem, Theorem ,
Theorem  and Theorem  in [], we can get consequences (i) and (ii).

(iii) We need to show that there exists a constant ρ >  such that for any solution of
system () with initial value (x, y, y) ∈ R

+ satisfying 〈x(t)〉∗ ≥ ρ > . Now we assume
that the contrast is true, let ε >  sufficiently small such that (–d – σ


 ) + aε < ,

(r – 
σ 

 ) – aε > , then for ε > , there exists a solution (x̄, ȳ, ȳ) with initial value
(x, y, y) ∈ R

+ such that P{〈x̄(t)〉∗ < ε} > .
By virtue of system (), we have

ln ȳ(t) – ln y

t
≤

(
–d –

σ 




)
+ a

〈
x̄(t)

〉
+ σ

B(t)
t

.

We also have limt→+∞ B(t)
t = , thus lim supt→+∞

ln ȳ(t)
t ≤ (–d – σ


 ) + aε < , then

limt→+∞ ȳ(t) = .
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It follows from system () that

d ln x̄(t) ≥
[

r –


σ 

 – ax̄(t) – aȳ(t)
]

dt + σ dB(t).

Integrating both sides from [, t] and multiplying by 
t , we obtain

ln x̄(t) – ln x

t
≥

(
r –



σ 



)
– a

〈
x̄(t)

〉
– a

〈
ȳ(t)

〉
+ σ

B(t)
t

,

then lim supt→+∞
ln x̄(t)

t ≥ (r – 
σ 

 ) – aε > , which contradicts Lemma . Therefore, our
assumption is false, 〈x(t)〉∗ > , the prey population x(t) will be weakly persistent in the
mean a.s.

(iv) It is easy to get

dx(t) ≥ x(t)
[(

r –
a

n

)
– ax(t)

]
dt + σx(t) dB(t).

Similarly, by the comparison theorem, Theorem  and Theorem  in [], result (iv) is
obtained. �

Remark  By Theorem , we find that r – 
σ 

 is the threshold between weak persistence
in the mean and extinction for the prey population. If 

σ 
 > r, then the prey population

will be extinct in the future, no matter whether the predator exists. It implies that envi-
ronmental random perturbation plays a very important role in the biological system.

Theorem  For the predator population, we have:
(i) If a(r – 

σ 
 ) < a(d + σ


 ), then the susceptible predator population y(t) will go

to extinction a.s.
(ii) If a(r – 

σ 
 ) = a(d + σ


 ), then the susceptible predator population y(t) is

non-persistent in the mean a.s.
(iii) If βa(r – 

σ 
 ) < βa(d + σ


 ) + aa(d + σ


 ), then the infected predator

population y(t) will go to extinction a.s.
(iv) If βa(r – 

σ 
 ) = βa(d + σ


 ) + aa(d + σ


 ), then the infected predator

population y(t) is non-persistent in the mean a.s.

Proof (i) If r ≤ 
σ 

 , then it follows from Theorem  that 〈x(t)〉∗ = . By the second equa-
tion of system (), we have

ln y(t) – ln y

t
≤

(
–d –

σ 




)
+ a

〈
x(t)

〉
+ σ

B(t)
t

. ()

Hence, [t– ln y(t)]∗ ≤ (–d – σ

 ) < , then limt→+∞ y(t) = .

Now we consider that if r > 
σ 

 , it follows from the first equation of system () that

ln x(t) – ln x

t
≤

(
r –



σ 



)
– a

〈
x(t)

〉
+ σ

B(t)
t

.
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Applying Lemma  leads to

〈
x(t)

〉∗ ≤ r – 
σ 



a
. ()

Substituting the above inequality into () gives

[
t– ln y(t)

]∗ ≤
(

–d –
σ 




)
+ a

〈
x(t)

〉∗ ≤ a(r – 
σ 

 ) – a(d + σ

 )

a
< , ()

which implies that limt→+∞ y(t) =  a.s.
(ii) Assume 〈y(t)〉∗ > , then it follows from Lemma  that [t– ln y]∗ = . Making use of

(), we can see

 =
[
t– ln y(t)

]∗ ≤
(

–d –
σ 




)
+ a

〈
x(t)

〉∗. ()

On the other hand, for sufficiently small ε > , there exists T >  such that for all t > T,
a〈x(t)〉 < a〈x(t)〉∗ + ε.

Substituting these inequalities into the second equation of system () yields that

ln y(t) – ln y

t
≤

(
–d –

σ 




)
+ a

〈
x(t)

〉
– a

〈
y(t)

〉
+ σ

B(t)
t

≤
(

–d –
σ 




)
+ a

〈
x(t)

〉∗ + ε – a
〈
y(t)

〉
+ σ

B(t)
t

,

then application of Lemma  and () results in

〈
y(t)

〉∗ ≤ (–d – σ

 ) + a〈x(t)〉∗ + ε

a
.

Condition a(r – 
σ 

 ) = a(d + σ

 ) means that r > 

σ 
 , because of () and the arbitrari-

ness of ε,

〈
y(t)

〉∗ ≤ a(r – 
σ 

 ) – a(d + σ

 )

aa
= , ()

which is a contradiction to our assumption, therefore, 〈y(t)〉∗ =  a.s.
(iii) If a(r – 

σ 
 ) ≤ a(d + σ


 ), then from (i) and (ii), we get 〈y(t)〉∗ = . Hence, it

follows from the third equation of system () that

ln y(t) – ln y

t
= β

〈
y(t)

〉
– d –



σ 

 – a
〈
y(t)

〉
+ σ

B(t)
t

. ()

Taking superior limit leads to [t– ln y(t)]∗ ≤ –d – 
σ 

 < , then limt→+∞ y(t) =  a.s.

If a(r – 
σ 

 ) > a(d + σ

 ), r > 

σ 
 must be verified, thus by the proof of (ii), we have

(), that is,

〈
y(t)

〉∗ ≤ a(r – 
σ 

 ) – a(d + σ

 )

aa
.
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At this time, making use of (), we obtain

(
t– ln y(t)

)∗ ≤ β
〈
y(t)

〉∗ – d –


σ 



≤ βa(r – 
σ 

 ) – βa(d + σ

 ) – aa(d + σ


 )

aa

< ,

then limt→+∞ y(t) =  as desired.
(iv) If βa(r – 

σ 
 ) = βa(d + σ


 ) + aa(d + σ


 ), then a(r – 

σ 
 ) > a(d + σ


 )

and r > 
σ 

 . By the properties of superior limit, for sufficiently small ε > , there exists a
constant T >  such that for all t > T, 〈y(t)〉 < 〈y(t)〉∗ + ε

β
.

Substituting () and the above results into () yields

ln y(t) – ln y

t
≤ βa(r – 

σ 
 ) – βa(d + σ


 )

aa
+ ε – d –

σ 



– a

〈
y(t)

〉

+ σ
B(t)

t

≤ βa(r – 
σ 

 ) – βa(d + σ

 ) – aa(d + σ


 )

aa
+ ε

– a
〈
y(t)

〉
+ σ

B(t)
t

.

By Lemma , 〈y(t)〉∗ ≤ 
a

[ βa(r– 
 σ

 )–βa(d+
σ


 )–aa(d+

σ

 )

aa
+ ε] = ε

a
. Considering the

arbitrariness of ε, we have 〈y(t)〉∗ ≤ . Notice the positivity of the solution (x(t), y(t),
y(t)), it is easy to get 〈y(t)〉∗ =  a.s. �

Remark  Observing conditions (i) and (iii) of Theorem , we can see that if condition (i)
is true, (iii) must be verified. That is to say, if the susceptible predator population goes to
extinction, the infected predator population will also die out, which is consistent with the
reality. Though we have some difficulties to research persistence for the predator popula-
tion now, we can consider it in another way in Section .

Remark  It follows from Theorems ,  and Theorem A. in Additional file  that the so-
lution of stochastic system () satisfies 〈x(t)〉∗ ≤ r– 

 σ


a
when r > 

σ 
 . If r > 

σ 
 + a

n , then
〈x(t)〉∗ ≥ r– 

 σ
 – a

n
a

. When σ 
 = , the upper bound and lower bound are the same with K

and K in Theorem A., this is consistent with our expectations. Besides, if a(r – 
σ 

 ) >

a(d + σ

 ), 〈y(t)〉∗ ≤ a(r– 

 σ
 )–a(d+

σ

 )

aa
. 〈y(t)〉∗ ≤ βa(r– 

 σ
 )–βa(d+

σ

 )–aa(d+

σ

 )

aaa
if

βa(r – 
σ 

 ) > βa(d + σ

 ) + aa(d + σ


 ). These results are all the same conclusions

with K  and K in Theorem A. when σ 
i =  (i = , , ). Furthermore, we find that the

upper bound and lower bound of the solution for the stochastic system are smaller than
those for the deterministic system. It means environmental random perturbation can re-
duce the size of the population to a certain extent.
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4 The long time behavior of solution
For system (), by analyzing the characteristic equation of four equilibria, we can easily get
sufficient conditions of local stability for these equilibria. At this time, we know O(, , )
is saddle, not stable. If ar < d(a + mr), then E is locally asymptotically stable, and the
disease-free equilibrium E does not exist. When r > a

n , ar > d(a + mr) and R <  are
verified, the disease-free equilibrium E(x̂, ŷ, ) is locally asymptotically stable, E∗ does
not exist; when R >  and r > a

n , the positive equilibrium E∗ is locally asymptotically
stable.

For stochastic system (), E and E are no longer equilibria, but in this section we
can study the asymptotic behavior of solution around them. Meanwhile, the conditions
of global asymptotic behavior for E and E are derived.

Theorem  If ar < ad, then for any given initial value (x, y, y) ∈ R
+, the solution

X(t) = (x(t), y(t), y(t)) of system () has the property

lim sup
t→+∞


t

∫ t


E
[∥∥X(s) – E

∥∥]ds ≤ aσ

 r

μa
,

here μ = min{aa, aa, aa}.

Proof Define a function V (t) = c(x – r
a

– r
a

log ax
r ) + cy + cy, where ci (i = , , ) are

positive constants to be determined later. Then the function V (t) is positive definite, and

dV (t) = c

(
x –

r
a

)[
r – ax –

ay

 + mx + ny

]
dt

+
cσ


 r

a
dt + c

(
x –

r
a

)
σ dB(t)

+ cy

[
–d – ay +

ax
 + mx + ny

– βy

]
dt + cσy dB(t)

+ cy[βy – d – ay] dt + cσy dB(t).

Here,

LV = c

(
x –

r
a

)[
–a

(
x –

r
a

)
–

ay

 + mx + ny

]
+

cσ

 r

a

+ cy

[
–d – ay +

ax
 + mx + ny

– βy

]
+ cy[βy – d – ay]

= –ca

(
x –

r
a

)

–
caxy

 + mx + ny
+

ca
r

a
y

 + mx + ny
+

cσ

 r

a

– cdy – cay
 +

caxy

 + mx + ny
– cβyy + cβyy – cdy – cay

.

Let c = a, c = c = a, then

LV = –ca

(
x –

r
a

)

+
ca

r
a

y

 + mx + ny
+

cσ

 r

a

– cdy – cay
 – cdy – cay
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≤ –ca

(
x –

r
a

)

–
(

cd – ca
r

a

)
y

– cay
 – cdy – cay

 +
cσ


 r

a
.

If ad > ar, thus

LV ≤ –ca

(
x –

r
a

)

– cay
 – cay

 +
cσ


 r

a
,

therefore,

dV ≤ –
[

ca

(
x –

r
a

)

+ cay
 + cay



]
dt +

cσ

 r

a
dt

+ c

(
x –

r
a

)
σ dB(t) + cσy dB(t) + cσy dB(t).

Integrating both sides of the above inequality from  to t, then taking expectations, yields

 ≤ E
[
V (t)

] ≤ V () – μ

∫ t


E
[(

x(s) –
r

a

)

+ y(s) + y(s)
]

ds +
cσ


 r

a
t,

which leads to

lim sup
t→+∞


t

∫ t


E
[(

x(s) –
r

a

)

+ y(s) + y(s)
]

ds ≤ cσ

 r

μa
,

here μ = min{aa, aa, aa}. The result is straightforward. �

When σi =  (i = , , ), system () becomes system (). By Theorem , we know the
stability of equilibrium E.

Corollary  If ar < ad, the equilibrium E( r
a

, , ) of system () is globally asymptot-
ically stable.

Remark  It is not difficult to find that the solution of stochastic system () fluctuates
around equilibrium E( r

a
, , ) of system () when E is globally asymptotically stable.

The intensity of fluctuation is relevant to σ 
 . The smaller σ 

 is, the weaker the fluctuation
is.

Theorem  Assume ar > d(a + mr), a > m(r – ax̂) and R < , for any given initial
value (x, y, y) ∈ R

+, the solution X(t) = (x(t), y(t), y(t)) of system () has the property

lim sup
t→+∞


t

∫ t


E
[∥∥X(s) – E

∥∥]ds ≤ cx̂σ 


μ̃
+

cŷσ



μ̃
,

where c = a( + nŷ), c = c = a( + mx̂) and μ̃ = min{[a – m(r – ax̂)]c, ca, ca}.

Proof Define a C function V : R
+ → R+ by

V (t) = c

(
x – x̂ – x̂ log

x
x̂

)
+ c

(
y – ŷ – ŷ log

y

ŷ

)
+ cy,
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where ci >  (i = , , ) are constants to be chosen later. Make system () into the following
form:⎧⎪⎪⎨

⎪⎪⎩
dx = x[–a(x – x̂) + a

mŷ(x–x̂)–(y–ŷ)(+mx̂)
(+mx+ny)(+mx̂+nŷ) ] dt + σx dB(t),

dy = y[–a(y – ŷ) + a
(x–x̂)(+nŷ)–nx̂(y–ŷ)
(+mx+ny)(+mx̂+nŷ) – βy] dt + σy dB(t),

dy = y[βy – d – ay] dt + σy dB(t).

From Itô’s formula, we compute

dV =
[

–ca(x – x̂) +
camŷ(x – x̂)

( + mx + ny)( + mx̂ + nŷ)

–
ca( + mx̂)(x – x̂)(y – ŷ)
( + mx + ny)( + mx̂ + nŷ)

]
dt + cσ(x – x̂) dB(t)

+
cx̂σ 




dt +
[

–ca(y – ŷ) +
ca( + nŷ)(x – x̂)(y – ŷ)
( + mx + ny)( + mx̂ + nŷ)

–
canx̂(y – ŷ)

( + mx + ny)( + mx̂ + nŷ)
– cβy(y – ŷ) +

cŷσ





]
dt

+ c(y – ŷ)σ dB(t) +
[
cy(βy – d – ay)

]
dt + cσy dB(t).

Make c = a( + nŷ), c = a( + mx̂), therefore

LV ≤ –ca(x – x̂) +
cm(r – ax̂)(x – x̂)

 + mx + ny
– ca(y – ŷ)

– cβyy + cβ ŷy + cβyy – cdy – cay
 +

cx̂σ 



+

cŷσ




.

Let c = c, then

LV ≤ –ca(x – x̂) + cm(r – ax̂)(x – x̂) – ca(y – ŷ)

– (cd – cβ ŷ)y – cay
 +

cx̂σ 



+

cŷσ




.

When R < , we have d – β ŷ > , thus

LV ≤ –c
[
a – m(r – ax̂)

]
(x – x̂) – ca(y – ŷ) – cay

 +
cx̂σ 




+
cŷσ





.

If a > m(r – ax̂), set μ̃ = min{[a – m(r – ax̂)]c, ca, ca}, integrating both sides
from  to t, taking expectations leads to

 ≤ EV (t) ≤ V () – μ̃

∫ t


E
[(

x(s) – x̂
) +

(
y(s) – ŷ

) + y
(s)

]
ds +

(
cx̂σ 




+
cŷσ






)
t.

Dividing both sides by t and letting t → +∞, we get

lim sup
t→+∞


t

∫ t


E
[(

x(s) – x̂
) +

(
y(s) – ŷ

) + y
(s)

]
ds ≤ cx̂σ 


μ̃

+
cŷσ




μ̃
.

This completes the theorem. �
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When σi =  (i = , , ), it is easy to get the following.

Corollary  Assume ar > d(a + mr), the disease-free equilibrium E(x̂, ŷ, ) of system
() is globally asymptotically stable when a > m(r – ax̂) and R < .

Remark  The solution of stochastic system () fluctuates around the disease-free equi-
librium E(x̂, ŷ, ) of deterministic system () when E is globally asymptotically stable.
The values of σ 

 and σ 
 determine the extent of fluctuations.

Remark  According to ŷ = (+mx̂)(r–ax̂)
a–nr+na x̂ , we have x̂ > r

a
– a

na
when r > a

n . The condi-
tion a > m(r – ax̂) in Theorem  is equivalent to x̂ > r

a
– 

m , thus, if ma < na, the
condition a > m(r – ax̂) must be verified. Therefore, the condition a > m(r – ax̂) in
Theorem  can be replaced by the condition a < min{ na

m , nr} which is easier to verify.

5 Stationary distribution
Before giving the main theorems, we first give a lemma [].

Let X(t) be a homogeneous Markov process in El (El denotes Euclidean l-space) de-
scribed by the stochastic equation

dX(t) = b(X) dt +
k∑

r=

σr(X) dBr(t). ()

The diffusion matrix is

A(x) =
(
aij(x)

)
, aij(x) =

k∑
r=

σ i
r (x)σ j

r (x).

Assumption B There exists a bounded domain U ⊂ El with regular boundary �, having
the following properties:

(B.) In the domain U and some neighborhood thereof, the smallest eigenvalue of the
diffusion matrix A(x) is bounded away from zero.

(B.) If x ∈ El\U , the mean time τ at which a path issuing from x reaches the set U is
finite, and supx∈K Exτ < ∞ for every compact subset K ⊂ El .

Lemma  [] If Assumption B holds, then the Markov process X(t) has a stationary dis-
tribution μ(·). Let f (·) be a function integrable with respect to the measure μ. Then

Px

{
lim

T→∞

T

∫ T


f
(
X(t)

)
dt =

∫
El

f (x)μ(dx)
}

= 

for all x ∈ El .

Remark  To validate (B.), it suffices to prove that F is uniformly elliptical in U ,
where Fu = b(x) · ux + [tr(A(x)uxx)]/, that is, there is a positive number M such that∑k

i,j= aij(x)ξiξj ≥ M|ξ |, x ∈ U , ξ ∈ Rk (see p. of []). To verify (B.), it is sufficient
to show that there exists some neighborhood U and a non-negative C-function V such
that for any x ∈ El\U , LV is negative. (For details, we refer to p. of [].)
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Theorem  Assume R >  is satisfied, a > m(r – ax∗), and w < min{a(a – m(r –
ax∗))( + ny∗

 )(x∗), aa( + mx∗)(y∗
 ), aa( + mx∗)(y∗

)}, where

w =
ax∗σ 

 ( + ny∗
 )


+

ay∗
σ


 ( + mx∗)


+

ay∗
σ


 ( + mx∗)


,

then there is a stationary distribution μ(·) for system () and it has ergodic property.

Proof System () can be written as the form of system (),

d

⎛
⎜⎝

x(t)
y(t)
y(t)

⎞
⎟⎠ =

⎛
⎜⎝

x(t)(r – ax(t) – ay(t)
+mx(t)+ny(t) )

y(t)(–d – ay(t) + ax(t)
+mx(t)+ny(t) – βy(t))

y(t)(βy(t) – d – ay(t))

⎞
⎟⎠ dt

+

⎛
⎜⎝

σx(t)



⎞
⎟⎠ dB(t) +

⎛
⎜⎝


σy(t)



⎞
⎟⎠ dB(t) +

⎛
⎜⎝




σy(t)

⎞
⎟⎠ dB(t),

and the diffusion matrix is

A =

⎛
⎜⎝

σ 
 x  
 σ 

 y
 

  σ 
 y



⎞
⎟⎠ .

Define

V (x, y, y) = c

(
x – x∗ – x∗ log

x
x∗

)
+ c

(
y – y∗

 – y∗
 log

y

y∗


)

+ c

(
y – y∗

 – y∗
 log

y

y∗


)
,

where ci (i = , , ) are positive constants to be determined. System () can be rewritten
as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx = [–xa(x – x∗) + ax my∗
 (x–x∗)–(y–y∗

 )(mx∗+)
(+mx+ny)(+mx∗+ny∗

 ) ] dt + σx dB(t),

dy = [–ay(y – y∗
 ) – βy(y – y∗

) + ay
(x–x∗)(+ny∗

 )–nx∗(y–y∗
 )

(+mx+ny)(+mx∗+ny∗
 ) ] dt

+ σy dB(t),
dy = [βy(y – y∗

 ) – ay(y – y∗
)] dt + σy dB(t).

()

If (x, y, y) ∈ R+
 , applying Itô’s formula to system () gives

LV = c

[
x – x∗

x
dx +

x∗

x (dx)
]

+ c

[
y – y∗


y

dy +
y∗


y


(dy)

]

+ c

[
y – y∗


y

dy +
y∗


y


(dy)

]

= c

[
–a

(
x – x∗) +

amy∗
 (x – x∗) – a(y – y∗

 )(x – x∗)(mx∗ + )
( + mx + ny)( + mx∗ + ny∗

 )
+

x∗σ 




]

+ c

[
–a

(
y – y∗


) – β

(
y – y∗


)(

y – y∗

)
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+
a(x – x∗)( + ny∗

 )(y – y∗
 ) – anx∗(y – y∗

 )

( + mx + ny)( + mx∗ + ny∗
 )

+
y∗

σ





]

+ c

[
β
(
y – y∗


)(

y – y∗

)

– a
(
y – y∗


) +

y∗
σ






]

= –ca
(
x – x∗) +

camy∗
 (x – x∗)

( + mx + ny)( + mx∗ + ny∗
 )

–
ca(y – y∗

 )(x – x∗)(mx∗ + )
( + mx + ny)( + mx∗ + ny∗

 )
+

cx∗σ 



– ca

(
y – y∗


)

– cβ
(
y – y∗


)(

y – y∗

)

+
ca(x – x∗)( + ny∗

 )(y – y∗
 )

( + mx + ny)( + mx∗ + ny∗
 )

–
canx∗(y – y∗

 )

( + mx + ny)( + mx∗ + ny∗
 )

+
cy∗

σ





+ cβ
(
y – y∗


)(

y – y∗

)

– ca
(
y – y∗


) +

cy∗
σ





.

Here, let c = a( + ny∗
 ), c = c = a( + mx∗), therefore,

LV ≤ –ca
(
x – x∗) +

camy∗
 (x – x∗)

( + mx + ny)( + mx∗ + ny∗
 )

– ca
(
y – y∗


)

– ca
(
y – y∗


) +

cx∗σ 



+

cy∗
σ





+

cy∗
σ






≤ –
[

aa
(
 + ny∗


)

–
aamy∗

 ( + ny∗
 )

( + mx∗ + ny∗
 )

](
x – x∗)

– aa
(
 + mx∗)(y – y∗


) – aa

(
 + mx∗)(y – y∗


)

+
ax∗σ 

 ( + ny∗
 )


+

ay∗
σ


 ( + mx∗)


+

ay∗
σ


 ( + mx∗)



= –
[
aa

(
 + ny∗


)

– am
(
r – ax∗)( + ny∗


)](

x – x∗)

– aa
(
 + mx∗)(y – y∗


) – aa

(
 + mx∗)(y – y∗


)

+
ax∗σ 

 ( + ny∗
 )


+

ay∗
σ


 ( + mx∗)


+

ay∗
σ


 ( + mx∗)


.

When w < min{a(a – m(r – ax∗))( + ny∗
 )(x∗), aa( + mx∗)(y∗

 ), aa( +
mx∗)(y∗

)}, the ellipsoid

–a
(
a – m

(
r – ax∗))( + ny∗


)(

x – x∗) – aa
(
 + mx∗)(y – y∗


)

– aa
(
 + mx∗)(y – y∗


) + w = 

lies entirely in R
+. We can take U to be a neighborhood of the ellipsoid with U ⊆ E = R

+,
so for (x, y, y) ∈ E\U , LV ≤ –K (K is a positive constant), which implies that condition
(B.) in Lemma  is satisfied.

Besides, there is M = min{σ 
 x,σ 

 y
 ,σ 

 y
, (x, y, y) ∈ U} >  such that

∑
i,j=

aijξiξj = σ 
 xξ 

 + σ 
 y

ξ

 + σ 

 y
ξ


 ≥ M‖ξ‖
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for all (x, y, y) ∈ U , ξ ∈ R, which implies that condition (B.) in Lemma  is satisfied.
Therefore, the stochastic system () has a stationary distribution μ(·) and it is ergodic.

�

Without considering the random fluctuations of environment, that is say, σi (i = , , ) =
, according to the proof of Theorem , it is easy to get the following conclusion.

Corollary  Assume R > , when a > m(r – ax∗), the positive equilibrium E∗(x∗, y∗
 , y∗

)
of system () is globally asymptotically stable.

6 Numerical simulation
In order to confirm the results of Sections  and , we numerically simulate the solution of
stochastic system (). For system (), we use the Milstein method mentioned in Higham
[] to substantiate the analytical findings. We consider the following discrete equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xk+ = xk + xk[(r – axk – ay,k
+mxk +ny,k

)�t + σεk
√

�t + 
σ 

 (ε
k – )�t],

y,k+ = y,k + y,k[(–d – ay,k + axk
+mxk +ny,k

– βy,k)�t + σεk
√

�t
+ 

σ 
 (ε

k – )�t],
y,k+ = y,k + y,k[(βy,k – d – ay,k)�t + σεk

√
�t + 

σ 
 (ε

k – )�t],

where time increment �t = . > , and εik (i = , , ) are N(, ) distributed indepen-
dent random variables which can be generated numerically by pseudo-random number
generators.

Here, let r = ., a = ., a = ., m = n = ., d = ., a = ., a = ., β = .,
d = ., a = ., x = ., y = ., y = ., then E∗(x∗, y∗

 , y∗
) = (., .,

.). At first, in the absence of noise, in view of Corollary , the equilibrium E∗(x∗, y∗
 , y∗

)
of deterministic system () is globally asymptotically stable, Figure  confirms it. We
choose σ = ., σ = ., σ = ., then () is satisfied, a > m(r – ax∗), ω ≈ ., and
min{a(a – m(r – ax∗))( + ny∗

 )(x∗), aa( + mx∗)(y∗
 ), aa( + mx∗)(y∗

)} ≈ ..
Hence, the conditions of Theorem  are verified, there is a stationary distribution for sys-
tem (). Figure  shows that the solution of () is fluctuating around the positive equi-
librium E∗ of deterministic system () in a small neighborhood. In the last figure from
Figure , we can see that all the solutions of system () are around E∗, which illustrates
that there is a stationary distribution for system ().

Suffering large density of white noise, we can refer to Figure  which also simulates sys-
tem (). Here, we choose r = ., σ = , σ = ., σ = ., the other parameters are the
same, the conditions of Theorem  are not verified, then by Theorems  and , all the
populations of stochastic system () will become extinct, which does not happen in the
corresponding deterministic system (). Figure  shows it.

7 Conclusions
A stochastic model corresponding to a predator-prey model with Beddington-DeAngelis
functional response and disease in the predator population is investigated. We show that
system () has a unique global positive solution as this is essential in any population
dynamics model. We also give an estimate of the solution by the comparison theorem.
The threshold between persistence in the mean and extinction for prey population is
given. Sufficient conditions of extinction for both the susceptible predator and the infected
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Figure 1 Solutions of systems (2) and (5). The black lines represent solutions of deterministic system (2),
red lines are solutions of stochastic system (5), the last figure of Figure 1 is the population distribution of
system (5) around E∗ .

Figure 2 Solutions of systems (2) and (5). The red line represents the prey population, the purple line and
black line are susceptible predator and infected predator population, respectively. The left figure is the
solution of deterministic system (2), the right one is the solution of stochastic system (5).

predator are obtained. Furthermore, sufficient conditions of permanence for deterministic
system () are derived in Additional file , which can give us a contrast between stochastic
system () and its corresponding deterministic system (). This shows that environmental
perturbation will make the reduced population size. There is a stationary distribution for
system () when the environmental noise is very small, we can consider it as stability in
stochastic sense. By the way, conditions of global stability of system () can be established.
Numerical simulations illustrate that if the positive equilibrium of the deterministic sys-
tem is globally stable, then the stochastic model will preserve this nice property provided
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the noise is sufficiently small, but it is not true when the noise is large. All these conse-
quences imply that the environmental white noise has an important effect on biological
systems; therefore, it is more realistic and suitable to include random effects in the models.

Some interesting questions deserve further investigation. Here, we cannot get the con-
dition of persistence for the predator population at present. In fact, there are some diffi-
culties that cannot be overcome at present, we leave them for future research. Moreover,
it is interesting to study other parameters perturbed by the environmental noise.

Additional material

Additional file 1: Appendix. In the Appendix, the local and global stability of equilibria for system (2) are discussed,
the condition of permanence is also derived, we can compare these results with stochastic system (5), it shows that
the environmental random perturbation plays an important role, it can not be neglected.
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