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Abstract
This article discusses the control system of fractional endpoint variable variational
problems. For this problem, we prove the Euler-Lagrange type necessary conditions
which must be satisfied for the given functional to be extremum. Finally, one example
is provided to show the application of our results.
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1 Introduction
Fractional calculus is an old mathematical topic since the seventeenth century, yet it has
only received much attention and interest in the past  years. For more details on the
basic theory of fractional calculus, one can see the monographs [–] and the references
therein.

As one of the important topics in control theory, the variational method plays an impor-
tant role in the analysis control systems and is an important branch of mathematics study
functional extremum. In recent years, the variational method is widely used in physics,
economics, electrical engineering, image processing fields, etc.

Moreover, the numerical methods for solving fractional differential equations, optimal
control and variational problems have a good development. In [], Bhrawy et al. inves-
tigated a new spectral collocation scheme, which obtained a numerical solution of this
equation with variable coefficients on a semi-infinite domain. In [], Doha et al. intro-
duced a numerical technique for solving a general form of the fractional optimal control
problem. And in [], Bhrawy et al. used the Rayleigh-Ritz method for the necessary con-
ditions of optimization and the operational matrix of fractional derivatives together with
the help of the properties of the shifted Legendre orthonormal polynomials to reduce the
fractional optimal control problem to solving a system of algebraic equations that greatly
simplifies the problem. In [], Bhrawy and Zaky proposed and analyzed an efficient oper-
ational formulation of spectral tau method for a multi-term time-space fractional differ-
ential equation with Dirichlet boundary conditions. In [], based on the shifted Legendre
orthonormal polynomials, Ezz-Eldien et al. employed the operational matrix of fractional
derivatives, the Legendre-Gauss quadrature formula and the Lagrange multiplier method
for reducing such a problem into a problem consisting of solving a system of algebraic
equations.
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However, at present, very little work has been done in the area of fractional calculus
of variations [–]. In [], Jiao and Zhou used the critical point theory to solve the
existence of solutions for a class of fractional boundary value problems. In [, ], the
author presented a new approach to mechanics that allows one to obtain the equations
for a nonconservative system using certain functionals. In [], the author proposed the
fractional-order variational problem and gave solution for a class of variational problems
with fixed boundary value

J[x] =
∫ tf

t

F
(
t, x, Dα

t,tx, Dβ
t,tf x

)
dt

and the boundary conditions x(t) = x, x(tf ) = xf are fixed. But [] did not discuss the
problem of variable boundary conditions and transversal conditions. In other words, the
boundary condition x(t) = x is fixed, but x(tf ) = C(tf ) is variable, or vice versa. Inspired by
the above-mentioned works, in this paper, we follow the ideas to investigate the optimality
of control systems.

This paper is organized as follows. In Section , we briefly review the definitions of
Riemann-Liouville fractional integrals and derivatives and some lemmas. In Section ,
we give the necessary conditions for the fractional-order functional variational problem
with fixed and variable boundary. In Section , we give an example to show the application
of our results, and Section  briefly summarizes the results of this paper and future work.

2 Preliminaries and lemmas
In this section, we give some basic definitions and results that are used throughout this
paper. For more details, please see [–].

Definition . [–] Let [a, b] be a finite interval on the real axis R. The Riemann-
Liouville fractional integrals Iα

a,t f and Iα
t,bf of order α >  are defined by

Iα
a,t f (t) =


�(α)

∫ t

a

f (τ )
(t – τ )–α

dτ , t > a (.)

and

Iα
t,bf (t) =


�(α)

∫ b

t

f (τ )
(t – τ )–α

dτ , t < b, (.)

respectively. Here, �(·) denotes the gamma function. These integrals are called the left-
sided and the right-sided fractional integrals.

Definition . [–] The Riemann-Liouville fraction derivatives Dα
a,ty and Dα

t,by of order
α >  are defined by

Dα
a,ty(t) =

(
d
dt

)n(
In–α

a,t y(t)
)

(.)

=


�(n – α)

(
d
dt

)n ∫ t

a

f (τ )
(t – τ )α–n+ dτ

(
n = [α] + , t > a

)
(.)
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and

Dα
t,by(t) =

(
d
dt

)n(
In–α

t,b y(t)
)

(.)

=


�(n – α)

(
d
dt

)n ∫ b

t

f (τ )
(t – τ )α–n+ dτ

(
n = [α] + , x < b

)
, (.)

respectively, where [α] means the integral part of α.

Remark . [–] Obviously, if  < α < , then

Dα
a,ty(t) =


�( – α)

d
dt

∫ t

a

f (τ )
(t – τ )α

dτ ( < α < , x > a) (.)

and

Dα
t,by(t) =


�( – α)

d
dt

∫ b

t

f (τ )
(t – τ )α

dτ ( < α < , x < b). (.)

Lemma . (Fractional integration by parts []) Assume that Dα
a,t f (x) and Dα

t,bg(x) are ex-
istent and continuous on [a, b]. Let f (t) and g(t) be two continuous functions defined on
t ∈ [a, b], α > , and f (t) or g(t) and their until m derivatives are zero at t = a, b, and m is
less than the largest integer of α. Then

(i)

∫ b

a
ϕ(t)

(
Iα

a,tψ(t)
)

dt =
∫ b

a
ψ(t)

(
Iα

t,bϕ(t)
)

dt, (.)

(ii)

∫ b

a

(
Dα

a,t f (t)
)
g(t) dt =

∫ b

a
f (t)

(
Dα

t,bg(t)
)

dt. (.)

3 The fractional variational problems-variable endpoints
Definition . Assume that F = F(t, x, Dα

t,tx, Dβ
t,tf x) is a function with continuous first and

second (partial) derivatives with respect to all its arguments. Then, among all functions
x(t) which have continuous LRLFD of order α and RRLFD of order β for t ≤ t ≤ tf and
satisfy the boundary conditions

x(t) = x, x(tf ) = C(tf ). (.)

Looking for a function x(t) such that the functional

J(x) =
∫ tf

t

F
(
t, x, Dα

t,tx, Dβ
t,tf x

)
dt (.)

has extreme value, where  < α,β ≤  and the endpoint C(tf ) is variable.

Theorem . Let J(x) be a functional of the form

J(x) =
∫ tf

t

F
(
t, x, Dα

t,tx, Dβ
t,tf x

)
dt (.)
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defined on the set of functions x(t) which have continuous LRLFD of order α and RRLFD
of order β in [t, tf ] and satisfy the boundary conditions x(t) = x and x(tf ) = C(tf ). Then
a necessary condition for J[x] to have an extremum for a given function x(t) is that x(t)
satisfies the following Euler-Lagrange equation and terminal transversality condition:

∂F
∂x

– Dα
t,tf

∂F
∂Dα

t,tx
– Dβ

t,t
∂F

∂Dβ
t,tf x

= , (.)

(
∂F

∂Dα
t,tx

Dα
t,t(C – x) +

∂F
∂Dβ

t,tf x
Dβ

t,tf (C – x) + F
)∣∣∣∣

t=tf

= . (.)

Proof To prove the necessary conditions for the extremum, assume that x∗(t) is the desired
function. Let ε ∈ R, and define a family of curves

x(t) = x∗(t) + εη(t), (.)

where η(t) is a continuous differentiable function for all given, which satisfy the boundary
conditions, i.e.,

η(t) = . (.)

Due to the changing terminal time tf , each has its own trajectory terminal point tf . There-
fore we must define a terminal times set corresponding to x(t),

tf = t∗
f + εξ (tf ). (.)

Since Dα
a,t and Dβ

t,tf are linear operations, it follows that

Dα
t,tx(t) = Dα

t,tx
∗(t) + εDα

t,tη(t), (.)

Dβ
t,tf x(t) = Dβ

t,tf x∗(t) + εDβ
t,tf η(t). (.)

Substituting Eqs. (.) and (.)-(.) into Eq. (.),

J(ε) =
∫ t∗f +εξ (tf )

t

F
(
t, x∗ + εη, Dα

t,tx
∗ + εDα

t,tη, Dβ
t,tf x∗ + εDβ

t,tη
)

dt

=
∫ t∗f

t

F
(
t, x∗ + εη, Dα

t,tx
∗ + εDα

t,tη, Dβ
t,tf x∗ + εDβ

t,tη
)

dt

+
∫ t∗f +εξ (tf )

t∗f
F
(
t, x∗ + εη, Dα

t,tx
∗ + εDα

t,tη, Dβ
t,tf x∗ + εDβ

t,tη
)

dt

≈
∫ t∗f

t

F
(
t, x∗ + εη, Dα

a,tx
∗ + εDα

t,tη, Dβ
t,tf x∗ + εDβ

t,tη
)

dt

+ εξ (tf )F
(
t∗
f , x∗(t∗

f
)
, Dα

t,tx
∗(t∗

f
)
, Dβ

t,tf x∗(t∗
f
))

(.)

we find that for each η(t) there is only just a function of ε. Note that J(ε) is extremum at
ε = , and the differential of Eq. (.) with respect to ε, we obtain

∂J
∂ε

∣∣∣∣
ε=

=
∫ t∗f

t

(
∂F
∂x

η +
∂F

∂Dα
t,tx

Dα
t,tη +

∂F
∂Dβ

t,tf x
Dβ

t,tf η

)
dt + ξ (tf )F|t∗f . (.)
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Equation (.) is also called the variations of J(x) at x(t) along η(t). A necessary condi-
tion for J(ε) to have an extremum is that ∂J

∂ε
|ε= = , and it is true for any admissible η(t).

This leads to the condition that for J(x) to have an extremum for x = x∗(t),

∫ t∗f

t

(
∂F
∂x

η +
∂F

∂Dα
t,tx

Dα
t,tη +

∂F
∂Dβ

t,tf x
Dβ

t,tf η

)
dt + ξ (tf )F|t∗f =  (.)

for all admissible η(t). Using the definition of fractional derivatives and the formula for
fractional integration by parts, the second and third integral in Eq. (.) can be written
as

∫ t∗f

t

∂F
∂Dα

t,tx(t)
Dα

t,tη(t) dt

=
∂F

∂Dα
t,tx(t)

I–α
t,t η(t)

∣∣∣∣
tf

t

–
∫ tf

t

d
dt

(
∂F

∂Dα
t,tx(t)

)
I–α

t,t η(t) dt

=
∂F

∂Dα
t,tx(t)

I–α
t,t η(t)

∣∣∣∣
tf

t

–
∫ tf

t

η(t)Dα
t,tf

(
∂F

∂Dα
t,tx(t)

)
dt, (.)

∫ t∗f

t

∂F
∂Dβ

t,tf x(t)
Dβ

t,tf η(t) dt

=
∂F

∂Dβ
t,tf x(t)

I–β
t,tf η(t)

∣∣∣∣
tf

t

–
∫ tf

t

d
dt

(
∂F

∂Dβ
t,tx(t)

)
I–β

t,t η(t) dt

=
∂F

∂Dβ
t,tf x(t)

I–β
t,tf η(t)

∣∣∣∣
tf

t

–
∫ tf

t

η(t)Dβ
t,t

(
∂F

∂Dβ
t,tf x(t)

)
dt. (.)

Substituting Eqs. (.) and (.) into Eq. (.) yields

∫ t∗f

t

{
∂F
∂x

– Dα
t,tf

(
∂F

∂Dα
t,tx

)
– Dβ

t,t

(
∂F

∂Dβ
t,tf x

)}
η dt

+
(

∂F
∂Dα

t,tx
I–α

t,t η +
∂F

∂Dβ
t,tf x

I–β
t,tf η

)∣∣∣∣
tf

t

+ ξ (tf )F|t∗f = . (.)

In virtue of η(t) = , Eq. (.) can be written in the form

∫ t∗f

t

{
∂F
∂x

– Dα
t,tf

(
∂F

∂Dα
t,tx

)
– Dβ

t,t

(
∂F

∂Dβ
t,tf x

)}
η dt

+
(

∂F
∂Dα

t,tx
I–α

t,t η +
∂F

∂Dβ
t,tf x

I–β
t,tf η + ξ (tf )F

)∣∣∣∣
t∗f

= . (.)

Note that η(t∗
f ) and ξ (tf ) are not independent of each other, they are affected by the ter-

minal constraint x(t)|t=tf = C(tf ), namely

x
(
t∗
f + εξ (tf )

)
+ εη

(
t∗
f + εξ (tf )

)
= C

(
t∗
f + εξ (tf )

)
. (.)
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Differentiating Eq. (.) with respect to ε and letting ε → , we have

ξ (tf )ẋ
(
t∗
f
)

+ η
(
t∗
f
)

= ξ (tf )Ċ
(
t∗
f
)
. (.)

That is,

η
(
t∗
f
)

= ξ (tf )
[
Ċ

(
t∗
f
)

– ẋ
(
t∗
f
)]

. (.)

Substituting Eq. (.) into Eq. (.), we get

∫ t∗f

t

{
∂F
∂x

– Dα
t,tf

∂F
∂Dα

t,tx
– Dβ

t,t
∂F

∂Dβ
t,tf x

}
η dt

+ ξ (tf )
(

∂F
∂Dα

t,tx
Dα

t,t(C – x) +
∂F

∂Dβ
t,tf x

Dβ
t,tf (C – x) + F

)∣∣∣∣
t∗f

= . (.)

Since η(t) and ξ (tf ) are arbitrary, it follows from a well-established result in the calculus
of variations that

∂F
∂x

– Dα
t,tf

∂F
∂Dα

t,tx
– Dβ

t,t
∂F

∂Dβ
t,tf x

= , (.)

(
∂F

∂Dα
t,tx

Dα
t,t(C – x) +

∂F
∂Dβ

t,tf x
Dβ

t,tf (C – x) + F
)∣∣∣∣

tf

= , (.)

where Eq. (.) is called fractional-order variational problem of Euler-Lagrange equation,
and Eq. (.) is called terminal transversality condition. The proof is completed. �

Remark . Note that for the fractional calculus of variation problems, the resulting
Euler-Lagrange equation contains both LRLFD and RRLFD. This is expected since the
optimum function must satisfy both terminal conditions. Further, for α = β = , we have
Dα

t,t = d/dt and Dβ
t,tf = –d/dt. Then Eqs. (.)-(.) can be turned into the standard

Euler-Lagrange equation and the terminal transversality condition

∂L
∂x

–
d
dt

∂L
∂ ẋ

= , (.)
(

(Ċ – ẋ)
∂F
∂ ẋ

+ F
)∣∣∣∣

t=tf

= , (.)

where ẋ = dx/dt.

Remark . In control engineering, the majority target line is parallel to the t axis, since
Ċ(t) = , hence

(
F – Dα

t,tf
x

∂F
∂Dα

t,tx
– Dβ

t,tx
∂F

∂Dβ
t,tf x

)∣∣∣∣
t=tf

= . (.)

If C(t) is perpendicular to the t axis, since Ċ(t) = ∞, we get
(

∂F
∂Dα

t,tx
+

∂F
∂Dβ

t,tf x

)∣∣∣∣
t=tf

= . (.)
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Remark . In a similar way, it is not difficult to infer that when the terminal is fixed, and
the initial c(t) is variable, the terminal transversality condition will change to

(
F –

∂F
∂Dα

t,tx
Dα

t,t(x – c) –
∂F

∂Dβ
t,tf x

Dβ
t,tf (x – c)

)∣∣∣∣
t=t

= . (.)

If F(t) is parallel to the t axis, we have

(
F –

∂F
∂Dα

t,tx
Dα

t,tx –
∂F

∂Dβ
t,tf x

Dβ
t,tf x

)∣∣∣∣
t=t

= . (.)

If F(t) is perpendicular to the t axis, then

(
∂F

∂Dα
t,tx

+
∂F

∂Dβ
t,tf x

)∣∣∣∣
t=t

= . (.)

Corollary . Let J[x] =
∫ tf

t F(t, x, Dα
t,tx, . . . , Dαn

t,tx, Dβ
t,tf x, . . . , Dβm

t,tf x) dt be a functional
function satisfying the boundary conditions. Then a necessary condition for J[x] to have
an extremum for a given function x(t) is that x(t) satisfies the Euler-Lagrange equation
and the terminal transversality condition:

∂F
∂x

–
n∑

j=

Dαj
t,tf

∂F
∂Dαj

t,tx
–

m∑
k=

Dβk
t,t

∂F
∂Dβk

t,tf x
= , (.)

M∑
i=

( n∑
j=

∂F
∂Dαj

t,tx
Dαj

t,t(Ci – x) +
m∑

k=

∂F
∂Dβk

t,tf x
Dβk

t,tf (Ci – x) + F

)∣∣∣∣∣
t=tf

= , (.)

where αj ∈ R+ (j = , . . . , n) and βk ∈ R+ (k = , . . . , m) are two sets of real numbers all greater
than zero,

αmax = max(α, . . . ,αn,β, . . . ,βm) (.)

is the maximum of all these numbers, and M is the integer such that M –  ≤ αmax < M.
And F is a function with continuous first and second (partial) derivatives with respect to
all its arguments. Meanwhile, all functions x(t) satisfy the following conditions:

x(a) = xa, x()(a) = xa, . . . , x(M–)(a) = xa(M–), (.)

x(tf ) = C(tf ), x()(tf ) = C(tf ), . . . , x(M–)(tf ) = CM(tf ). (.)

Corollary . Let F(t, x, . . . , xn, y, . . . , yn) be a function with continuous first and second
(partial) derivatives with respect to all its arguments. For  < α,β ≤ , consider the problem
of finding necessary conditions for an extremum of a functional of the form

J[x, . . . , xn] =
∫ tf

t

F
(
t, x, . . . , xn, Dα

t,tx, . . . , Dα
t,txn, Dβ

t,tf x, . . . , Dβ
t,tf xn

)
dt, (.)



Liu et al. Advances in Difference Equations  (2015) 2015:110 Page 8 of 10

which depends on n continuously differentiable functions x(t), . . . , xn(t) satisfying the
boundary conditions

xj(t) = xj, xj(tf ) = Cj(tf ) (j = , . . . , n). (.)

Then, a necessary condition for the curve is

xj = xj(t) (j = , . . . , n), (.)

which satisfies the boundary conditions given by Eq. (.) to be an extremal of the func-
tional given by Eq. (.), i.e., the functions xj(t) satisfy the following Euler-Lagrange equa-
tion and terminal transversality condition:

∂F
∂xj

– Dα
t,tf

∂F
∂Dα

t,txj
– Dβ

t,t
∂F

∂Dβ
t,tf xj

=  (j = , . . . , n), (.)

(
∂F

∂Dα
t,txj

Dα
t,t(Cj – xj) +

∂F
∂Dβ

t,tf xj
Dβ

t,tf (Cj – xj) + F
)∣∣∣∣

tf

=  (j = , . . . , n). (.)

In vector notation, the above conditions can be written as

∂F
∂X

– Dα
t,tf

∂F
∂Dα

t,tX
– Dβ

t,t
∂F

∂Dβ
t,tf X

= , (.)

(
∂F

∂Dα
t,tX

Dα
t,t(C – X) +

∂F
∂Dβ

t,tf X
Dβ

t,tf (C – X) + F
)∣∣∣∣

tf

= , (.)

where X, C ∈ Rn.

4 Application
In this section, we illustrate the importance of our results through one example.

Example . Consider the terminal variable fractional variational problem

J(x) =



∫ tf



(
Dα

,tx(t)
) dt, (.)

where x() = , x(tf ) =  – tf .

Proof We know that

F =


(
Dα

,tx(t)
) (.)

and the fractional Euler-Lagrange equation

Dα
t,tf

Dα
,tx = . (.)

It can be shown that for α > 
 , the solution is given as

x(t) = (α – )
∫ tf



[
(tf – τ )(t – τ )

]α– dτ . (.)
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Figure 1 Example 4.1.

Now, we consider the transversality condition, by Eq. (.), we obtain

{


(
Dα

,tx
) +

[
Dα

,t
(
C(t) – x(t)

)]
Dα

,tx
}

t=tf

= . (.)

By simplification, we get

Dα
,tC(t) =




Dα
,tx(t). (.)

By Eqs. (.)-(.), C(t) = –t and the initial value, we obtain the optimal trajectory (α > 
 )

x∗(t) =
(α – )



∫ tf



[
(tf – τ )(t – τ )

]α– dτ . (.)

Thus when t = tf , we can get the optimal terminal times




tf
α– =  – tf . (.)

By numerical simulation Eq. (.), we know that the equation has some solutions (see
Figure ).

This example with α = , for which the optimal trajectory is x(t) = 
 t, and then we have

obtained the same result. �

5 Conclusions
Necessary conditions for the optimality control of those systems are established. The case
of piecewise continuous conditions and researching the minimum value of fractional dif-
ferential equations principles will be considered in a future work.
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