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1 Introduction

Nonlinear partial differential equations (NLPDEs) are known to describe a wide variety
of phenomena not only in physics, but also in biology, chemistry, and several other fields.
The investigation of traveling wave solutions for NLPDEs plays an important role in the
study of nonlinear physical phenomena. In recent years, many powerful methods were
used to construct traveling wave solutions of NLPDEs. For example, the inverse scattering
method [1], the Bécklund and Darboux transformation method [2], the homotopy per-
turbation method [3], the first integral method [4-6], the (%)—expansion method [7—-
9], the sub-equation method [10, 11], Hirota’s method [12], the homogeneous balance
method [13-15], the variational iteration method [16, 17], the tanh-sech method [18], the
Jacobi elliptic function method [19], the modified simple equation method [20-23], the
exp(—®(&))-expansion method [24], the alternative functional variable method [25], and

SO on.
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Many well-known NLPDEs can be handled by those traditional methods. However,
there is no unified method which can be used to deal with all types of NLPDEs. Moreover,
we always encounter the fractional NLPDEs, the NLPDEs which have nonlinear terms of
any order or peaked wave solutions. It is significant to construct traveling wave solutions of
NLPDEs by a uniform method. Based on those problems, the Riccati-Bernoulli sub-ODE
method is firstly presented.

In this paper, the Riccati-Bernoulli sub-ODE method is proposed to construct travel-
ing wave solutions, solitary wave solutions, and peaked wave solutions of NLPDEs. By
using a traveling wave transformation and the Riccati-Bernoulli equation, NLPDEs can
be converted into a set of algebraic equations. Exact solutions of NLPDEs can be ob-
tained by solving the set of algebraic equations. The Eckhaus equation, the nonlinear frac-
tional Klein-Gordon equation, the generalized Ostrovsky equation, and the generalized
Zakharov-Kuznetsov-Burgers (ZK-Burgers) equation are chosen to illustrate the valid-
ity of the Riccati-Bernoulli sub-ODE method. A Backlund transformation of the Riccati-
Bernoulli equation is given. If we get a solution of NLPDEs, we can search for a new infinite
sequence of solutions of the NLPDEs by using a Backlund transformation.

The remainder of this paper is organized as follows: the Riccati-Bernoulli sub-ODE
method is described in Section 2. In Section 3, a Backlund transformation of the Riccati-
Bernoulli equation is given. In Sections 4-7, we apply the Riccati-Bernoulli sub-ODE
method to the Eckhaus equation, the nonlinear fractional Klein-Gordon equation, the
generalized Ostrovsky equation, and the generalized ZK-Burgers equation, respectively.
In Section 8, our results are compared with the first integral method, the (%)—expansion
method, and physical explanations of the obtained solutions are discussed. In Section 9,
some conclusions and directions for future work are given.

2 Description of the Riccati-Bernoulli sub-ODE method
Let there be given a NLPDE, say, in two variables,

P(Ll, Ug, Uy, Uy, uxtr"') = 01 (1)
where P is in general a polynomial function of its arguments, the subscripts denote the
partial derivatives. The Riccati-Bernoulli sub-ODE method consists of three steps.

Step 1. Combining the independent variables x and ¢ into one variable

& =k(x+ V1), (2)

with

u(x, t) = u(§), (3)

where the localized wave solution u(&) travels with speed V, by using Egs. (2) and (3), one
can transform Eq. (1) to an ODE

P(u, u,u' u”, .. ) =0, (4)

where ' denotes Z—g.
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Step 2. Suppose that the solution of Eq. (4) is the solution of the Riccati-Bernoulli equa-
tion
’ 2

u =auw" + bu + cu”, (5)

where a, b, ¢, and m are constants to be determined later.
From Eq. (5) and by directly calculating, we get

u' =ab3-mu*™ +a*(2 — m)uP ™" + mPu?" ! + be(m + D™ + (2ac + h2)u, (6)
u" = (ab(3 - m)(2 - m)ut™ + a*(2 — m)(3 - 2m)u* 2"

+mQ2m =1)u?"? + bem(m + D™ + (Zac + bz))u’, (7)

Remark When ac # 0 and m = 0, Eq. (5) is a Riccati equation. When a # 0, ¢ = 0, and
m #1, Eq. (5) is a Bernoulli equation. Obviously, the Riccati equation and Bernoulli equa-
tion are special cases of Eq. (5). Because Eq. (5) is firstly proposed, we call Eq. (5) the
Riccati-Bernoulli equation in order to avoid introducing new terminology.

Equation (5) has solutions as follows:
Case 1. When m = 1, the solution of Eq. (5) is

u(€) = Celab+as (8)
Case 2. When m #1, b = 0, and ¢ = 0, the solution of Eq. (5) is
1
w(€) = (a(m-1)(& + C)) ™1, )

Case 3. When m #1, b #0, and ¢ = 0, the solution of Eq. (5) is

u(g) = (-% + Cebtm=% > " (10)

Case 4. When m #1, a # 0, and b — 4ac < 0, the solutions of Eq. (5) are

u(E) = (_i . ~4ac — b? tan<(1 — m)~/ 4dac — b? €+ C))) 1o a1
2a 2a 2
and
u(E) = (_ﬁ _ Y4ac-p? cot<(1 —maac- b C))) o (12)
2a 2a 2
Case 5. When m #1, a # 0, and b? — 4ac > 0, the solutions of Eq. (5) are
w(E) = (-% - 7‘1’22;4‘“ coth<L Vzbz‘m(s " c>)> ” (13)
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and

14
2a 2a 2 (14)

u(§) = (_E - @tanh(@(g . C))) 1"”.

Case 6. When m #1, a #0, and b? — 4ac = 0, the solution of Eq. (5) is

1 b\
”(5)=(a(m—1><s+cf%> ’ 15)

where C is an arbitrary constant.

Step 3. Substituting the derivatives of u into Eq. (4) yields an algebraic equation of .
Noticing the symmetry of the right-hand item of Eq. (5) and setting the highest power ex-
ponents of u to equivalence in Eq. (4), m can be determined. Comparing the coefficients
of u' yields a set of algebraic equations for a, b, ¢, and V. Solving the set of algebraic equa-
tions and substituting m, a, b, ¢, V, and & = k(x + Vt) into Eq. (8)-(15), we can get traveling
wave solutions of Eq. (1).

In the subsequent section, we will give a Bécklund transformation of the Riccati-
Bernoulli equation and some applications to illustrate the validity of the Riccati-Bernoulli
sub-ODE method.

3 Backlund transformation of the Riccati-Bernoulli equation
When u,_1(§) and u,(§) (4,(§) = u,(u,-1(§))) are the solutions of Eq. (5), we get

dun(é) _ dun(é) dun—l(é) _ d”n(s)
d§ du,1(§) dé du,_1(§)

2-m m
(aun_1 +bu,_1 + cun_l),

namely

du, (&) ~ du,_1(§)

2-m m "~ 2-m m "
au>™ + buy, + cu’  au, " + buy g + cull

Integrating above equation once with respect to & and simplifying it, we get

1-m ﬁ
0 (E) = < —cA1 + aAs(u,-1(£)) > ’ 16)

DA +al, + aAl(un—l(é))lim

where A; and A are arbitrary constants.

Equation (16) is a Biacklund transformation of Eq. (5). If we get a solution of Eq. (5),
we can search for new infinite sequence of solutions of Eq. (5) by using Eq. (16). Then an
infinite sequence of solutions of Eq. (1) is obtained.

4 Application to the Eckhaus equation
The Eckhaus equation reads

W+ Y + 2(10 1) ¥ + W'Y =0, 17)

where ¥ = ¥ (%, £) is a complex-valued function of two real variables x, .
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The Eckhaus equation was found [26] as an asymptotic multiscale reduction of cer-
tain classes of nonlinear Schrodinger type equations. A lot of the properties of the Eck-
haus equation were obtained [27]. The Eckhaus equation can be linearized by making
some transformations of dependent variables [28]. An exact traveling wave solution of the
Eckhaus equation was obtained by the (%)—expansion method [8] and the first integral
method [5].

In this section, new type of exact traveling wave solutions of the Eckhaus equation are
obtained by using the Riccati-Bernoulli sub-ODE method.

Using the traveling wave transformation

¥ (x,2) = u(§)e“*r, (18)

Eq. (17) is reduced to

Ku' - (a2 +B)u+ 4k +u’ =0, (19)
where
& = k(x—2at), (20)

and k, o, B are real constants to be determined later.
Suppose that the solution of Eq. (19) is the solution of Eq. (5). Substituting Egs. (5) and
(6) into Eq. (19), we get

k? (zzb(3 —m)u?" + a*(2 - m)u> " + muP" 7 + be(m + 1)u™

+ (Zuc + bz)u) - (a2 + ,B)u + dku? (omz_”‘ +bu + cu”’) +u°=0. (21)
Setting m = -1 and ¢ = 0, Eq. (21) becomes
(K*6* = («® + B))u + (4k>ab + 4kb)u® + (3k*a* + 4ka + 1)u’ = 0. (22)

Setting each coefficient of &/ (j = 1,3, 5) to zero, we get

K2b? - (a2 + ,8) =0, (23a)
4k’ ab + 4kb = 0, (23b)
3k%a® + 4ka +1=0. (23¢)

Notice that k # 0, otherwise we can only get trivial solution.
Case A.If b = 0, from Egs. (23a)-(23c) and (5), we get

1

uewt) = % V—=2ka(x —2at) + C (242)
a’+p=0, (24b)
ka=-1 (ka = —%), (24c¢)

where C is an arbitrary real constant.
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Case A-1. When ka = —1, we get exact traveling wave solutions of Eq. (17),

1 ei(ax—azt) (25)

et =t e ’

where C and « are arbitrary real constants.

Case A-2. When ka = —%, we get exact traveling wave solutions of Eq. (17),

1 .
Y, 8) = e, (26)

%(x—2at) +C

where C and « are arbitrary real constants.
Case B.If b # 0, from Eqs. (23a)-(23c), we get

a’+

b=+ O (27a)

1
a=——. (27b)
k

CaseB-1. Whenb = -~ ak2+ﬁ anda = —%, from Eqgs. (10) and (18), we get an exact traveling

wave solution of Eq. (17),

_1
1/f3(x, t) — (_ + CeZ«/a2+ﬂ(x2at)) Zei(axﬂﬂt), (28)

a?+

where C, «, and B are arbitrary real constants.

Especially, if we choose C = C; = ﬁ, Eq. (28) becomes

1
2

Yalx t) = (Lz“g (-1 + coth(y/a2 + B(x - 2at)))> eltexh), (29)

2

where « and 8 are arbitrary real constants.

1
If we choose C = C, = T Eq. (28) becomes
3 ;
Ys(x, ) = <O(T+ﬁ(—1 +tanh(v/o? + B(x — 2at)))> e hl) (30)

where « and 8 are arbitrary real constants.

CaseB-2. When b =~ akzﬂg anda = —%, from Eqs. (10) and (18), we get an exact traveling

wave solution of Eq. (17),

1//6(x, t) _ ( 1 + Ce—2«/a2+ﬂ(x—2at)) ei(ax+ﬂt)’ (31)

a+ B

[T

where C, «, and S are arbitrary real constants.
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Especially, if we choose C = C;3 = ﬁ, Eq. (31) becomes

1
2

Y7(x, t) = (@ (1 + tanh(y/e® + Blx - 2at)))> gllextpr), (32)

where « and 8 are arbitrary real constants.
If we choose C = Cy = —% Eq. (31) becomes

b
aZ+p

1

Vs ) = (L;*ﬁ (1+ coth(y/a? + lx— zw)))) llessp) (33)

where « and f are arbitrary real constants.
Applying Eq. (16) to v¥;(x,£) (j=1,2,...,8), we can get an infinite sequence of solutions
of Eq. (17). For example, by applying Eq. (16) to Eq. (32), we get a new solution of Eq. (17),

(34)

Azy/a® + B(1 + tanh(y/a* + Blx — 2at))) ) %ei(axﬂ‘ft)
245 + A1/a? + B(-1 + tanh(y /o2 + B(x — 2at))) '

where A;, A;, @, and B are arbitrary real constants.

Y7 t) = (

5 Application to the nonlinear fractional Klein-Gordon equation
The nonlinear fractional Klein-Gordon equation [23] reads

*ux,t)  0%ulx,t)
L

+ Bulx,t) + yul(x,t), t>0,0<a <1, (35)

where 8 and y are known constants.

As is well known, linear and nonlinear Klein-Gordon equations model many problems
in classical and quantum mechanics, solitons and condensed matter physics. For example,
the nonlinear sine Klein-Gordon equation models a Josephson junction, the motion of
rigid pendula attached to a stretched wire, and dislocations in crystals [17, 29-31]. A non-
local version of these equations are properly described by the fractional version of them.
Exact traveling wave solutions of the nonlinear fractional Klein-Gordon equation were
obtained by the homotopy perturbation method [29] and the first integral method [6].

In this section, exact traveling wave solutions of the nonlinear fractional Klein-Gordon
equation are obtained by using the Riccati-Bernoulli sub-ODE method.

Using the transformation

u(x,t) = u(§), (36)
with
AtY
§=lx— m, (37)

where / and A are constants to be determined later, Eq. (35) becomes

W' B Y 3

T2_pY e p* =0. (38)
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Suppose that the solution of Eq. (38) is the solution of Eq. (5). Substituting Eq. (6) into Eq.
(38), we get

ab(3 - mu*™ + a*(2 — m)u® ™" + muPn!

m 14
+be(m + D" + (2ac + b*)u - a ot mbﬁ =0. (39)
Setting m = 0, Eq. (39) is reduced to
3abu® + 2a*u® + be + (2ac + bz)u - )@Lipu - #_lzug = (40)
Setting each coefficient of ' (i = 0,1,2, 3) to zero, we get
bc=0, (41a)
2ac + b? __ 0 (41b)
ac+ b’ — 2 =0
3ab =0, (41c)
2 Y
2a° — 2 p- 0. (41d)
Solving Eqs. (41a)-(41d), we get
b=0, (42a)
B
-_r 42b
o0 p) (42)

a==+ [ﬁ (42C)

Case A. When —£— >0, substituting Eqs. (42a)-(42c) and (37) into Egs. (11) and (12),

221
we get exact traveling wave solutions of Eq. (35),

B B ALY
U (x,t) = :i:\/;tan( 202 ) (lx— ri+ a)) + C>, (43a)

and

B é B B ALY
uza(x, t) = :i:\/;cot( 202 ) <lx T+ a)) + C), (43b)

where C, [, and X are arbitrary constants.
Case B. When )\2‘%12 < 0, substituting Egs. (42a)-(42c) and (37) into Eqgs. (13) and (14),

we get exact traveling wave solutions of Eq. (35),

| B / B At
u5,6(x,t)::|: —;tanh( —m(lx—m)'l'c), (443)
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and

L [B g e
M7,8(x, t) =+ —; COth( —m (lx - m) + C>, (4‘4b)

where C, [, and X are arbitrary constants.

Applying Eq. (16) to u;(x, ) (j =1,2,...,8), we can get an infinite sequence of solutions
of Eq. (35). For example, by applying Eq. (16) to u;(x,¢) (j = 1,2,...,8) once, we get new
solutions of Eq. (35),

iA?,\f tan(, /554 12)(lx )+ O)

Mikyz (x: t) = ?
A3 + \/7tan \/ AZ 12 F(1+at ) + C)
o -2 j:/h[cot( )\2 5 (s = kltfa ) + C)
uy (%, 1) = "
AS + \/700t( Az 2) (lx Alia ) C)
( ) _£ iAB\/:tanh( AZ 12) (lx 1+a)) + C)
Us 6%, 1) =
A3+ /-£ tanh( 202- 12)(196 1+oz o)t C)
s (%, 1) = —8 & Ag =8 coth(\/— by (b — i) + C)
7,8\ -
As + - COth( ~a02- 12)(lx 1+a i) + C)

where A;, A;, C, [, and X are arbitrary real constants.

6 Application to the generalized Ostrovsky equation
The generalized Ostrovsky equation reads

B &2 2
ut+3uux—zumx —7(u+5u ) =0, (45)

where B, ¢, and § are known constants.

The generalized Ostrovsky equation is a model for the weakly nonlinear surface and
internal waves in a rotating ocean. Exact peaked wave solutions were obtained by the un-
determined coefficient method [32].

In this section, exact peaked wave solutions of the generalized Ostrovsky equation are
obtained by using the Riccati-Bernoulli sub-ODE method.

Using the transformation

u(x, t) = u(§), (46)
with
£ =k(x+ V1), (47)

where k and V are the wave number and wave speed, respectively, Eq. (45) becomes

2
v + 3/(2(L/)2 +3K2uu’ - gkﬂt”” - %(u +8u®) = 0. (48)
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Suppose that the solution of Eq. (48) is the solution of Eq. (5). From Egs. (5) and (6), we
get
" = (ab(g -m)2-m)A-mu" + d2(2 — )3 — 2m)(2 — 2m)
172 4 (2 — 1)2m - 2)Au3 + bem(m + 1)(m - Du2)
X (u/)z + (ab(3 -m)(2 - m)ul—m + a2(2 —m)(3 - 2Wl)bt2_2m

+m(2m = 1)cu>* + bem(m + D)u" ™" + (2ac + b*))u’. (49)
Substituting Egs. (5), (6), and (49) into Eq. (48), we get

(k2 V+ Bkzu) (ab(S —m) > + a*(2 - muP~"

B

+mc®u™ ™ + be(m + D)™ + (2ac + b*)u) + "

k*z =0, (50)
where

% = (aw®™" + bu + ™) (ab(3 - m)(2 — m)(1 - m)u™ + a*(2 - m)(3 — 2m)
x (2 = 2m)u' " + m(2m - 1)(2m - 2)*u®" > + bem(m + 1) (m — D))
+(ab(3 - m)u®™" + a*(2 - m)u® ™" + mu?™ ™ + be(m + D™ + (2ac + b*)u)
x (ab(3 — m)(2 = m)u' ™" + a*(2 = m)(3 - 2m)u*>" + m(2m - 1)c*u*">

+bem(m + D™ + (2ac + bz)).

Setting m =2 and ¢ = 0, Eq. (50) is reduced to

1
(k2 Vab + 3k2a® - gk%b?’) + (k2 Vb? - §/(4b4 +9K%ab — 582)u
2,0 1o 2
+ <6k b - 58 8>u =0. (51)

Setting each coefficient of #/ (j = 0,1,2) to zero, we get

1
6k*b? — 5828 =0, (52a)
22 Boraga 2 L,
k°Vb® — Zk b* +9k*ab — 3¢ =0, (52b)
k*Vab + 3k*a® — §k4ab3 =0. (52¢)

Solving Egs. (52a)-(52c), we get

a 1
a1 53
5= (53a)
8 2
kb =+, 2, (53b)
12
2.2
yo e -14d (53¢)

488
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Substituting Eqs. (53a)-(53c) and (47) into Eq. (10), we get exact peaked wave solutions of
Eq. (45),

1 562 B82e2 144
() = -3 + CeHV T (T, (54)

where C is an arbitrary constant.
Similar to Sections 4 and 5, by using a Backlund transformation, we can get an infinite
sequence of solutions of the generalized Ostrovsky equation. It being a similar process, we

omit it.

7 Application to the generalized ZK-Burgers equation
The generalized ZK-Burgers equation [33] reads

Uy + QU thy + Pl + YUy + ) + Oty = 0, (55)

where «, 8, ¥, 0, and A are known constants.

The generalized ZK-Burgers equation retains the strong nonlinear aspects of the gov-
erning equation in many practical transport problems such as nonlinear waves in a
medium with low-frequency pumping or absorption, transport and dispersion of pollu-
tants in rivers, and sediment transport. Wang et al. obtained a solitary wave of the gener-
alized ZK-Burgers equation with a positive fractional power term by using the HB method
and with the aid of sub-ODEs [33].

In this section, exact traveling wave solutions of the generalized ZK-Burgers equation
are obtained by using the Riccati-Bernoulli sub-ODE method.

Using the transformation

ux,y,z,£) = u(§), (56)
with

E=k(x+ly+nz+ Ve, (57)
where k, [, n, and V are constants to be determined later, Eq. (55) becomes

kVi + kaw'u' + K Bu” + Ky (P + n®)u” + Kou” = 0. (58)
Suppose that the solution of Eq. (55) is the solution of Eq. (5). Noticing ' # 0 and k # 0,
otherwise we can only get trivial solution. Substituting Egs. (5), (6), and (7) into Eq. (58),

we get

ok? (ab(S -m)2 - m)ut ™ + a®(2 — m)(3 - 2m)u> 2"
+mQ2m =1)u?"? + bem(m + D™t + (2ac + bz))

+ok(a2 - mu'™" + meu” ™" +b) + V +au” =0, (59)
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where
p=B+y(l*>+n).

Settingm=1- % and ¢ = 0, Eq. (59) is reduced to

4 2

( (A+2)(A+1)pk2a2) N
+ o+ 5 u =0.

2
(V+,ok2b2 +okb)+ ((A+2)(A+4)pk ab . ()»+2)oka)u%

X

Setting each coefficient of #/ (j = 0, 4, 1) to zero, we get

V+ ,ok2b2 +o0kb=0,

(A +2)ka ((A +4)pkb )
) 5 +0)=0,
(A +2)(A + 1) pk*a?

o+ 5 =0

Solving Eqs. (62a)-(62c), we get

-20

b= —r—o,

ko(A +4)

g il —2u
Tk p(R2 430 +2)
~20%(A+2)

Cop(+ 42
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(60)

(61)

(62a)

(62b)

(62¢)

(63a)

(63b)

(63c¢)

Substituting Eqs. (63a)-(63c) and (57) into Eq. (10), we get exact traveling wave solutions

of Eq. (55),

+ Ce?% +4)2

U 2(x, ) =
12(6) < o 2002+ 3% +2)

where C, [, and # are arbitrary constants.

(T2 *
+ p()\. + 4) - %(x+ly+nz+(2p(k(“2>)t)> B ,

(64)

Equation (64) is new type of traveling wave solution of the generalized ZK-Burgers equa-

p(A+4) o

tion. Especially, if we choose C = C; = £== /-———% . we get the solitary wave solutions

o 2p(A2+31+2)
of Eq. (55),

2
1 %
ug(x,t)=<2—cl<1—tanhg)) ,
.
n
)= —|( -1 th — ,
ug(x,t) (2C1< +co 2))

where /, n are arbitrary constants and

_ho ; 20%(A +2) ;
= p(>~+4)(x+ y+nz+<ﬂ(k+4)2 ) )

(67)
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If we choose C = Cy = -2 (3;4) / ﬁ, we get the solitary wave solutions of Eq. (55),

s (%, 1) = <2LC2<-1+coth g))k (68)
Ue(x, £) = (2%2 (l—tanhg))x, (69)

where [ and # are arbitrary constants.
Similar to Sections 4 and 5, by using a Backlund transformation, we can get an infinite
sequence of solutions of the generalized ZK-Burgers equation. It being a similar process,

we omit it.

8 Comparisons and explanations of the solutions

In this section, the physical interpretation of the results of Sections 4-7 are given, respec-
tively. We will compare the Riccati-Bernoulli sub-ODE method with the (%)—expansion
method, the first integral method, and so on. Some of our obtained exact solutions are in
the figures represented with the aid of Maple software.

(1) The Eckhaus equation:

Applying the Riccati-Bernoulli sub-ODE method, Egs. (25), (26), (28), (31), and (34) are
new types of exact traveling wave solutions of the Eckhaus equation. Equations (29), (30),
(32), and (33), which are expressed by the hyperbolic functions, are a kind of kink-type
envelope solitary solutions. They could not be obtained by the method presented in Ref.
[27]. Equation (26), which is expressed by the rational functions, could not be obtained by
the (%)-expansion method [8] and the first integral method [5].

(2) The nonlinear fractional Klein-Gordon equation:

Applying the Riccati-Bernoulli sub-ODE method and comparing our results with Gol-
mankhaneh’s results [29], it is easy to find that #;(x, ) (j=1,...,8) are new and identical
to results by the first integral method [6]. u;(x, ) (j = 1,2, 3, 4), which are expressed by the
trigonometric functions, are periodic wave solutions. u;(x, t) (j = 5,6,7,8), which are ex-
pressed by the hyperbolic functions, are a kind of kink-type envelope solitary solutions.
The shape of u = u;(x, t) is represented in Figure 1 with o = %, B=1Ly=12xr= %, C=0
and /[ = % within the interval -5 <x <5and 0 <t < % The shape of u = us(x, t) is rep-
resented in Figure 2 with o = %, B=-1,y=1,1=2,C=0, and [ = 1 within the interval
-6<x<6and0<t<6.

(3) The generalized Ostrovsky equation:

Applying the Riccati-Bernoulli sub-ODE method, it is easy to find that our results are
identical to results presented in Ref. [32]. u = u;5(x,t) are peaked wave solutions of the
generalized Ostrovsky equation. The shape of u = u;(x, ¢) is represented in Figure 3 with
§=6,8=6,e=1,A=2,and C = % within the interval -5 <x,t <5.

(4) The generalized ZK-Burgers equation:

By applying the Riccati-Bernoulli sub-ODE method to the generalized ZK-Burgers equa-
tion, we find that if A is a positive fraction, our results degenerate to the results of Ref.
[33]. Moreover, we enlarge the value range of parameters A of the generalized ZK-Burgers
equation so that the parameter A can be an arbitrary constant (A # —1,-2,—4). u;(x,?)

(f=1,...,6) are exact traveling wave solutions of the generalized ZK-Burgers equation.
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Figure 1 Graph of solution u = uq(x, t) of the nonlinear fractional Klein-Gordon equation for & = 9170'
B=1py=1A= %, C=0,and/= %.The left figure shows the 3-D plot and the right figure shows the 2-D
plot for t =0.

0.84

0.6+

0.4

Figure 2 Graph of solution u = us(x, t) of the nonlinear fractional Klein-Gordon equation for « = %,
B=-1,y=1,A=2,C=0,and | =1.The left figure shows the 3-D plot and the right figure shows the 2-D
plot for t=0.

u;(x,t) (j = 3,4,5,6), which are expressed by the hyperbolic functions, are a kind of kink-
type envelope solitary solutions. The shape of u = u;(x, £) is represented in Figure 4 with
a=B=y :l:n:y:zzl,kz—ﬁanda = 2 within the interval -5 < x,¢ <5.
Moreover, by using a Biacklund transformation, we can get an infinite sequence of solu-
tions of these NLPDEs which cannot be obtained by the (%)—expansion method and the
first integral method. The graphical demonstrations of some obtained solutions are shown

in Figures 1-4.

9 Conclusions

The Riccati-Bernoulli sub-ODE method is successfully used to establish exact traveling
wave solutions, solitary wave solutions and peaked wave solutions of NLPDEs. A Backlund
transformation of the Riccati-Bernoulli equation is given. By applying a Biécklund transfor-
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[
s

- 3 o

=)
4=

Figure 3 Graph of solution u = us(x, t) of the generalized Ostrovsky equationford =6, 8=6,& =1,
A=2,andC= 11—°.The left figure shows the 3-D plot and the right figure shows the 2-D plot for t = 0.

Figure 4 Graph of solution u = us(x, t) of the generalized ZK-Burgers equation for
a=B=y=I=n=y=z=1,A=-4/2,and o = 2. The left figure shows the 3-D plot and the right figure
shows the 2-D plot for t = 3.

mation of the Riccati-Bernoulli equation to the NLPDEs, an infinite sequence of solutions
of the NLPDE:s is obtained. The Eckhaus equation, the nonlinear fractional Klein-Gordon
equation, the generalized Ostrovsky equation, and the generalized ZK-Burgers equation
are chosen to illustrate the validity of the Riccati-Bernoulli sub-ODE method. Many well-
known NLPDEs can be handled by this method. The performance of this method is found
to be simple and efficient. The availability of computer systems like Maple facilitates the
tedious algebraic calculations. The Riccati-Bernoulli sub-ODE method is also a standard
and computable method, which allows us to perform complicated and tedious algebraic
calculations.

It is well known that it is difficult to propose an uniform analytical method for all types
of the NLPDEs, and the Riccati-Bernoulli sub-ODE method is no exception. Similar to the

first integral method, the (%)-expansion method and the homogeneous balance method,
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the Riccati-Bernoulli sub-ODE method is used to obtain exact solutions of the form of
Eq. (1). Constructing more powerful sub-ODE and Béicklund transformations is future

work and aims to search for exact solutions of NLPDEs
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