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Abstract
A piecewise linear macro model with ceilings and floors is perturbed in the way of
regularization to interpret economic reality more reasonably. Hopf bifurcations for
these perturbed models are obtained, excluding chaos which, as is well known, takes
place in the unperturbed version. The study reveals the non-chaotic nature of the
model.
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1 Introduction
In this paper, we consider a macro model introduced by Simonovits () [], based on an
earlier version by Honkapohja and Ito () []. The model describes an economy with
two markets, one for labor and one for consumer goods and its qualitative aspects have
been analyzed by Hommes and Nusse [] and Hommes [].

For clarity, we briefly recall the assumptions in []. Let Lt stand for the employment
and It the inventory at time t, where t is a nonnegative integer. Assume that Y D

t = a + bLt

is the demand for goods and Yt = δLt is the production, where a, b, and δ are positive
constants. The firms are assumed to have static expectations of the demand for goods,
that is, E[Y D

t+] = Y D
t . The desired inventory I∗

t+ is considered to be proportional to the
expected demand, so that I∗

t+ = βE[Y D
t+], β > . The supply and demand balance reads{

Yt+ = E(Y D
t+) + I∗

t+ – It ,
It+ = Yt+ + It – Y D

t+,

which implies the following linear macro model:{
Lt+ = 

δ
[(β + )(a + bLt) – It],

It+ = δ–b
δ

[(β + )(a + bLt) – It] + It – a.
(.)

In addition, it is assumed that the productivity of labor is larger than the marginal
propensity to consume, that is,

δ > b. (.)

With the above assumptions, (.) has the so-called Keynesian unemployment equilibrium

(Lt , It) ≡ E(β) :=
(

a
δ – b

,
βaδ

δ – b

)
,
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at which (.) has two complex eigenvalues with their product being b(β + )/δ. Thus when
β > β ≡ δ/b – , E(β) is unstable.

Now assume that the supply of labor is a constant d, being the full-employment ceiling
and that the production at full employment (Lt = d) is larger than demand, that is,

(δ – b)d – a > . (.)

Considering the constraints  ≤ Lt ≤ d and It ≥ , Simonovits [] introduced the following
piecewise linear model:

(M)

{
Lt+ = min{d, max{, 

δ
[(β + )(a + bLt) – It]}},

It+ = max{, (δ – b) min{d, max{, 
δ
[(β + )(a + bLt) – It]}} + It – a}.

This nonlinear model still has E(β) as its unique equilibrium. By assumptions (.) and
(.), it is easy to show that E(β) has a neighborhood lying in an area where the equations
of (M) are identical to those of (.) and then it is unstable for β > β.

With ‘ceilings’ and ‘floors’ imposed on a linear system, the nonlinearity of the model
(M) is called a Hicksian nonlinearity. Hommes and Nusse [] and Hommes [] have
shown that when β > β there exists a stable periodic orbit, a quasi-periodic attractor or
a chaotic attractor for a certain range of the parameters. The research on the dynamics of
economic models with Hicksian nonlinearity has attracted many economists and mathe-
maticians (see [–]).

On the other hand, it is noted that such a model as (M) presents some peculiarities.
For example, its attractor contains a segment where Lt equals d, implying the occurrence
of full employment (see []). However, full employment is thought to be unrealistic since,
ascribed to the diversity of financial restrictions, the nonexistence of a common ceiling for
the production of consumption and investment goods, and so on, the non-homogeneity
of employments is ubiquitous in the production sectors (see [–]).

Another peculiarity that needs to be mentioned is the presence of the area of pure linear-
ity around the equilibrium, which makes the bifurcation problem mathematically degen-
erate and prevents one from investigating the dynamic nature of such a model (see []).

Thus, some methods of modifying the models with Hicksian nonlinearities have been
proposed to interpret the ‘ceilings’ and the ‘floors’ more reasonably (see [–]). One
kind of these methods is to regularize such a model by smoothing out the corners at the
ceilings and the floors without substantially modifying the assumptions of the model, but
including some realistic situations. The regularization method was introduced by Saura
et al. () []. In [], a piecewise linear economic model is perturbed in the way of
regularization and its non-chaotic dynamic property is proved to be persistent against
smoothing, which shows that this model is non-chaotic in nature. How about the nature
of the dynamics of the economy stated above? Do the chaotic behaviors of the model (M)
survive smoothing?

Following the ideal of Saura et al. [], in this paper the model (M) is regularized. Hopf
bifurcations for the regularized models are obtained, excluding chaos which takes place
in (M). The result implies that the model has a non-chaotic nature.

This paper is organized as follows. The regularized models of (M) and the bifurcation
results are presented in the following section. The proof of the results is given in Section ,
and a bifurcation theorem used here is given in the Appendix.
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Throughout this paper, we always assume that the positive numbers a, b, d, δ, and β

satisfy (.) and (.).

2 Regularized models and bifurcations
In this section, we first introduce the regularized models and then state the bifurcation
results.

2.1 Regularized models
For brevity, denote M(x) = max{x, }, m(x) = min{x, d}, μ(x) = m(M(x)) for x ∈ R and
γ (β , x, y) = [(β + )(a + bx) – y]/δ for (x, y) ∈R

. Then (M) is rewritten into the form

(M)

{
Lt+ = μ(γ (β , Lt , It)),
It+ = M((δ – b)μ(γ (β , Lt , It)) + It – a).

Denote w = a/(δ – b) and z = aδ/b, that is, (w, z) = E(β). Then z >  and, by (.),
w ∈ (, d), which implies that (w, z) possesses a neighborhood where, for β close to β,
the equations of (M) are identical to those of (.). This is essential for the regularization
and the analysis to work.

In the light of the regularization method introduced in [], two families of C-smooth
functions Mε(·) and mε(·) are employed to approximate M(·) and m(·), respectively, where
ε is a small positive number. We assume the following hypotheses:

(H) Mε(x) → M(x) := M(x) (ε → +), and for j = , , , ,  the function (ε, x) �→ M(j)
ε (x)

are continuous in a neighborhood of (ε, x) = (, w) as well as in a neighborhood of
(ε, x) = (, z);

(H) mε(x) → m(x) := m(x) (ε → +), and for j = , , , ,  the functions (ε, x) �→ m(j)
ε (x)

are continuous in a neighborhood of (ε, x) = (, w);
(H)  < m′

ε(x), M′
ε(x) < , limx→–∞ m′

ε(x) = limx→+∞ M′
ε(x) = ;

(H) there exists z,  < z < min{w, z}, such that M′′
ε (x) > , M′′′

ε (x) <  and M()
ε (x) >  for

every x ∈ (z, +∞);
(H) there exists w, w < w < d, such that m(j)

ε (x) < , x ∈ (–∞, w), j = , , .

Here, the hypotheses (H)-(H) describe the closeness between Mε(·) and M(·) as well
as between mε(·) and m(·) (see Figure ). To explain the hypotheses (H) and (H), we
notice that the step functions M′

(x) and m′
(x) are approximated by smooth S-shaped

curves M′
ε(x) and m′

ε(x), respectively. Thus, it is natural that M′
ε(x), as indicated in (H),

is increasing and concave with decreasing curvature on (z, +∞) (see Figure ). Similarly
(H) is also a natural hypothesis for mε(x).

Figure 1 Smoothing the max and min functions.
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Figure 2 Smoothing out M′(x).

Denote με(x) = mε(Mε(x)) for x ∈ R. By replacing μ(·) and M(·) in (M) with με(·) and
Mε(·), respectively, we get the following regularized model:

(Mε)

{
Lt+ = με(γ (β , Lt , It)),
It+ = Mε((δ – b)με(γ (β , Lt , It)) + It – a).

Here, the flexible curves με(·) and Mε(·) are employed to interpret the non-homogeneity
in the labor market as well as in the consumption market. Also, it is noted that the smaller
the positive number ε is, the closer this regularized model is to its original version (M).

2.2 Bifurcations
The first conclusion of the following theorem confirms the existence of the equilibrium
for (Mε ) and the second states the occurrence of the bifurcation and its stability.

Theorem . Assume that hypotheses (H)-(H) hold. Then
(i) for ε >  sufficiently small and β close to β, (Mε ) has a unique equilibrium Eε(β)

with Eε(β) → E(β) (ε → +);
(ii) for ε >  sufficiently small there exist βε >  and ηε >  with βε → β (ε → +) such

that for β ∈ (βε ,βε + ηε) (Mε ) has a locally attracting invariant closed curve
surrounding the equilibrium Eε(β) which shrinks to Eε(βε) as β → βε from above. No
such curve exists for β ∈ (βε – ηε ,βε).

As an illustration, we consider the following specific regularization. As in [], let the
step functions M′(x) and m′(x) be approximated by the logistic curves

M′
ε(x) =




+



tanh

(
x
ε

)
and m′

ε(x) =



–



tanh

(
x – d

ε

)
,

respectively. Thus

Mε(x) =
ε


ln

[
exp

(
x
ε

)
+ exp

(
–x
ε

)]
+

x


,

mε(x) = –
ε


ln

[
exp

(
x – d

ε

)
+ exp

(
–

x – d
ε

)]
+

x + d


.
(.)

It is easy to check that (H)-(H) are satisfied.
Set the data of the parameters by ε = ., a = ., b = ., d = , and δ = . For β =

., ., ., and ., different orbits are plotted in Figure  and Figure . Each of the orbits
contains , points after a transient time of . Figure  shows numerically that the
equilibrium is stable when β = . and that invariant closed curves appear when β = .
or β = .. A -periodic obit is observed for β = . (Figure ).
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Figure 3 Invariant curves.

Figure 4 A periodic orbit.

2.3 Comments
From the above theorem we know that for ε >  sufficiently small and β > βε near βε ,
the asymptotic behavior of the model (Mε ) is represented by the motion on the invariant
closed curve, which is closely related to an important notion called the rotation number.
When the rotation number is a rational number p/q the system has periodic obits with
period q. When this number is irrational, there are no periodic orbits and every orbit is
dense in the closed curve, giving rise to a quasi-periodic behavior []. Moreover, since
the rotation number depends continuously on the parameters, the dynamics inside the
invariant curve shifts back and forth from periodic to quasi-periodic behavior as β or ε

change.
It is well known that periodic or quasi-periodic behaviors are non-chaotic, meaning that

there are no periodic points with different periods, and the orbits that start close remain
close for all times. The result implies that the model has a non-chaotic nature.

3 Proof of Theorem 2.1
In this section, it is always assumed that the hypotheses (H)-(H) hold.

Set R+ = (, +∞), S = R
+ × R

+. For simplicity, we make the change of parameters by
letting

β =
kδ

b
–  and γ̂ (k, ·, ·) := γ

(
kδ

b
– , ·, ·

)
. (.)

Thus to prove Theorem ., we turn to the bifurcation problem for the mapping �ε(k, ·, ·) :
S �→ S,

�ε(k, x, y) =

(
με(γ̂ (k, x, y))

Mε((δ – b)με(γ̂ (k, x, y)) + y – a)

)T

.
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Next, as in [], this system will be transformed equivalently into a special form of map-
ping so that the bifurcation problem can be handled easily. To do this, we consider the
mapping πε(k, ·, ·) : S �→ S,

πε(k, x, y) =
(
y, Mε

(
(δ – b)με

(
γ̂ (k, x, y)

)
+ y – a

))
.

Let W denote the image of S under the mapping πε(k, ·, ·). From (H), we see that both
of με(·) and Mε(·) are invertible. Then πε(k, ·, ·) is a homeomorphism with its inverse map-
ping π–

ε (k, ·, ·) : W �→ S,

π–
ε (k, u, v) =

(

k

[
μ–

ε

(
M–

ε (v) – u + a
δ – b

)
+

u
δ

–
ak
b

]
, u

)
.

By calculating, it can be checked that

πε ◦ �ε ◦ π–
ε (u, v) = Fε(k, u, v) :=

(
v, Gε(k, u, v)

)
, (u, v) ∈ W , (.)

where Gε(k, ·, ·) is defined by

Gε(k, u, v) = Mε

(
ψε(k, u, v)

)
,

ψε(k, u, v) = (δ – b)με

(
ϕε(k, u, v)

)
+ v – a, (.)

ϕε(k, u, v) =
k

δ – b
(
M–

ε (v) – u + a
)

–
v
δ

+
ak
b

.

Then the mappings �ε(k, ·, ·) : S �→ S and Fε(k, ·, ·) : W �→ W are conjugate by πε(k, ·, ·) :
S �→ W , and then we only need to study the bifurcation of the mapping Fε(k, ·, ·).

Noticing that ϕ(, z, z) = w and ψ(, z, z) = z, by (H) and (H) we get the follow-
ing lemma.

Lemma . The functions ϕε(·, ·, ·), ψε(·, ·, ·) and Gε(·, ·, ·) have continuous fourth-order
partial derivatives in a neighborhood of (ε, k, u, v) = (, , z, z).

For s in a neighborhood of s = z, consider the equation

ξ (ε, k, s) ≡ s – Gε(k, s, s) = . (.)

Noticing that

ξ (, , z) = , ξs(, , z) =  –
b
δ

> 

and applying the implicit function theorem, we find that for (ε, k) in a neighborhood of
(ε, k) = (, ), (.) has a unique zero, denoted by zε,k , in a neighborhood of s = z. More-
over, zε,k is continuous jointly in (ε, k) and is continuously differentiable with respect to k.
Obviously, (zε,k , zε,k) is a fixed point of the mapping Fε(k, u, v). That is, the following lemma
holds.
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Lemma . For (ε, k) in a neighborhood of (ε, k) = (, ), Fε(k, ·, ·) has unique fixed point
(zε,k , zε,k) ∈ W . Moreover, zε,k is continuous jointly in (ε, k) and is continuously differen-
tiable with respect to k.

Remark . Set Eε(β) = π–
ε (k, zε,k , zε,k) with β = kδ/b – . Then for ε >  sufficiently small

and β close to β, (Mε ) has a unique equilibrium Eε(β). Moreover, it is easy to check that
z,k = aδ(kδ – b)[b(δ – b)]– and that π–

 (k, z,k , z,k) = E(β). Since zε,k → z,k (ε → +),
we have correspondingly Eε(β) → E(β) (ε → +). Thus the conclusion (i) of Theorem .
holds.

The following lemma confirms the occurrence of the bifurcation at the equilibrium.

Lemma . For ε >  sufficiently small there exist kε and η′
ε with kε →  (ε → +) such

that for every k ∈ (kε – η′
ε , kε) or k ∈ (kε , kε + η′

ε), the mapping Fε(k, ·, ·) has an invariant
closed curve surrounding the equilibrium point (zε,k , zε,k).

Proof For (u, v) ∈ W , by calculating, we have

∂

∂u
Gε(k, u, v) = –kM′

ε

(
ψε(k, u, v)

)
μ′

ε

(
ϕε(k, u, v)

)
,

∂

∂v
Gε(k, u, v) = M′

ε

(
ψε(k, u, v)

)
×

{
(δ – b)μ′

ε

(
ϕε(k, u, v)

)[ k
(δ – b)M′

ε(v)
–


δ

]
+ 

}
. (.)

Noticing that z,k > , by Lemma . we have

{
ϕε(k, zε,k , zε,k) → ϕ(k, z,k , z,k) ≡ w,
ψε(k, zε,k , zε,k) → ψ(k, z,k , z,k) ≡ z,k

(
ε → +)

, (.)

which, by (H), leads to

lim
ε→+

M′
ε(zε,k) = lim

ε→+
M′

ε

(
ψε(k, zε,k , zε,k)

)
= lim

ε→+
μ′

ε

(
ϕε(k, zε,k , zε,k)

)
= . (.)

It follows from (.) that

∂Gε(k, u, v)
∂u

∣∣∣∣
(k,zε,k ,zε,k )

→ –k,
∂Gε(k, u, v)

∂v

∣∣∣∣
(k,zε,k ,zε,k )

→ k +
b
δ

(
ε → +)

. (.)

Let DFε(k, zε,k , zε,k) denote the tangent mapping of Fε(k, ·, ·) at (u, v) = (zε,k , zε,k), then

DFε(k, zε,k , zε,k) → T :=

(
 

–k k + b
δ

) (
ε → +)

.

Noticing that

 := kδ – (b + kδ) → (δ – b)(b + δ) >  (k → ),
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we see that, for k sufficiently close to , T has two conjugate complex eigenvalues λ(k)
and λ(k) with

λ(k) ≡ b + kδ + i
√



δ
.

Moreover, we have |λ(k)| = k/, which implies that, for a small positive number η,

∣∣λ( – η)
∣∣ <  <

∣∣λ( + η)
∣∣. (.)

By Lemmas . and ., the eigenvalues of DFε(k, zε,k , zε,k) depend continuously on (ε, k),
which means that one of the eigenvalues, denoted by λε(k), tends to λ(k) as ε → +. In
view of (.), we see that, for ε >  sufficiently small,

∣∣λε( – η)
∣∣ <  <

∣∣λε( + η)
∣∣.

It follows that there exists kε ∈ ( – η,  + η) such that |λε(kε)| = .
We claim that kε →  as ε → +. Otherwise there exist εn, n = , , . . . , with εn → +

(n → ∞), such that kεn → k̂ =  (n → ∞), which implies  = |λεn (kεn )| → |λ(k̂)| = k̂/ = 
as n → ∞, a contradiction.

Thus λε(kε) → λ() as ε → +. Noticing that Re(λ()) > , Im(λ()) > , and λ′
() > ,

we see from Lemma . that, for ε >  sufficiently small,

Reλε(kε) > , Imλε(kε) >  and
d|λε(k)|

dk

∣∣∣∣
k=kε

> ,

which, by Theorem A., implies that there exists η′
ε >  such that for every k ∈ (kε – η′

ε , kε)
or k ∈ (kε , kε + η′

ε), Fε(k, ·, ·) has an invariant closed curve surrounding the equilibrium
point (zε,kε , zε,kε ). �

Now, we determine the direction of the bifurcation and its stability. Denote

zε = zε,kε , τε = ϕε(kε , zε , zε), σε = ψε(kε , zε , zε) and

pε = M′′′
ε (σε), qε = M′′′

ε (τε), rε = m′′′
ε

(
Mε(τε)

)
.

From (.), we see that

zε → z, σε → z, τε → w
(
ε → +)

. (.)

By (H) and (H), it follows that pε , qε , and rε are infinitesimal as ε → + and

M′
ε(zε) → , M′

ε(σε) → , μ′
ε(τε) → 

(
ε → +)

. (.)

We have the following comparisons.

Lemma .
(i) [M′′

ε (σε)] = o(pε) (ε → +);
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(ii) [M′′
ε (τε)] = o(qε) (ε → +);

(iii) [m′′
ε (Mε(τε))] = o(rε) (ε → +);

(iv) [M′′
ε (zε)] = o(pε) (ε → +).

Proof From (.) and (H), we can assume that zε ,σε > z. By (H), we have M′′
ε (x) > ,

M′′′
ε (x) < , and M()

ε (x) >  for x > σε . Then

 >


pε

[
M′′

ε (σε)
] = –

∫ ∞

σε

M′′
ε (s)

M′′′
ε (s)
pε

ds

≥ –
∫ ∞

σε

M′′
ε (s) ds = –

(
 – M′

ε(σε)
)
. (.)

It follows from (.) that the conclusion (i) holds. In the same way, we can prove (ii) and,
by using (H), (iii) can be derived similarly.

Lastly, in view of (H), (H), and (H), it is easy to see that Mε(x) > M(x) for x ∈R. Then
zε = Mε(σε) > M(σε) = σε and then  < M′′

ε (zε) < M′′
ε (σε) which, by (i), implies (iv). �

Further, by using the above lemma, we can make the following useful comparisons. In
view of the derivative formula

μ′′
ε (τε) = m′′

ε

(
Mε(τε)

)(
M′

ε(τε)
) + m′

ε

(
Mε(τε)

)
M′′

ε (τε)

and the inequality |pq| ≤ p + q for p, q ∈R, and by using (ii) and (iii), we get

[
μ′′

ε (τε)
] = o(qε) + o(rε)

(
ε → +)

, (.)

which, combining with (i) and (iv), respectively, leads to

μ′′
ε (τε)M′′

ε (σε) = o(pε) + o(qε) + o(rε)
(
ε → +)

(.)

and

μ′′
ε (τε)M′′

ε (zε) = o(pε) + o(qε) + o(rε)
(
ε → +)

. (.)

In addition, we have

μ′′′
ε (τε) = m′′′

ε

(
Mε(τε)

)(
M′

ε(τε)
) + m′

ε

(
Mε(τε)

)
M′′′

ε (τε)

+ m′′
ε

(
Mε(τε)

)
M′′

ε (τε)M′
ε(τε).

By using (ii), (iii), and (.), it follows that

μ′′′
ε (τε) = qε + rε + o(qε) + o(rε)

(
ε → +)

. (.)

Lemma . The invariant curve derived from Lemma . is attracting and the bifurcation
is supercritical.
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Proof Denote

Gij(ε) =
∂ i+jGε(kε , ·, ·)

∂ui ∂vj

∣∣∣∣
(zε ,zε )

, i, j = , , , , i + j = , , .

By calculation, we have

G(ε) = k
ε M′′

ε (σε)
[
μ′

ε(τε)
] +

k
ε

δ – b
M′

ε(σε)μ′′
ε (τε),

G(ε) = –kεM′′
ε (σε)μ′

ε(τε)
{

(δ – b)μ′
ε(τε)

[
kε

(δ – b)M′
ε(zε)

–

δ

]
+ 

}

– kεM′
ε(σε)μ′′

ε (τε)
[

kε

(δ – b)M′
ε(zε)

–

δ

]
,

G(ε) = M′′
ε (σε)

{
(δ – b)μ′

ε(τε)
[

kε

(δ – b)M′
ε(zε)

–

δ

]
+ 

}

+ M′
ε(σε)

{
(δ – b)μ′′

ε (τε)
[

kε

(δ – b)M′
ε(zε)

–

δ

]

– kεμ
′
ε(τε)

M′′
ε (zε)

[M′
ε(zε)]

}
.

It follows from (.)-(.) and (.) that

(
Gij(ε)

) = o(pε) + o(qε) + o(rε)
(
ε → +)

, i + j = . (.)

Further, by calculating,

G(ε) = –k
ε

{
M′′′

ε (σε)
[
μ′

ε(τε)
] +


δ – b

M′′
ε (σε)μ′′

ε (τε)

+


(δ – b) M′′
ε (σε)μ′

ε(τε)μ′′
ε (τε) +


(δ – b) M′

ε(σε)μ′′′
ε (τε)

}
,

G(ε) = k
ε M′′′

ε (σε)
[
με(τε)

]
{

(δ – b)μ′
ε(τε)

[
kε

(δ – b)M′
ε(zε)

–

δ

]
+ 

}

+ k
ε M′′

ε (σε)μ′
ε(τε)μ′′

ε (τε)
[

kε

(δ – b)M′
ε(zε)

–

δ

]

+
k

ε

δ – b
M′′

ε (σε)μ′′
ε (τε)

{
(δ – b)μ′

ε(τε)
[

kε

(δ – b)M′
ε(zε)

–

δ

]
+ 

}

+
k

ε

δ – b
M′

ε(σε)μ′′′
ε (τε)

[
kε

(δ – b)M′
ε(zε)

–

δ

]
,

G(ε) = –kεM′′′
ε (σε)μ′

ε(τε)
{

(δ – b)μ′
ε(τε)

[
kε

(δ – b)M′
ε(zε)

–

δ

]
+ 

}

– kεM′′
ε (σε)μ′′

ε (τε)
{

(δ – b)μ′
ε(τε)

[
kε

(δ – b)M′
ε(zε)

–

δ

]
+ 

}

×
[

kε

(δ – b)M′
ε(zε)

–

δ

]

– kεM′′
ε (σε)μ′

ε(τε)
{

(δ – b)μ′′
ε (τε)

[
kε

(δ – b)M′
ε(zε)

–

δ

]

+ kεμ
′
ε(τε)

M′′
ε (zε)

[M′
ε(zε)]

}
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– kεM′
ε(σε)

{
μ′′′

ε (τε)
[

kε

(δ – b)M′
ε(zε)

–

δ

]

–
kε

δ – b
μ′′

ε (τε)
M′′

ε (zε)
[M′

ε(zε)]

}
,

G(ε) = M′′′
ε (σε)

{
(δ – b)μ′

ε(τε)
[

kε

(δ – b)M′
ε(zε)

–

δ

]
+ 

}

+ M′′
ε (σε)

{
(δ – b)μ′

ε(τε)
[

kε

(δ – b)M′
ε(zε)

–

δ

]
+ 

}

×
{

(δ – b)μ′′
ε (τε)

[
kε

(δ – b)M′
ε(zε)

–

δ

]

– kεμ
′
ε(τε)

M′′
ε (zε)

[M′
ε(zε)]

}

+ M′′
ε (σε)

{
(δ – b)μ′

ε(τε)
[

kε

(δ – b)M′
ε(zε)

–

δ

]
+ 

}

×
{

(δ – b)μ′′
ε (τε)

[
kε

(δ – b)M′
ε(zε)

–

δ

]

– kεμ
′
ε(τε)

M′′
ε (zε)

[M′
ε(zε)]

}

+ M′
ε(σε)

{
(δ – b)μ′′′

ε (τε)
[

kε

(δ – b)M′
ε(zε)

–

δ

]

+ kεμ
′′
ε (τε)

[
kε

(δ – b)M′
ε(zε)

–

δ

]
M′′

ε (zε)
[M′

ε(zε)]

+ kεμ
′′
ε (τε)

M′′
ε (zε)

[M′
ε(zε)]

[
kε

(δ – b)M′
ε(zε)

–

δ

]

+ kεμ
′
ε(τε)

–M′′′
ε (zε)[M′

ε(zε)] + [M′′
ε (zε)]M′

ε(zε)
[M′

ε(zε)]

}
.

Denote nε = M′′′
ε (zε). It follows from Lemma . and (.)-(.) that, as ε → +,

G(ε) = –pε –
(


δ – b

)

qε + o(pε) + o(qε) + o(rε),

G(ε) = ( + b/δ)pε +
b(qε + rε)
(δ – b)δ – nε + o(pε) + o(qε) + o(rε),

G(ε) = ( + b/δ)pε +
b(qε + rε)
(δ – b)δ

+ o(pε) + o(qε) + o(rε),

G(ε) = –( + b/δ)pε +
b(qε + rε)
(δ – b)δ + o(pε) + o(qε) + o(rε).

(.)

Let

a(ε) =


(
G(ε) + G(ε) · λ(kε) + G(ε) · λ(kε)

) i
(λ(kε) – λ(kε))

,

a(ε) =


(
G(ε) + G(ε) · λ(kε) + G(ε) · λ(kε)

) i
(λ(kε) – λ(kε))

,

a(ε) =
(
G(ε) + G(ε) · λ(kε)λ(kε) + G(ε) · (λ(kε) + λ(kε)

)) · i
(λ(kε) – λ(kε))

,

a(ε) =
(
G(ε) + G(ε)λ(kε)λ(kε) + G(ε)λ(kε)

(
λ(kε) + λ(kε)

)
+ G(ε)

(
λ(kε) + λ(kε)

)) · –/
(λ(kε) – λ(kε))

,
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Q(ε) =
|a(ε)|
 – λ(kε)

+
|a(ε)|

λ(kε) – λ(kε)
+

λ(kε) – 
λ(kε)( – λ(kε))

· a(ε) · a(ε) + a(ε),

c(ε) = Re
(
Q(ε) · λ(kε)

)
.

From (.), we see that

∣∣aij(ε)
∣∣ = o(pε) + o(qε) + o(rε)

(
ε → +)

, i + j = . (.)

On the other hand, by using (.), we obtain

Re
(
a(ε) · λ(kε)

)
=


k



[
pε +

qε + rε

δ(δ – b)

]
+ o(pε) + o(qε) + o(rε)

(
ε → +)

. (.)

From (.) and (.), we see that, for ε >  sufficiently small,

sign
(
c(ε)

)
= sign

(


k


[
pε +

qε + rε

δ(δ – b)

])
< .

By Theorem A., the conclusion of the lemma follows. �

Remark . In view of (.), the above lemma implies the conclusion (ii) of Theorem ..
Thus the proof is complete.

Appendix
The following statement is a special case of Hopf ’s theorem for mappings, which is em-
ployed to prove Theorem ..

Theorem A. (Hopf bifurcation theorem for plane mappings [, ]) Let F : R×R → R

be a mapping of class C of the form F(k, x, y) = (y, G(k, x, y)) which satisfies:
(i) For every k ∈ R, there exists z̃(k) such that F(k, z̃(k), z̃(k)) = (z̃(k), z̃(k)).

(ii) DF(k, z̃(k), z̃(k)) has complex eigenvalues λ(k), λ(k) such that |λ(k)| = ,

(
λ(k)

)m = , m = , , ,  and η′(k) def=
|λ(k)|

dk

∣∣∣∣
k=k

>  (< ).

Then the mapping F(k, ·, ·) has, for every k < k or k > k sufficiently close to k, an invariant
closed curve surrounding the equilibrium point (z̃(k), z̃(k)).

The direction (k < k or k > k) of the bifurcation and its stability properties can be ob-
tained as follows: Let us denote

Gij =
∂ i+jG
∂xi ∂yj

(
k, z̃(k), z̃(k)

)

and let

a(k) =


(
G + G · λ(k) + G · λ(k)

) i
(λ(k) – λ(k))

,

a(k) =


(
G + G · λ(k) + G · λ(k)

) i
(λ(k) – λ(k))

,
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a(k) =
(
G + G · λ(k)λ(k) + G · (λ(k) + λ(k)

)) · i
(λ(k) – λ(k))

,

a(k) =
(
G + Gλ

(k)λ(k) + Gλ(k)
(
λ(k) + λ(k)

)
+ G

(
λ(k) + λ(k)

)) · –/
(λ(k) – λ(k))

,

Q(k) =
|a(k)|
 – λ(k)

+
|a(k)|

λ(k) – λ(k)
+

λ(k) – 
λ(k)( – λ(k))

· a(k) · a(k) + a(k),

c(k) = Re
(
Q(k) · λ(k)

)
.

Then, if c(k) <  (respectively, c(k) > ), the invariant curve is attracting (respectively,
repelling) and if c(k) · η′(k) <  (respectively, c(k) · η′(k) > ), the bifurcation is super-
critical (respectively, subcritical).
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