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1 Introduction
In , Zadeh initiated the development of the modified set theory known as fuzzy set
theory, which is a tool that makes possible the description of vague notions and manipula-
tions with them. The basic idea of fuzzy set theory is simple and natural. In [] the authors
studied the basic definitions and properties of fuzzy process, fuzzy number and so on.
Stochastic differential equations are used to build more realistic models in economics, so-
cial sciences, chemistry, finance, physics and other areas. Therefore, many real world prob-
lems can be modeled by stochastic differential equations. The deterministic models often
fluctuate due to noise, so we should move from deterministic control to stochastic control
problems. In [, ] the basic properties and applications of stochastic differential systems
and stochastic control problems were studied. The fuzzy stochastic differential equations
could be applicable in the investigation of numerous engineering and economic problems
where the phenomena are subjected to randomness and fuzziness simultaneously.

Neutral differential equations are one of the most thoroughly studied classes of equa-
tions with distributed arguments. They occur naturally in applied problems that contain
in their statement some recurrence property and are discussed in [–]. Impulsive differ-
ential equations have been developed in modeling impulsive problems in physics, popu-
lation dynamics, ecology, biological systems, biotechnology, industrial robotics, pharma-
cokinetics, optimal control, and so forth. Again associated with this development, a theory
of impulsive differential equations has been given extensive attention. However, in addi-
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tion to impulsive effects, stochastic effects also exist in real systems. Therefore, impulsive
stochastic differential systems describing these dynamical systems are subject to both im-
pulsive and stochastic changes. In [, ] these types of impulsive effects and differential
systems were studied.

In the literature there are only a few papers that deal with the approximate controllability
of fuzzy differential systems, likewise approximate controllability of backward stochastic
evolution equations in Hilbert space as discussed in []. Dauer et al. [] studied the ap-
proximate controllability of semilinear functional equations in a Hilbert space. Sakthivel et
al. [, ] studied the approximate controllability of nonlinear impulsive differential sys-
tems and stochastic systems with unbounded delay. Zang and Li [] discussed the concept
of approximate controllability of fraction impulsive neutral stochastic differential equa-
tions with nonlocal conditions. Kwun and Park [] presented the optimal control problem
for fuzzy differential equations and nonlocal controllability for the semilinear fuzzy inte-
grodifferential equations in an n-dimensional fuzzy vector space. It should be mentioned
that there is no work done on the approximate controllability of fuzzy stochastic differ-
ential systems. Motivated by the above considerations, in this paper we investigate the
approximate controllability for nonlinear impulsive neutral fuzzy stochastic differential
equations with nonlocal conditions described by

d
[
x(t) – h

(
t, x(t)

)]
= A

[
x(t) – h

(
t, x(t)

)]
+ Bu(t) dt + f

(
t, x(t)

)
dt

+ g
(
t, x(t)

)
dw(t), t ∈ J = [, a], t �= ti, ()

�x(ti) = x
(
t+
i
)

– x
(
t–
i
)
x ∈ X, i = , , . . . , m, ()

x() + μ(x) = x. ()

Here, the state variable x(·) takes values in a real line separable Hilbert space X with the
inner product (·, ·) and the norm ‖ · ‖. The control function u(·) takes values in L(J , U),
a Banach space of admissible control functions for a separable Hilbert space U and J =
[, b], � = {(t, s) :  ≤ s ≤ t ≤ b}. Also, A (i.e., A(t, x)) is the infinitesimal generator of a
C-semigroup in X and B is a bounded linear operator from U into X. Further, f and
g are continuous and compact functions and f : J → X and g : � → X are measurable
mappings in X-norm, and a neutral variable h is continuous and compact; also h : X → X
is a measurable mapping. And here, the function μ : PC(J , X) → X is continuous and the
impulsive function Ii : X → X is compact. Furthermore, the fixed time ti satisfies  = t <
t < t < · · · < tm < a, x(t+

i ) and x(t+
i ) denotes the right and left limits of x(t) at t = ti, and

�x(ti) = x(t+
i ) – x(t–

i ) represents the jump in the state X at time ti, where Ii determines the
size of the jump.

2 Preliminaries
Here, first we define some properties, theorems and lemmas and also recall some basic
definitions which are all used in this paper.

A fuzzy set of Rn is a function u : Rn → [, ]. For each fuzzy set u, we denote by [u]α =
x ∈ Rn; u(x) ≥ α for any α ∈ [, ] its α-level set.

Let En denote the collection of all fuzzy sets of Rn that satisfies the conditions, i.e.,
u is normal, fuzzy convex, upper semicontinuous and [u] is compact. We call u ∈ En

an n-dimensional fuzzy number.
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And we define the abstract phase space Bh, also assume that h : (–∞, ] → (,∞) is
a continuous function with l =

∫ 
–∞ h(t) dt < +∞ = {� : [–b, ] → X such that �(t) is

bounded and measurable} and equip the space B with the norm

‖�‖[–b,] = sup
s∈[–b,]

∣
∣�(s)

∣
∣ for all � ∈ B.

Let us define

Bh =
{
� : (–∞, ] → X such that for any c > ,�|[–c,] ∈ B and

∫ 

–∞
h(s)‖�‖[c,] ds < ∞

}
.

If Bh is endowed with the norm

‖�‖Bh =
∫ 

–∞
h(s)‖�‖[s,] ds for all � ∈ Bh,

then it is clear that (Bh,‖ · ‖Bh ) is a Banach space. Now we consider the space

B′
h =

{
x : (–∞, b] → X such that xk ∈ PC(Jk , X) and there exist x

(
t+
k
)

and

x
(
t–
k
)

with x(tk) = x
(
t–
k
)
, x = φ ∈ Bh, k = , , . . . , m

}
,

where xk is the restriction of x to Jk = (tk , tk + ], k = , , . . . , m. Set ‖ · ‖′
h to be a seminorm

in B′
h defined by

‖x‖′
h = ‖φ‖Bh + sup

∣∣x(s)
∣∣ : s ∈ [, b], x ∈ B′

h.

Definition . The family A(t) :  ≤ t ≤ b generates a unique linear evolution system
U(t, s) :  ≤ s ≤ t ≤ b satisfying the following properties:

• U(t, s)U(s, τ ) = U(t, τ ) and U(t, t)x = x for every s ≤ τ ≤ t and all x ∈ X ,
• for every x ∈ X , the function for (t, s) = U(t, s)x is continuous and U(t, s) ∈ L(X) for

every t ≥ s, and
• for  ≤ s ≤ t ≤ b, the function t → U(t, s), (s, t] ∈ L(X) is differentiable with

∂U(t,s)
∂t = A(t)U(t, s).

Definition . Let x, y ∈ C(I, EN ), here I is a real interval and EN is the set of all upper
semicontinuous convex normal fuzzy numbers with bounded α-level intervals. A mapping
x : I → EN is called a fuzzy process. We define

[
x(t)

]α =
[
xα

l (t), xα
r (t)

]
, t ∈ I,  < α ≤ .

The derivative x′(t) of a fuzzy process x is defined by

[
x′(t)

]α =
[(

xα
l
)′(t),

(
xα

r (t)
)′], t ∈ I,  < α ≤ ,

provided that this equation defines fuzzy x′(t) ∈ EN .



Narayanamoorthy and Sowmiya Advances in Difference Equations  (2015) 2015:121 Page 4 of 16

Definition . A stochastic process x is said to be a mild solution of ()-() if the following
conditions are satisfied:

• X(t,ω) is a measurable function from J × � to X and x(t) is Ft-adapted,
• E‖x(t)‖ < ∞ for all t ∈ J ,
• �x(τi) = x(τ+

i ) – x(τ–
i ) = Ii(x(τi)), x ∈ X and  ≤ i ≤ m,

• for each u ∈ LF
 (J , U), the process x satisfies the following integral equation:

x(t) = U(t, )
[
x′ – μ(x)

]
+

∫ t


U(t, s)Bu(s) ds +

∫ t


U(t, s)f

(
s, x(s)

)
ds

+
∫ t


U(t, s)g

(
s, x(s)

)
dW (s) +

∑

≤ti≤t

U(t, ti)I
(
x
(
t–
i
))

, t ∈ J . ()

Lemma . Assume that x ∈ B′
h, then for t ∈ I , xt ∈ Bh. Moreover,

l
∣∣x(t)

∣∣ ≤ ‖xt‖Bh ≤ ‖x‖Bh + l sup
s∈[,t]

∥∥x(s)
∥∥,

where l =
∫ 

–∞ h(t) dt < ∞.

Note . Define B′′
h = z ∈ B′

h : z =  ∈ Bh. For any z ∈ B′′
h,

‖z‖′
Bh

= ‖z‖Bh + sup
{∣∣z(s)

∣∣ : s ∈ [, b]
}

= sup
{∣∣z(s)

∣∣ : s ∈ [, b]
}

,

and thus (B′′
h,‖ · ‖) is a Banach space. Set

Br = z ∈ PC
(
(–∞, b], X

)
:
∥
∥z(t)

∥
∥′

Bh
≤ r,  ≤ t ≤ b.

Clearly, Br is a nonempty, bounded, convex and closed set in B′
h. Then, for any z ∈ Br , from

Lemma . we have

‖zt + yt‖Bh ≤ ‖zt‖Bh + ‖yt‖Bh

≤ ‖z‖Bh + l sup
s∈[,b]

∣∣z(s)
∣∣ + ‖y‖Bh + l sup

s∈[,b]

∣∣y(s)
∣∣

≤ l
(
r + M

∣∣φ()
∣∣) + ‖φ‖Bh = r′. ()

For each t ∈ J , z ∈ Br , we have by the above equation and (A)

sup
t∈J

∣
∣z(t) + y(t)

∣
∣ ≤ l–‖zt + yt‖Bh ≤ l–r′,

∣∣Ik
(
z
(
t–
k
)

+ z
(
t–
k
))∣∣ ≤ dk

(
sup
t∈J

∣∣z(t) + y(t)
∣∣
)

≤ dk
(
l–r′), k = , , . . . , m. ()

Let xb(x; u) be the state value of ()-() at terminal time b corresponding to the control
u and the initial value x = φ ∈ Bh.

Introduce the set R(b, x) = xb(x; u)() : u(·) ∈ L(J , U), which is called the reachable set
at terminal time b, its closure in X is denoted by R(b, x).
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Definition . If R(b, x) = X, then system ()-() is approximately controllable on the
interval J . It is convenient at this point to define operators


a
 =

∫ a


U(a, s)BB∗U∗(a, s) ds,

R(α,
a
) = (αI + 
a

)–.

(D) αR(α,
a
) →  as α → + is strong operator topology.

It is known that assumption (D) holds iff the linear system ẋ(t) = Ax(t) + Bu(t), x() = x

is approximately controllable on J .

The following theorem gives a formula for a control transferring the initial state x to
some neighborhood of xa at time a.

Theorem . For arbitrary xa ∈ X, the control

u(t) = B∗U∗(a, t)R
(
α,
a


)
p
(
x(·)),

where

p
(
x(·)) = xa – U(a, )

[
x – μ(x) – h

(
,

(
x – μ(x)

))]
– h(a, xa)

–
∫ a


U(a, s)A(s)h(s, xs) ds –

∫ a


U(a, s)f (s, xs) ds

–
∫ a


U(a, s)g(s, xs) dW (s) –

m∑

k=

U(a, tk)(Ik)
(
x
(
t–
k
))

()

transfers the initial state x to

x(a) = xa – α
(
αI + 
a


)–

[

xa – U(a, )
[
x – μ(x) – h

(
,

(
x – μ(x)

))]
– h(a, xa)

–
∫ a


U(a, s)A(s)h(s, xs) ds –

∫ a


U(a, s)f (s, xs) ds –

∫ a


U(a, s)g(s, xs) dW (S)

–
m∑

k=

U(a, tk)(Ik)
(
x
(
t–
k
))

]

. ()

3 Approximate controllability
In this section, we state the approximate controllability result for impulsive neutral fuzzy
stochastic differential equations under nonlocal conditions by using Schauder’s fixed point
theorem. Approximate controllability property is the possibility to steer the state of the
system from any initial data to a state of arbitrary close to a target by choosing a suitable
control.

To establish the result, we introduce the following assumptions on system ()-().

(A) When t > s > , then the strongly continuous semigroup of bounded linear operators
U(t, s) generated by A(t) is compact and there exist constants M > , M >  such
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that

∥
∥[

U(t, s)
]α∥

∥ ≤ Mα
 ,

∥
∥[

U(t, s)
]α∥

∥ ≤ Mα
 .

(A) (i) The nonlinear function f : J × Bh × X → X is continuous, uniformly bounded,
strongly measurable and there exists Lf >  such that

∥∥[
f (t,φ, x)

]α∥∥ ≤ Lα
f for all (t,φ, x) ∈ J × Bh × X.

(ii) For each positive number r, there exists a function δr ∈ L(J , R+) such that

sup
{[

f (t,φ, x)
]α : ‖φ‖Bh ≤ r,

∥∥[x]
∥∥ ≤ r

} ≤ δr(t) for a.e. t ∈ J and

lim inf
r→∞


r

∫ a


δr(s) ds = γ < ∞.

(A) The nonlinear function g : J × Bh × X → X is continuous, strongly measurable and
there exists Lg >  such that

∥
∥[

g(t,φ, x)
]α∥

∥ ≤ Lα
g for all (t,φ, x) ∈ J × Bh × X.

(A) The function μ : PC(J , X) → X is a nonlocal condition in the following sense, and
there exists a constant Lμ >  such that

∥∥[
μ(t, u)

]α –
[
μ(s, v)

]α∥∥ ≤ Lα
μ

[|t – s| – ‖u – v‖] for all u, v ∈ X.

(A) Ik ∈ C(X, X) and there exists a constant dα
k such that

∣
∣[Ik(x)

]α∣
∣ ≤ dα

k
(|x|), k = , , . . . , m,

for each x ∈ X , and

lim inf
dk(ρ)

ρ
= λk < ∞, k = , , . . . , m.

(A) The function h : J × Bh → X is continuous, and there exists Lh >  such that

∥∥[
h(t,φ)

]α –
[
h(s,φ)

]α∥∥ < Lα
h
[|t –s|+‖φ –φ‖Bh

]
for every t, s ∈ J and φ,φ ∈ Bh.

The following notations are introduced for convenience:

Q′ =
Lα

 q′

Mα


+ aMα
 Nα

 q′ + Mα


∫ a


λα

q (s) ds + Mα


∫ a


λα

q (s) dW (s) + Mα


m∑

k=

dα
k
(
q′).

Theorem . Assume that conditions (A)-(A) are satisfied. Further, suppose that for all
a > ,

(
 +


β

a
[
M


]α[

M
A
]α

)
MQ′ < , ()

then system ()-() has a solution on J .
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Proof Now, define the operator � on PC((–∞, b], X), (�x)(t) = φ(t), t ∈ (–∞, ].
From the theorem and definition, let

[
u(t)

]α =
[
uα

l (t), uα
r (t)

]

=

[

B∗U∗(a, t)
(
αI + 
a


)–

(

xa – Uα
l (a, )

[
x – μ(x) – hα

l
(
,

(
x – μ(x)

))]

– hα
l
(
a, x(a)

)
–

∫ a


Uα

l (a, s)A(s)hα
l
(
s, x(s)

)
ds –

∫ a


Uα

l (a, s)f α
l
(
s, x(s)

)
ds

–
∫ a


Uα

l (a, s)gα
l
(
s, x(s)

)
dW (S) –

m∑

k=

Uα
l (Ik)αl

(
x
(
t–
k
))

)

, B∗U∗(a, t)

× (
αI + 
a


)–

(

xa – Uα
r (a, )

[
x – μ(x) – hα

r
(
,

(
x – μ(x)

))]
– hα

r
(
a, x(a)

)

–
∫ a


Uα

r (a, s)A(s)hα
r
(
s, x(s)

)
ds –

∫ a


Uα

r (a, s)f α
r
(
s, x(s)

)
ds

–
∫ a


Uα

r (a, s)gα
r
(
s, x(s)

)
dW (S) –

m∑

k=

Uα
r (Ik)αr

(
x
(
t–
k
))

)]

. ()

Take the function y(·) : (–∞, a) → X defined by

y(t) =
{

U(t, )X()t ≥ , X() – ∞ < t < 
}

,

then y = φ, and the map t → yt is continuous. If [x(t)]α is a fuzzy solution of (), then we
can write it as [x(t)]α = [y(t)]α + [z(t)]α , –∞ < t ≤ a.

From the above we describe Z =  and the function [z(t)]α that satisfies

[
z(t)

]α =

[

–U(t, )h
(
,

[
x – μ(x)

])
+ h(t, zt + yt) +

∫ t


U(t, s)A(s)h(s, zs + ys) ds

+
∫ t


U(t,η)BB∗U∗(a, s)

(
αI + 
a


)–

×
(

xa – U(a, )
[
x – μ(x) – h

(
,

(
x – μ(x)

))]

– h(a, za + ya) –
∫ a


U(a, s)A(s)h(s, zs + ys) ds –

∫ a


U(a, s)f (s, Zs + ys) ds

–
∫ a


U(a, s)g(s, zs + ys) dW (s) –

m∑

k=

U(Ik)
(
z
(
t–
k
)

+ y
(
t–
k
))

)

η dη

+
∫ t


U(t, s)f (s, zs + ys) ds +

∫ t


U(t, s)g(s, zs + ys) dW (s)

+
∑

<tk <t

U(t, tk)Ik
(
z
(
t–
k
)

+ y
(
t–
k
))

]α
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iff x satisfies

[
x(t)

]α =

[

–U(t, )h
(
,

[
x – μ(x)

])
+ h(t, xt) +

∫ t


U(t, s)A(s)h(s, xs) ds

+
∫ t


U(t,η)BB∗U∗(a, s)

(
αI + 
a


)–

×
(

xa – U(a, )
[
x – μ(x) – h

(
, x – μ(x)

)]

– h(a, xa) –
∫ a


U(a, s)A(s)h(s, xs) ds –

∫ a


U(a, s)f (s, xs) ds

–
∫ a


U(a, s)g(s, xs) dW (s) –

m∑

k=

U(Ik)
(
x
(
t–
k
))

)

η dη

+
∫ t


U(t, s)f (s, xs) ds +

∫ t


U(t, s)g(s, xs) dW (s) +

∑

<tk <t

U(t, tk)Ik
(
x
(
t–
k
))

]α

and

[
x(t)

]α = φα(t), for all t ∈ (–∞, ].

Let us take the operator � : B′′
h → B′′

h defined by

[
(�z)(t)

]α = , t ∈ (–∞, ],
[
(�z)(t)

]α =
[
z(t)

]α , t ∈ J .

Obviously, the operator � has a fixed point iff � has a fixed point. So we want to prove
that � has a fixed point and the proof has the following steps.

Step : �(Bq) ⊆ Bq for some q > .
We claim that there exists a positive constant q such that

�(Bq) ⊆ Bq.

If this condition is false, then for every positive number q, there exists a function zq(·) ∈
Bq, but �(zq) does not belong to Bq, i.e., |(ψzq)(t)| > q for some t ∈ J . From conditions
(A)-(A) and

q <
∣∣[(�zq)(t)

]α∣∣

≤ Mα

∥∥hα

(
, x – μ(x)

)∥∥ +
∥∥hα

(
t, zq

t + yq
t
)∥∥ + Mα



∫ t



∥∥A(s)hα
(
s, zq

s + yq
s
)∥∥

+
∫ t




β

[
M


]α[

M
A
]α

[

‖xa‖ + Mα

∥∥[

x – μ(x)
]α∥∥ + Mα


∥∥hα

(
,

[
x – μ(x)

])∥∥

+
∥
∥hα

(
a, zq

a + yq
a
)∥∥ + Mα



∫ a



∥
∥A(s)hα

(
s, zq

s + yq
s
)∥∥ds + Mα



∫ a



∥
∥f α

(
s, zq

s + yq
s
)∥∥ds
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+ Mα


∫ a



∥∥gα
(
s, zq

s + yq
s
)∥∥dW (s) + Mα



m∑

k=

∥∥Iα – k
(
zq(t–

k
)

+ yq(t–
k
))∥∥

]

+ Mα


∫ t



∥∥f α
(
s, zq

s + yq
s
)∥∥ds + Mα



∫ t



∥∥gα
(
s, zq

s + yq
s
)∥∥dW (s)

+ Mα


∑

<tk <t

∥∥Iα
k
(
zq(t–

k
)

+ yq(t–
k
))∥∥.

Since

∫ t



∥
∥f α

(
s, zq

s + yq
s
)∥∥ds ≤

∫ a


λα

q (t) dt,

similarly

∫ t



∥∥gα
(
s, zq

s + yq
s
)∥∥dW (s) ≤

∫ a


λα

q (t) dW (t).

From conditions (A), (A) and Note ., then

q < Mα

∥
∥hα

(
, x – μ(x)

)∥∥ + Lα
 q′ + Lα

 + aMα
 Nα

 q′ + Nα


+

β

[
M


]α[

M
A
]α

[

‖xa‖ + Mα

∥∥[

x – μ(x)
]α∥∥ + Mα


∥∥hα

(
,

[
x – μ(x)

])∥∥

+ Lα
 q′ + Lα

 + aMα
 Nα

 q′ + Nα
 + Mα



∫ a


λα

q (s) ds + Mα


∫ a


λα

q (s) dW (s)

+ Mα


m∑

k=

dα
k
(
q′)

]

+ Mα


∫ a


λα

q (s) ds + Mα


∫ a


λα

q (s) dW (s) + Mα


m∑

k=

dα
k
(
q′)

≤ Q +
(

 +

β

[
M


]α[

M
A
]α

)[

Lα
 q′ + aMα

 Nα
 q′ + Mα



∫ a


λα

q (s) ds

+ Mα


∫ a


λα

q (s) dW (s) + Mα


m∑

k=

dα – k
(
q′)

]

,

where Q is independent of q. Dividing both sides by q, we obtain

lim
q→+∞ inf

m∑

k=

dα – k(l–q′)
q

= lim
q→+∞ inf

m∑

k=

dα
k (l–q′)
(l–q′)

l–q′

q
,

lim
q→+∞ inf


q

∫ a


λα

q (s) ds = lim
q→+∞ inf

∫ a
 λα

q (s) ds
q

=
(
 + L)
l.

Thus we have

(
 +


β

a
[
M


]α[

M
A
]α

)
MQ′ ≥ .

This contradicts (). Hence for q > , �(Bq) ⊆ Bq.
Step : � maps Bq into a precompact set in X.
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Now we want to prove that V (t) = (�z)(t) : z ∈ Bq is relatively compact in X. The case
t =  is true since V () = �(). Let  < t ≤ a be fixed,  < ε < t, for z ∈ Bq, we define

[
(�εz)(t)

]α =

[

–U(t, )h
(
,

[
x – μ(x)

])
+ h(t, zt + yt)

+ U(t, t – ε)
∫ t–ε


U(t – ε, s)A(s)h(s, zs + ys) ds

+ U(t, t – ε)
∫ t–ε


U(t – ε,η)BB∗U∗(t – ε,η)

(
αI + 
a


)–

×
(

xa – U(a, )
[
x – μ(x) – h

(
, x – μ(x)

)]
– h(a, za + ya)

–
∫ a


U(a, s)A(s)h(s, zs + ys) ds –

∫ a


U(a, s)f (s, zs + ys) ds

–
∫ a


U(a, s)g(s, zs + ys) dW (s) –

m∑

k=

U(Ik)
(
z
(
t–
k
)

+ y
(
t–
k
))

)

η dη

+ U(t, t – ε)
∫ t–ε


U(t – ε, s)f (s, zs + ys) ds

+ U(t, t – ε)
∫ t–ε


U(t – ε, s)g(s, zs + ys) dW (s)

+
∑

<tk <t

U(t, tk)Ik
(
z
(
t–
k
)

+ y
(
t–
k
))

]α

.

Set Vε(t) = (�εz)(t) : z ∈ Bq is relatively compact in X for every ε,  < ε < t. That is, a finite
set ỹj,  ≤ j ≤ m in X exists such that

Vε(t) ⊂
m⋃

j=

L̃(ỹj,η/),

where L̃(ỹj,η/) is an open ball in X with radius η/ and center at ỹj.

∥
∥[

(�z)(t)
]α –

[
(�εz)(t)

]α∥
∥

≤
∫ t

t–ε

∥
∥U(t, s)A(s)h(s, zs + ys)

∥
∥ds

+
∫ t

t–ε

U(t,η)BB∗U∗(t,η)
(
αI + 
a


)–

[

xa – U(a, )
[(

x – μ(x)
)

– h
(
, x – μ(x)

)]
– h(a, za + ya) –

∫ a


U(a, s)A(s)h(s, zs + ys) ds

–
∫ a


U(a, s)f (s, Zs + ys) ds –

∫ a


U(a, s)g(s, zs + ys) dW (s)

–
m∑

k=

U(a, tk)Ik
(
z
(
t–
k
)

+ y
(
t–
k
))

]

η dη +
∫ t

t–ε

∥∥U(t, s)f (s, zs + ys)
∥∥ds
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+
∫ t

t–ε

∥∥U(t, s)g(s, zs + ys)
∥∥dW (s)

≤ Mα


∫ t

t–ε

[
Nα

 q′ + Nα

]

ds +

β

[
M


]α[

M
A
]α

×
∫ t

t–ε

[

‖xa‖ + Mα

∥
∥x – μ(x)

∥
∥ + Mα


∥
∥hα

(
, x – μ(x)

)∥∥

+ Lα
 q′ + Lα

 + aMα

[
Nα

 q′ + Nα

]

+ Mα


∫ a


λα

q (τ ) dτ + Mα


∫ a


λα

q (τ ) dW (τ )

+ Mα


m∑

k=

dα
k
(
l–q′)

]

ds + Mα


∫ a


λα

q (s) ds + Mα


∫ a


λα

q (s) dW (s)

≤ η/.

Similarly,

V (t) ⊂
m⋃

j=

L̃(ỹj,η).

Hence, for every t ∈ [, a], the set V (t) is relatively compact in X.
Step : � maps Bq into an equicontinuous family.
We claim that �(Bq) = �z : z ∈ Bq is a family of equicontinuous functions. Let t, t ∈

[, a]. By (A)-(A), we get

∣
∣[(�z)(t)

]α –
[
(�z)(t)

]α∣
∣

≤ ∥∥[
Uα(t, ) – Uα(t, )

]
hα

(
,

[
x – μ(x)

])∥∥ +
∥∥hα(t, zt + yt )

– hα(t, zt + yt )
∥
∥ +

∥∥
∥∥

∫ t



[
Uα(t, s) – Uα(t, s)

]
A(s)hα(s, zs + ys) ds

∥∥
∥∥

+
∥
∥∥
∥

∫ t

t

Uα(t, s)A(s)hα(s, zs + ys) ds
∥
∥∥
∥ +

∥
∥∥
∥

∫ t



[
Uα(t,η) – Uα(t,η)

]
BU(s) ds

∥
∥∥
∥

+
∥
∥∥
∥

∫ t

t

Uα(t,η)BU(s) ds
∥
∥∥
∥ +

∥
∥∥
∥

∫ t



[
Uα(t, s) – Uα(t, s)

]
f α(s, Zs + ys) ds

∥
∥∥
∥

+
∥∥∥
∥

∫ t

t

Uα(t, s)f α(s, Zs + ys) ds
∥∥∥
∥ +

∥∥∥
∥

∫ t



[
Uα(t, s) – Uα(t, s)

]
gα(s, Zs + ys) ds

∥∥∥
∥

+
∥∥
∥∥

∫ t

t

Uα(t, s)gα(s, Zs + ys) dW (s)
∥∥
∥∥

+
∥∥∥
∥

∑

<tk <t

[
Uα(t, tk) – Uα(t, tk)

]
Ik

(
z
(
t–
k
)

+ y
(
t–
k
))

∥∥∥
∥

+
∥∥
∥∥

∑

t<tk <t

Uα(t, tk)Ik
(
z
(
t–
k
)

+ y
(
t–
k
))

∥∥
∥∥

≤ ∥∥[
Uα(t, ) – Uα(t, )

]∥∥∣∣hα
(
,

[
x – μ(x)

])∣∣

+ Lα
h
[|t – t| + ‖zt – zt‖Bh + ‖yt – yt‖Bh

]

+
∫ t



∥
∥Uα(t, s) – Uα(t, s)

∥
∥[

Nα
 ‖zs + ys‖ + Nα


]

ds
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+
∫ t

t

∥∥Uα(t, s)
∥∥[

Nα
 ‖zs + ys‖Bh + Nα


]

ds

+

β

[
M


]α[

M
A
]α

∫ t



∥
∥Uα(t,η) – Uα(t,η)

∥
∥
[

‖xa‖ + Mα

∣
∣[x – μ(x)

]∣∣

+
∣∣hα

(
,

[
x – μ(x)

])∣∣ +
[
Lα

 ‖za + ya‖Bh + Lα

]

+ Mα


∫ a



[
Nα

 ‖zs + ys‖Bh + Nα

]

ds

+ Mα


(∫ a


λα

q (s) ds +
∫ a


λα

q (s) dW (s) +
m∑

k=

dα
k
(
l–q′)

)]

dη

+

β

[
M


]α[

M
A
]α

∫ t

t

∥
∥Uα(t,η)

∥
∥

×
[

‖xa‖ + Mα

∣∣[x – μ(x)

]∣∣ +
∣∣hα

(
,

[
x – μ(x)

])∣∣ +
[
Lα

 ‖za + ya‖Bh + Lα

]

+ Mα


∫ a



[
Nα

 ‖zs + ys‖Bh + Nα

]

ds + Mα


∫ a


λα

q (s) ds + Mα


∫ a


λα

q (s) dW (s)

+ Mα


m∑

k=

dα
k
(
l–q′)

]

dη +
∫ t



∥
∥Uα(t, s) – Uα(t, s)

∥
∥λα

q (s) ds

+
∫ t

t

∥
∥Uα(t, s)

∥
∥λα

q (s) ds

+
∫ t



∥
∥Uα(t, s) – Uα(t, s)

∥
∥λα

q (s) dW (s) +
∫ t

t

∥
∥Uα(t, s)

∥
∥λα

q (s) dW (s)

+
∑

<tk <t

∥
∥Uα(t, tk) – Uα(t, tk)

∥
∥dα

k
(
l–q′) + Mα



∑

t<tk <t

dα
k
(
l–q′).

This implies that |[(�z)(t)]α – [(�z)(t)]α| →  as t – t → , since the compactness of
Uα(t, s) is the continuity of Uα(t, s) in the uniform operator topology. Thus � maps Bq into
an equicontinuous family of functions.

Step : B′′
h → B′′

h is continuous.
First we show that � is continuous in B′′

h. Let [z(n)
t (t)]α

∞
 ⊆ B′′

h with zn → z in B′′
h. Then

there exists a number q >  such that |[z(n)(t)]α| ≤ r for all n and a.e. t ∈ J , so z(n) ∈ Bq and
z ∈ Bq. By note we have

∥∥z(n)
t + yt

∥∥ ≤ q′, t ∈ J .

From conditions (A)-(A), we have
() Ik , k = , , . . . , m, is continuous.
() hα(t, z(n)

t + yt) → hα(t, zt + yt) for each t ∈ J and since
‖hα(t, z(n)

t + yt) – hα(t, zt + yt)‖ < [Lα
 ‖y‖ + Lα

 ].
() f α(s, z(n)

s + ys) → f α(s, zs + ys) for each s ∈ J and since
‖f α(s, z(n)

s + ys) – f α(s, zs + ys)‖ < λα
q (s).

From the dominated convergence theorem, we obtain

∣
∣[(�z)(n)]α –

[
(�z)

]α∣
∣
Bh

≤ ∥
∥hα

(
t, z(n)

t + yt
)

– hα(t, zt + yt)
∥
∥ + Mα



∫ t



∥
∥A(s)hα

(
s, z(n)

s + ys
)
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– A(s)hα(s, zs + ys)
∥∥ds +


β

[
M


]α[

M
A
]α

∫ a



[
∥∥hα

(
a, z(n)

a + ya
)

– hα(a, za + ya) ds
∥∥ + Mα



∫ a



∥∥A(s)hα
(
a, z(n)

a + ya
)

– A(s)hα(a, za + ya)
∥
∥ds + Mα



∫ a



∥
∥f α

(
s, z(n)

s + ys
)

– f α(s, zs + ys)
∥
∥ds

+ Mα


∫ a



∥
∥gα

(
s, z(n)

s + ys
)

– gα(s, zs + ys)
∥
∥dW (s)

+ Mα


m∑

k=

∥∥Iα
k (z(n)(t–

k
)

+ y
(
t–
k
)

– Iα
k
(
z
(
t–
k
)

+ y
(
t–
k
))∥∥

]

dη

+ Mα


∫ t



∥∥f α
(
s, z(n)

s + ys
)

– f α(s, zs + ys)
∥∥ds

+ Mα


∫ t



∥
∥gα

(
s, z(n)

s + ys
)

– gα(s, zs + ys)
∥
∥dW (s)

+ Mα


∑

o<tk <t

∥
∥Iα

k (z(n)(t–
k
)

+ y
(
t–
k
)

– Iα
k
(
z
(
t–
k
)

+ y
(
t–
k
))∥∥ →  as n → ∞,

which shows that � is continuous in B′′
h. Hence the conditions of Schauder’s fixed point

theorem are all satisfied, and also the operator � has a fixed point in Bq. Thus system
()-() has a solution on J . �

Theorem . Conditions (A), (A), (A) and (D) are satisfied. Then system ()-() is ap-
proximately controllable on J .

Proof Let x̃γ (·) be a fixed point of � in Bq, and any fixed point of � is a mild solution of
()-() on [, b].

By Theorem ., the control

ũγ (t) = B∗U∗(a, t)R̃
(
γ ,
a


)[

P
(
x̃γ

)]α ,

which satisfies

[
x̃γ (a)

]α = xa – γ R̃
(
γ ,
a


)
[

xa – Uα(a, )
[
x – μ(x) – hα

(
,

(
x – μ(x)

))]

– hα(a, xa) –
∫ a


Uα(a, s)A(s)hα

(
s, x̃γ

s
)

ds –
∫ a


Uα(a, s)f α

(
s, x̃γ

s
)

ds

–
∫ a


Uα(a, s)gα

(
s, x̃γ

s
)

dW (S) –
m∑

k=

Uα(a, tk)(Ik)
(
x
(
t–
k
))

]

. ()

By (A)-(A)

∫ a



∥
∥f α

(
s, x̃γ

s
)∥∥ds ≤ Lα

f a,
∫ a



∥
∥gα

(
s, x̃γ

s
)∥∥dW (s) ≤ Lα

g a,

∫ a



∥∥A(s)hα
(
s, x̃γ

s
)∥∥ds ≤ Lα

h a.
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Here, the sequences f α(s, x̃γ
s ), gα(s, x̃γ

s ) and A(s)hα(s, x̃γ
s ) are bounded in L(J , X). Therefore,

there is a subsequence f α(s, x̃γ
s ), gα(s, x̃γ

s ) and A(s)hα(s, x̃γ
s ) are all weakly convergent to say

f α(s), gα(s) and A(s)hα(s) are bounded in L(J , X), respectively. Take

ω̃ = xa – Uα(a, )
[
x – μ(x) – hα

(
,

(
x – μ(x)

))]
– hα

(
a, x(a)

)

–
∫ a


Uα(a, s)A(s)hα(s) ds

–
∫ a


Uα(a, s)f α(s) ds –

∫ a


Uα(a, s)gα(s) dW (S) –

m∑

k=

Uα(a, tk)Iα
k
(
x
(
t–
k
))

.

It follows by the compactness of the operators q(·) → ∫ a
 U(·, s)q(s) ds : L(J , X) → C(J , X),

we obtain that

∥
∥[

P
(
x̃γ

)]α – ω̃
∥
∥ ≤

∥∥
∥∥

∫ a


Uα(a, s)

[
A(s)hα

(
s, x̃γ

s
)

– A(s)hα(s)
]

ds
∥∥
∥∥

+
∥∥
∥∥

∫ a


Uα(a, s)

[
f α

(
s, x̃γ

s
)

– f α(s)
]

ds
∥∥
∥∥

+
∥
∥∥
∥

∫ a


Uα(a, s)

[
gα

(
s, x̃γ

s
)

– gα(s)
]

dW (S)
∥
∥∥
∥ →  as γ → +.

By () and definition

∥∥[
x̃γ (a)

]α – xa
∥∥ =

∥∥γ R̃
(
γ ,
a


)[

P
(
x̃γ

)]α∥∥

=
∥∥γ R̃

(
γ ,
a


)[

P
(
x̃γ

)]α – ω̃ + ω̃
∥∥

≤ ∥
∥γ R̃

(
γ ,
a


)
ω̃

∥
∥ +

∥
∥γ R̃

(
γ ,
a


)[

P
(
x̃γ

)]α – ω̃
∥
∥

≤ ∥∥γ R̃
(
γ ,
a


)
ω̃

∥∥ +
∥∥[

P
(
x̃γ

)]α – ω̃
∥∥ →  as γ → +,

i.e., ‖[x̃γ (a)]α – xa‖ → .
This proves the approximate controllability of ()-(). �

4 Example
We consider an impulsive neutral fuzzy stochastic differential equation with nonlocal con-
dition:

cDα
t

[
z(t, x) –

∫ t

–∞
e(s–t)z(s, x) ds

]

=
∂

∂z

[
z(t, x) –

∫ t

–∞
e(s–t)z(s, x) ds

]
+ η(t, x)

+
∫ t

–∞
â(s) sin z(t + s, x) ds +

∫ t

–∞
α(t – s)z(s, x) dW (s), x ∈ [,�], ()

z
(
t+
k , x

)
– z

(
t–
k , x

)
= Ik

(
z
(
τ–

k , x
))

, k = , , . . . , n, ()

z(t, ) = z(t,�) = , t ∈ J = [, b], ()

z(, x) +
∫ �


k(x, y)z(t, y) dy = φ(t, x), t ∈ (–∞, ]. ()
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Let U = L([,�]) and v(t) = et , t > , where cDα
t is a Caputo fractional partial deriva-

tive of order  < α < , b > , k(x, y) ∈ L([,�] × [,�]) and
∫ 

–∞ |â(s)|ds < ∞. In our
formulation we take U defined on a fuzzy stochastic space (�, F , P). To study the approxi-
mate controllability of ()-(), assume that α(t) is measurable and continuous with finite
L

α =
∫ 

–∞
α(–s)

v(s) ds. We define the operator A by Az = ∂z
∂x with domain

D(A) =
{

z ∈ U and
∂z
∂x

,
∂z
∂x are absolutely continuous,

∂z
∂x ∈ U and

z() = z(�) = 
}

.

From this we know that A generates a strongly continuous semigroup T(t), t > , given
by T(t)z =

∑∞
n= e–nt〈z, en〉en, which is compact, analytic, and also spectrum of A consists

of the eigenvalues –n for n ∈ N with corresponding eigenvectors zn(x) =
√


�

sin(nx), and
zn is an orthonormal basis of H .

Define the bounded linear operator B by

Bu(t)(x) = η(t, x),  ≤ x ≤ �, u ∈ U .

Now, we present a special space Cv. For (t,ϕ) ∈ J × Cv, where z(s, x) = ϕ(s, x) ∈ (–∞, ] ×
[,�], and the operator h, f : J × Cv → U , g : J × Cv → L

(U , U) by

h(t,ϕ)(x) =
∫ 

–∞
e–sϕ(s, x) ds, f (t,ϕ)(x) =

∫ 

–∞
â(s) sin

(
ϕ(s, x)

)
ds,

g(t,ϕ)(x) =
∫ 

–∞
α(–s)ϕ(s, x) dW (s)

with the choice of A, h, f , g of system ()-() can be rewritten as the abstract form of
system ()-(). Thus, under the appropriate conditions on the function h, f , g and Ik as
those in (A)-(A), system ()-() is approximately controllable.

5 Conclusion
In this paper, we focused on approximate controllability results for impulsive neutral fuzzy
stochastic differential equations with nonlocal conditions in a Banach space by using
Schauder’s and Banach fixed point theorems. According to the hypotheses, it is proved
that the system is approximately controllable under nonlocal conditions. Then, the result
showed that these fixed point theorems can strongly be used in control problems to obtain
the sufficient conditions. Upon making some approximate assumptions, by the ideas and
techniques as suggested in this paper, one can establish the approximate controllability
results for a wide class of linear fuzzy stochastic evolution equations.
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